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This paper deals with video-based face recognition and tracking from a camera mounted
on a mobile robot companion. All persons must be logically identified before being
authorized to interact with the robot while continuous tracking is compulsory in order
to estimate the person’s approximate position. A first contribution relates to experiments

of still-image-based face recognition methods in order to check which image projection
and classifier associations give the highest performance of the face database acquired
from our robot. Our approach, based on Principal Component Analysis (PCA) and

Support Vector Machines (SVM) improved by genetic algorithm optimization of the free-
parameters, is found to outperform conventional appearance-based holistic classifiers
(eigenface and Fisherface) which are used as benchmarks. Relative performances are
analyzed by means of Receiver Operator Characteristics which systematically provide

optimized classifier free-parameter settings. Finally, for the SVM-based classifier, we
propose a non-dominated sorting genetic algorithm to obtain optimized free-parameter
settings.

The second and central contribution is the design of a complete still-to-video face

recognition system, dedicated to the previously identified person, which integrates face
verification, as intermittent features, and shape and clothing color, as persistent cues,
in a robust and probabilistically motivated way. The particle filtering framework, is

well-suited to this context as it facilitates the fusion of different measurement sources.
Automatic target recovery, after full occlusion or temporally disappearance from the field
of view, is provided by positioning the particles according to face classification proba-
bilities in the importance function. Moreover, the multi-cue fusion in the measurement

function proves to be more reliable than any other individual cues.
Evaluations on key-sequences acquired by the robot during long-term operations in

crowded and continuously changing indoor environments demonstrate the robustness of

the tracker against such natural settings. Mixing all these cues makes our video-based
face recognition system work under a wide range of conditions encountered by the robot
during its movements. The paper concludes with a discussion of possible extensions.

1. Introduction and framework

The development of autonomous robots acting as human companions is a moti-

vating challenge and a considerable number of mature robotic systems have been

implemented which claim to be companions, servants or assistants in private homes

(see a survey in 15). This is of particular interest for elderly and disabled peo-

ple given that Europe is to experience significant ageing over the next two decades.

The dedicated hardware and software of such robot companions are oriented mainly

towards safety, mobility in human centered environments but also towards peer-to-
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peer interaction between the robot companion and its novice human user. These

unconstrained and natural interaction mechanisms will facilitate the teaching, pro-

gramming and control of robot assistants and enable them to execute demanding

and complex tasks under the control of and in collaboration with the current human

user. The robot’s interlocutor must be logically identified before being authorized to

interact with the robot while his/her identity must be verified throughout the per-

formance of any coordinated tasks. Automatic visual person recognition is therefore

crucial to this process.

Person recognition based on video is preferable to using still images as motion

helps in recognition. This entails the tracking of the targeted person i.e. the estima-

tion of his/her image location in the video stream. Our line of investigation consists

in fusing multiple visual cues, face and clothing appearance, within the well-known

particle filtering formalism.

The remainder of the paper is organized as follows. Section 2 depicts the require-

ments imposed by our robotic application, then outlines our approach. Section 3

describes our still face image recognition system in our robotic context. To enhance

recognition performances, fine-tuning of the classifier free-parameters is addressed

herein. Section 4 describes our person recognition system of the previously iden-

tified person. We briefly sum up the particle filtering formalism and principles to

fuse multiple cues in the tracker, especially still face image recognition probabilities.

For both developed visual functions, studies are reported concerning off-line eval-

uations on video sequences collected by our Jido robot companion during several

runs in our lab. Lastly, section 5 summarizes our contribution and discusses future

extensions.

2. Overview

Figure 1. The Jido robot companion.

The aforementioned visual functionalities

are devoted to the robot companion called

Jido (figure 1). It embeds robust and effi-

cient basic navigation and object recog-

nition abilities. In addition, our efforts

focus in this article on the design of vi-

sual functions in order to recognize in-

dividuals, verify their presence and track

them in the robot’s vicinity. Figure 2 illus-

trates a typical scenario involving peer-

to-peer H/R interaction. The left and

right columns show the current H/R situ-

ation as well as the video stream from the

on-board camera, respectively. In this sce-

nario, the challenge is to recognize a given
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person in the video stream despite temporary occlusions by other persons, 3D ro-

tations and out-field sight of the targeted person.

Figure 2. From top-left to bottom-right: progress of a peer-to-peer H/R interaction session. The
rectangle represents the template for the targeted person.

Visual person recognition from a mobile platform operating in a human-centered

scene is a challenging task which imposes several requirements. First, on-board pro-

cessing power must enable the concurrent execution of other non-visual functional-

ities as well as decisional routines in the robot’s architecture. Thus, care must be

taken to design efficient vision algorithms. Contrary to conventional biometric sys-

tems, the embedded visual sensor moves in uncooperative human centered settings

where people stand at a few meters - approximately at social and intimate distances

- when interacting with the robot. Because of this context dependence, we cannot

use well-known public face still image and video galleries for our evaluations.

Given this framework, our FR system must be capable of handling: (i) poor

video quality and low image resolution which is computationally faster, (ii) heavier
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lighting changes, (iii) larger pose variations in the face images i.e. 2D (image plane)

but also 3D rotations, (iv) occlusion or background clutter. These requirements

have led to interest in the design of a system that can fuse other cues in addition

to face appearance and recognize these faces from video sequences instead of still

images. This requires solving tracking (estimation of the targeted person image

location) with automatic re-initialization capabilities, apart from the recognition

task. However, the robot does not deal solely with still images. By considering

subsequent frames and, as a result, spatiotemporal relationships, it is possible to

make the FR problem more tractable.

Historically, video FR originated from still-image-based techniques. In other

words, the system automatically detects and segments the face from the video, and

then applies still-image FR techniques. Though a detailed description of the state of

the art related to still-image FR falls outside the scope of this paper, the interested

reader is referred to the comprehensive surveys 1,49 for more details. Briefly, they

can be classified into two broad categories: holistic and analytic strategies although

the two are sometimes combined to form a complete FR system 26. We focus on

the former as analytic or feature-based approaches 32 are not really suited to our

robotic context. In fact, possible small face images (depending on the H/R distance)

and low image quality of the faces captured by the onboard camera increase the

difficulty in extracting local facial features. Other hand, holistic or appearance-

based approaches 7,38,40 consider the face as a whole and operate directly on pixel

intensity array representation of faces without the detection of facial features.

Besides still-image-based techniques devoted to mug-shot matching applications,

approaches exploiting spatiotemporal information have recently been suggested for

access control or video surveillance applications. These approaches can also be di-

vided in two broad categories: still-to-video FR systems (e.g. 12) based on a gallery

of still face images and a probe set of videos, and video-to-video FR systems (e.g. 3).

Latter category is unsuitable in our robotic context which considers scalable face

motions in videos in terms of relative distance, 2D and 3D (out-of-plane) rotations.

Spatiotemporal analysis, namely tracking, is in this case based on Monte Carlo sim-

ulation methods, also known as particle filters (PF) 13. The key idea is to represent

at each time the posterior over the state space by a set of samples -or particles- with

associated importance weights. The principle follows two steps. The particle set is

first sampled (predicted) from the state vector initial probability distribution and a

proposal distribution which constitutes a mathematical way of targeting the search

in the state vector space. The particles are then weighted by their likelihoods w.r.t

the measurements. PF constitutes a powerful probabilistic framework for tracking

and fulfils the above robotic requirements due to the easy probabilistic based fu-

sion of multiple measurements and the non-parametric distribution of probability

distributions.

Data fusion for PF has been discussed extensively by Pérez et al. in 34. They

highlight the fact that intermittent cues make them excellent candidates for the
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construction of detection modules and efficient proposal distributions. Besides, the

likelihood is computed by means of measurement functions according to cues which

must be persistent. Unlike 51,50, the FR output is an intermittent cue in this robotic

application as it is necessary to handle probe set of videos acquired from the robot

in a wider range of conditions during key runs: occlusion, out-field of view or non

frontal face. Consequently, our proposal distribution combines the dynamics (like

CONDENSATION) but also measurements, namely the FR output. Such data-

driven distribution has been surprisingly rarely exploited for tracking purposes 23,34.

Besides motion and face appearance cues, we consider other visual cues for person

recognition, namely head silhouette, head and clothing color distributions. Clothe

appearance is known to significantly facilitate person recognition, especially in low

resolution when fine facial features cannot be seen. In our view, using such multiple

cues simultaneously, both in the importance and measurement functions of the

underlying estimation scheme, makes it possible not only to use complementary

and redundant information but also enables a more robust person recognition and

automatic targeted person recovery.

Prior to their fusion in the overall software robot architecture, the scalable sys-

tems for FR and head tracking are evaluated individually in order to identify their

associated strengths and weakness. Fusion of both systems is investigated with spe-

cial emphasis on real-time capabilities and robustness against the aforementioned

H/R situations.

3. Face recognition from still face images

3.1. Related work

Since the 1990s, appearance-based methods have been dominant approaches in still

face image recognition systems. They involve two sequential processes: (1) image

projection into subspaces to construct lower dimensional image representation, (2)

final decision rule for classification purposes. Adini et al. in 2 point out that there

is no image representation that can be completely invariant to lighting conditions

and image-preprocessing is usually necessary.

Besides non-linear techniques 33, principal component analysis (PCA), linear

discriminant analysis (LDA), and independent component analysis have been pop-

ular linear techniques used for image projection. PCA uses image projection into

PC (eigenface) to determine basis vectors that capture maximum image variance

per class 38 or for the overall classes 40. LDA determines a set of optimal discrim-

inant basis vectors so that the ratio of the between-class and within-class scatters

is maximized. LDA finds the best projection direction in which training samples

of different classes are best separated. The LDA is either operated on the raw im-

age to extract the Fisherface 7,25 or on the eigenface to obtain the discriminant

eigenfeatures 48. ICA provides a set of basis vectors that possess maximum sta-

tistical independence 6. We design experiments in which faces are represented in

both PC and LD subspaces parameterized by the information ratio (noted η) they
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encompass.

The decision rule differs from the classification algorithms. Euclidean distance or

normalized correlation 25, Hausdorff distance 30, distance from face space (DFFS) 40

showed successful results. In earlier studies 17, we proposed an error norm distance

which is highlighted to outperform the well-known DFFS. These rules require a

decision threshold hereinafter referred to as τ . Inspired from 25, the evaluations

are extended to support vector machines (SVM) in combination with PCA or LDA

for dimensionality reduction. SVMs map the observations from input space into

a higher dimensional feature space using a non-linear transformation, then find a

hyperplane in this space which maximizes the margin of separation in order to

minimize the risk of misclassification between faces. An RBF kernel is usually used

for this transformation 21,25 where the width free-parameter (herein annotated γ)

controls the width of the Gaussian kernel. Another important free-parameter to

tune is C the upper bound of Lagrangian multipliers required for the minimiza-

tion under constraints. SVM shows significantly different performance according to

kernel functions but especially the SVM free-parameters γ, C and also τ .

The issue of automatic optimization of the aforementioned free-parameters is

either ad-hoc, or based on receiver operator characteristics (ROC) curves 16,35 or on

numerical methods dealing with the minimization of non-linear objective functions.

In this vein, local gradient descent methods 11 or global optimization 10,46 are

proposed to maximize the generalization performance. Genetic algorithms (GA)

are also well-known techniques for optimization problems, and have proved to be

effective for selecting SVM parameters 27,45. Our primary motivation for the study

referred to below is to fine-tune properly the free-parameters produced by each

classifier model in order to highlight its optimal performance for detailed classifier

performance comparison.

3.2. Our approach

From these reminders, recognition experiments are performed for histogram

equalization-based preprocessing, two different representations (PC and LD ba-

sis), and three decision rules (error norm, Mahanalobis distance and SVM). Note

that the final goal is to classify facial regions F , segmented from the input image,

into either one class Ct out of the set {Cl}M
l=1 of M subject faces using training

algorithms. For detecting faces, we apply the well known window scanning tech-

nique introduced by Viola et al. 41, and improved in 42,43, which covers a range of

±45◦ out-of plane rotation. The bounding boxes of faces segmented by the Viola’s

detector are then fed into the FR systems referred to below.

3.2.1. Face recognition systems

We enumerate hereafter the developed and evaluated classifiers as well as their

free-parameters subject to optimization and which mainly influence classification

performances.
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A. FSS+EN system: Face-Specific Subspace and error norm - As described

in 38, for each class Ct, eigenface Wpca,t basis is deduced by solving

ST,t.Wpca,t − Wpca,t.Λt = 0, (1)

where ST,t is the scatter matrix, and Λt the ordered eigenvalue vector for class Ct.

We keep the first Nv,t eigenvectors as the eigenface basis such that
∑Nv,t

i=0 Λi,t
∑

Λi,t
≤ η, (2)

accounting for a predefined ratio η of the total class Ct variance, given that Λt

is the ordered eigenvalue vector. The decision rule is based on the error norm

introduced in 17. Given an unknown test face F = {F(i), i ∈ {1, . . . , nm}} and Fr,t

the reconstructed face onto face specific subspace of the class Ct, this error norm

is given by

D(Ct,F) =
∑nm

i=1(F(i) −Fr,t(i) − µ)2,

and the associated likelihood follows L (Ct|F) = N (D(Ct,F); 0, σt), where

F − Fr,t is the difference image of mean µ, σt terms the standard deviation of

the error norms within the Ct training set, and N (.;m,σ) is the Gaussian distri-

bution with moments m and covariance σ. This error norm has been shown in 17

to outperform both the Euclidian distance and the DFFS. The last issue concerns

the appropriate selection of the threshold in the decision rule. From a set of M

learnt subjects/classes noted {Cl}
M
l=1 and a detected face F , we can define for each

class Ct the likelihood L t = L (Ct|F) for the detected face F and the posterior

probability P (Ct|F , z) of labeling to Ct as
{

∀t P (Ct|F , z) = 0 and P (C∅|F , z) = 1 when ∀t L
t < τ

∀t P (Ct|F , z) = L
t

P

p
L p and P (C∅|F , z) = 0 otherwise ,

(3)

where C∅ refers to the void class, and τ is a predefined threshold. This classifier

depends on the free-parameters η and τ .

B. GPCA+MD system: global PCA and Mahanalobis distance - Here a

single PC basis is estimated given equation (1) and the total scatter matrix ST .

The decision rule is based on the Mahanalobis distance. This classifier depends also

on the free-parameters η and τ .

C. LDA+MD system: Fisherface and Mahanalobis distance - Fisherface

Wlda basis is deduced by solving SB .Wlda − SW .Wlda.Λ = 0, where SB , and SW

are the between-class, and within-class scatter matrices while the eigenvectors also

follow equation (2). The decision rule is based on the Mahanalobis distance. The

free-parameters are also η and τ .

D. GPCA+SVM system: global PCA and SVM - This system performs

global PCA and SVM delivers probability estimates. The associated theory and

implementation details are described in 44. This classifier model produces the free-

parameters η, C, γ and τ .
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3.2.2. Fine-tuning strategy based on ROC curves and classifiers comparison

We conducted FR experiments using the proposed framework on the face dataset

composed of 6600 examples including 8 possible human users and 3 impostors

corresponding to unknown individuals for the robot. In this dataset, the subjects

arbitrarily move their heads, possibly change their expressions while the ambient

lighting, the background, and the relative distance might change. A few sample

images from this dataset are shown in figure 3 while the entire face gallery is

available at www.laas.fr/∼tgerma/hri.

Figure 3. Examples of samples for a given class.

The evaluation protocol specifies a partitioning of the face database into four

disjoint sets: (1) a training set #1 (8 users, 30 images per class), (2) a training set

#2 (8 users, 30 images per class), (3) an evaluation set (8 users and 3 impostors,

40 images per class), (4) a test set (8 users and 3 impostors, 500 images per class).

The training sets #1 and #2 are used to learn the users’ face representations and

the support vectors. The evaluation set allows us to estimate the aforementioned

free-parameters, and the test set to characterize the optimal performances for each

classifier on independent data.

These performances of the above classifier are analyzed by means of ROCs when

varying the free-parameter vector q subject to optimization for each classifier. The

idea, pioneered by Provost et al. in 35, is outlined as follows. We search over a

set of free-parameters by computing a ROC point i.e. the false positive and true

positive (or hit) rates, namely FPR and TPR. For a given classifier, the set Q of

all admissible parameter vectors q generates a set of ROC points, of which we seek

the dominant, or optimal Pareto points along the ROC convex hull. More formally,

we seek for the subset Q∗ ⊂ Q of parameter vectors q for which there is no other

parameter vector that outperforms both FPR and TPR:

Q∗ = {q ∈ Q|∀ q
′

∈ Q, FPR(q
′

) ≥ FPR(q) ∧ TPR(q
′

) ≤ TPR(q)}. (4)

Clearly, Q∗ identifies the subset of parameter vectors that are potentially optimal

for a given classifier. Figure 4 shows ROC points and the Pareto front when varying

the free-parameters over their ranges. The subfigures, when plotting TPR and FPR

on the Y- and X-axis, allows an informal visual comparison of the four classifiers.

System D clearly dominates the other classifiers as its Pareto front lies in the

nortwest corner of the ROC space (TPR is higher, FPR is lower). Considering

the equal error rate (EER) leads to the same analysis. This rate is derived by

isocost lines where the cost represents the simple sum of the cost of misclassifying

positive and negative examples. Assuming equal numbers of positive and negative
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(a) System A, q = (η, τ)
′
: EER=0.51.
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(b) System B, q = (η, τ)
′
: EER=0.44.
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(c) System C, q = (η, τ)
′
: EER=0.37.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

(d) System D, q = (η, C, γ, τ)
′
: EER=0.29.

Figure 4. ROC points for each classifier and the associated isocost line for EER. Free-parameter
vector q for optimization are listed under the corresponding classifier.

examples for a given classifier, the EER is the point on its ROC which lies on a

45◦ line closest to the north-west corner of the ROC plot. Thus, the best system,

namely D, provides a Pareto front with a lower EER, namely 0.29. Finally, note

that its computational cost is 0.5 ms against 0.3 ms per image for systems B-C.

Unfortunately, an exhaustive search for the selection of all parameters, especially for

model D which produces more free-parameters, is computationally intractable on a

autonomous robot as the finality is to learn human faces on-the-fly when interacting

with new persons. Consequently, we propose a genetic algorithm (GA) to discover

optimal free-parameter vectors of system D more quickly due to its multi-objective

optimization framework. By limiting the number of ROC points to be considered,

GA renders the optimization procedure computationally feasible.
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3.2.3. Fine-tuning strategy based on genetic algorithm

Conventional methods using GA are single-objective optimization problems 27. Non-

dominated sorting GA (NSGA-II) has proved to be suited to multi-objective opti-

mization problem 45. The algorithm aims at minimizing the distance of the gener-

ated solutions to the Pareto front (4) and maximizing the diversity of the achieved

Pareto front approximation. Figure 5 shows the evolution of the Pareto front when

varying the population size in the range [16, 20] and the preset generation count in

the range [1, 30].

Figure 5. NSGA-II Pareto front evolution vs. PCA+SVM based system D.

Note that the generated solutions “move” so as to reduce both FPR and FRR

objectives. This optimization strategy is no longer guaranteed to find the Pareto

front optimum but there is an experimental evidence that the solution is close to

optimal when increasing the preset generation count. Given a population initialized

randomly (first generation in figure 5), we can see that after the first 10 generations,

there is already one solution that outperforms the one without optimization while 30

generations increase the performance compared to ROC means slightly. Therefore,

the minimum EER for 30 generations becomes 0.26 against 0.29 in subfigure 4(d).

Informally, this non-exhaustive search strategy, parameterized by the generation

count and the population size, makes it possible to control the tradeoff between the

computational cost and the classification performance.

4. Person recognition and tracking from videos

4.1. Related work

Lasting recent years, many video-based FR systems have been developed 47. Note

that such systems can be classified into two categories introduced in § 2: still-to-
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Symbol Meaning Value

η Ratio of the total class variance for PCA 0.99

C Upper bound of Lagrangian multipliers 80391

γ Parameter in the RBF kernel 0.002526

τ Threshold for decision rule (3) 0.71

Table 1. Free-parameter values used in the system D.

video and video-to-video systems. This latter category addresses the problem of

FR from spatial and temporal information learnt in video gallery. Hidden Markov

models (HMM) have been widely applied to model temporal information and per-

form FR 20,31. HMMs are trained to learn both the statistics and the temporal

dynamics of each individual. FR in 3 is performed using the concept of subspace

angles to compute distances between probe and gallery video sequences. Biuk et

al. in 9 build a trajectory in eigenspace where each trajectory belongs to one face

sequence (profile to profile). Similarly, Lee et al. in 29 use appearance manifolds

approximated by piecewise linear subspace coupled with a transition matrix repre-

senting the dynamics. This method seems to be at most capable of handling large

2D and 3D head rotations. Although all these systems increase the recognition rates

significantly as compared with still-to-video FR systems, these FR systems can be

applied only to a subset of canonical sequences, namely prototype face trajecto-

ries 9, video sequences involving specific individual vs. camera situations 31, and

so on. All these assumptions are clearly unsuitable for our robotic application or

would require an excessive amount of training sequences to capture all the H/R

situations the onboard FR system would have to handle.

In fact, our approach belongs to the first category which is reviewed and dis-

cussed hereafter. Despite the fact that both static and dynamic information is avail-

able, preliminary research reported in 28,49 has limited the scope of the problem

to the use of still image-based methods to some selected frames. Spatiotemporal

analysis was initially considered by 12 even if the two tasks were split: the person-

specific estimated dynamic characteristics helped the FR system and reciprocally.

Lastly, solving these two tasks simultaneously by probabilistic reasoning 51,50 has

been proven to enhance recognition performances significantly. To the best of our

knowledge, this strategy is the most similar to ours even if important differences

exist. Zhou et al. in 51 consider the well-known PCA and the CONDENSATION

strategy to estimate for each frame the face kinematic and FR in a joint posterior

distribution. In 50, the authors improved their previous approach by incorporating

two models, respectively for the interframe appearance changes and the appear-

ance changes between probe videos and gallery images. Unfortunately, the FR cue

is logically persistent as the probe set of videos involves people gazing at the cam-

era (namely near frontal face view) while this is intermittent in our application

context (see § 2). The ICONDENSATION scheme is applied in this case to permit
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{1, . . . , N} the indexes s(1), . . . , s(N) according to P (s(i) = j) = w
(j)
k

; set x
(i)
k

and w
(i)
k

with

x
(s(i))
k

and 1
N

9: END IF

Table 2. Generic particle filtering algorithm (SIR).

intermittent cue fusion in the importance function and persistent cue data fusion

in the measurement function and thus automatic re-initialization after target loss.

Other visual cues like the appearance of clothes and skin color are also considered.

The next section recalls some basics on particle filtering (PF) algorithms for

data fusion. Then, section 4.3 details our tracking-and FR approach by resolving

uncertainties in tracking and recognition simultaneously in the ICONDENSATION

framework. Finally, both quantitative and qualitative evaluations on videos shot

using the Jido robot are presented in section 4.4.

4.2. Basics on particle filtering algorithms for data fusion

Particle filters are sequential Monte Carlo simulation methods of the state vector

estimation of any Markovian dynamic system 5,13. Their aim is to recursively ap-

proximate the posterior probability density function (pdf) p(xk|z1:k) of the state

vector xk at time k conditioned on the set of measurements z1:k = z1, . . . , zk. A

linear point-mass combination

p(xk|z1:k) ≈
N
∑

i=1

w
(i)
k δ(xk − x

(i)
k ),

N
∑

i=1

w
(i)
k = 1, (5)

is determined – where δ(.) is the Dirac distribution – which expresses the selection

of a value – or “particle” – x
(i)
k with probability – or “weight” – w

(i)
k , i = 1, . . . , N .

An approximation of the conditional expectation of any function of xk, such as the

MMSE estimate Ep(xk|z1:k)[xk], then follows.

The generic particle filtering algorithm – or “Sampling Importance Resampling”

(SIR) –, shown on Table 2, is fully described by the prior p(x0), the dynamics

pdf p(xk|xk−1) and the observation pdf p(zk|xk). After initialization of indepen-

dent identically distributed (i.i.d.) sequence drawn from p(x0), the particles evolve
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stochastically, being sampled from an importance function q(xk|x
(i)
k−1, zk). They are

then suitably weighted so as to guarantee the consistency of the approximation (5).

To this end, step 5 assigns each particle x
(i)
k a weight w

(i)
k involving its likelihood

p(zk|x
(i)
k ) w.r.t. the measurement zk as well as the values of the dynamics pdf and

importance function at x
(i)
k .

In order to limit the degeneracy phenomenon, as it is well known in the literature

(5, 14), step 8 inserts a resampling stage introduced by Gordon et al. in 19 so that

the particles associated with high weights are duplicated while the others collapse

and the resulting sequence x
(s(1))
k , . . . , x

(s(N))
k is i.i.d. according to (5). Note that

this resampling stage should rather be performed only when the filter efficiency

– related to the number of “useful” particles – falls below a predefined threshold 14.

The CONDENSATION – for “Conditional Density Propagation” 22 – is the in-

stance of the SIR algorithm such that the particles are drawn according to the

system dynamics, viz. when q(xk|x
(i)
k−1, zk) = p(xk|x

(i)
k−1). Then, in visual tracking,

the original algorithm 22 defines the particles likelihoods from contour primitives,

yet other visual cues have also been exploited 34,39. On this point, resampling may

lead to a loss of diversity in the state space exploration. The importance function

must thus be defined with special care. As CONDENSATION draws the particles

x
(i)
k from the system dynamics but “blindly” w.r.t. the measurement zk, many of

these may well be assigned a low likelihood p(zk|x
(i)
k ) and thus a low weight in

step 5, significantly worsening the overall filter performance.

An alternative, henceforth labeled “Measurement-based SIR” (MSIR), merely

consists in sampling the particles – or just some of their entries – at time k according

to an importance function π(xk|zk) defined from the current image. The first MSIR

strategy was ICONDENSATION 23, which guided the state space exploration by

a color blob detector. Other visual detection functionalities can be used as well,

e.g. face detection/recognition (see here below), or any other intermittent primi-

tive which, despite its sporadicity, is very discriminant when present 34. Thus, the

classical importance function π(.) based on a single detector can be extended to

consider the outputs from L detection modules, i.e.

π(x
(i)
k |z1

k, . . . , zL
k ) =

L
∑

l=1

κlπ(x
(i)
k |zl

k), with
∑

κl = 1. (6)

In an MSIR scheme, if a particle x
(i)
k drawn exclusively from the image (namely

π(.)) is inconsistent with its predecessor x
(i)
k−1 from the point of view of the state

dynamics, the update formula leads to a small weight w
(i)
k . One solution to this

problem, as proposed in the genuine ICONDENSATION algorithm, consists in also

sampling some particles from the dynamics and some w.r.t. the prior so that, with

α, β ∈ [0; 1]

q(x
(i)
k |x

(i)
k−1, zk) = απ(x

(i)
k |zk) + βp(xk|x

(i)
k−1) + (1 − α − β)p0(xk). (7)
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Besides the importance function, the measurement function involves visual cues

which must be persistent but are however more prone to ambiguity for cluttered

scenes. An alternative is to consider multi-cue fusion in the weighting stage. Given L

measurement sources (z1
k, . . . , zL

k ) and assuming the latter are mutually independent

conditioned on the state, the unified measurement function can then be factorized

as

p(z1
k, . . . , zL

k |x
(i)
k ) ∝

L
∏

l=1

p(zl
k|x

(i)
k ). (8)

It can be argued that data fusion using particle filtering schemes has been fairly

seldom exploited within this tracking context 34,39. In our view, using multiple

cues simultaneously, both into the importance and measurement functions of the

underlying ICONDENSATION scheme, makes it possible to increase the tracker

versatility to variable environments encountered by the mobile robot. This strategy

also enables automatic initialization when the robot user appears or re-appears in

the scene and improve the recovery of deadlocks induced by target loss due for

instance to occlusions 18,23.

4.3. Our approach

In a populated environment, more than the current engaged person might be in the

robot vicinity. Consequently, the mobile robot maintains visual contact (thanks to

its on-board camera) with this particular interlocutor during any continuous peer-

to-peer H/R communicative or interactive act. This logically requires a merge of

the face verification probabilities in a tracking loop of the targeted person. The aim

of our image-based tracker is classically to fit the template relative to the tracked

person throughout the video stream, through the estimation of the state vector

xk related to the k − th frame which is composed of image coordinates (uk, vk)

and scale sk of the template. With regard to the dynamics model p(xk|xk−1), the

image motions of observed people are difficult to characterize over time. This weak

knowledge is thus formalized by defining the state vector as xk = (uk, vk, sk)
′

and assuming that its entries evolve according to mutually independent random

walk models, viz. p(xk|xk−1) = N (xk;xk−1,Σ), where N (.;µ,Σ) is a Gaussian

distribution with mean µ and covariance Σ = diag(σ2
u, σ2

v , σ2
s) being determined a

priori. Regarding the filtering strategy, we opt for the ICONDENSATION algorithm

as it enjoys the aforementioned nice properties and a low time consumption. Both

importance and measurement functions involved in the tracker are characterized

below.

Recall that the unified importance function π(.) in equation (6) offers a mathe-

matical way of directing search according to several visual detectors. This function

combines two importance functions π(xk|z
c
k) and π(xk|z

s
k) respectively based on

a skin-blob detector and the aforementioned face classification process. Human

skin colors have a specific distribution in color space. Training images from the
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database 24 are used to construct a reference (R,G,B) color histogram model.

Blob detection is performed by subsampling the input image prior to group-

ing the classified skin-like pixels. Let NB be the number of detected faces and

pj = (uj , vj), j = 1, . . . , NB the centroid coordinate of each such region. The im-

portance function π(xk|z
c
k) at location x = (u, v) follows, as the Gaussian mixture

proposal

π(x|zc) =

NB
∑

j=1

N (x;pj , (σ
2
uj

, σ2
vj

)),

where the time index k has been omitted for compactness reasons . The importance

function π(xk|z
s
k) is defined by a similar Gaussian mixture. Given the selected class

Cl i.e. the current tracked face and the associated probabilities P (Cl|Fj) for each

detected face Fj , j = 1, . . . , NB at time k, the importance function becomes

π(x|zs) ∝
NB
∑

j=1

P (Cl|Fj , z).N (x;pj ,diag(σ2
uj

, σ2
vj

)), (9)

where pj is the centroid of each detected face Fj .

The influence of fusing intermittent visual cues in the importance function, as

well as the influence of data fusion in the measurement function, is shown in Table 3.

Figure 6.

Color template.

Regarding that the unified measurement function (8), which aims at

fusing persistent cues, must handle varying light conditions and head

poses as well as occlusions, we opt for a template based both on color

histograms and head silhouette, similar to the data fusion presented

in 8,37. Multi-patches of distinct color distribution related to the

head and the clothing appearance of the targeted person (figure 6)

are here considered. Each specific Nbi-bin normalized reference his-

tograms model in channel c is hereinafter annotated hc
ref,1, hc

ref,2

respectively. Let the union Bx =
2
⋃

p=1
Bx,p for any state xk be as-

sociated with the set of reference histograms {hc
ref,p : c ∈ {R,G,B}, p = 1, 2}.

By assuming conditional independence of the color measurements, the likelihood

p(zc
k|xk) becomes

p(zc
k|xk) ∝ exp

(

−
∑

c

2
∑

p=1

D2(hc
x,p, h

c
ref,p)

2σ2
c

)

,

provided that σc terms a standard deviation being determined a priori and D the

Bhattacharyya distance 4 between the two histograms hc
ref,p and hc

x,p i.e. for a

channel c

D(hc
x, hc

ref ) = (1 −
Nbi
∑

j=1

√

hc
x,j .h

c
ref,j)

1/2,



31st October 2008 10:25 WSPC/INSTRUCTION FILE IJPRAI09

16 Germa et al.

where the index p has been omitted for compactness reasons. This multi-part ex-

tension is more accurate thus avoiding the drift, and possible subsequent loss, expe-

rienced sometimes by the single-part version 34. The initialization of (hc
ref,1, h

c
ref,2)

is achieved according to frames which lead to high probabilities in terms of face

recognition, typically P (Cl|F) ∼ 1. To overcome the ROI appearance changes in

the video stream, the target reference models are updated at time k from the com-

puted estimates through a first-order filtering process i.e.

hc
ref,k = (1 − κ).hc

ref,k−1 + κ.hc
E[xk], (10)

where κ weights the contribution of the mean state histogram hc
E[xk] to the tar-

get model hc
ref,k−1 and index p has been omitted for compactness reasons. This

model update process can lead to drifts with the consequent loss of the tar-

get. To avoid such tracker failures, we also consider a shape-based likelihood

p(zs
k|xk) that depends on the sum of the squared distances between Np points

uniformly distributed along a head silhouette template corresponding to xk and

their nearest image edges (figure 7) i.e. the shape-based likelihood is given by 22

Figure 7.
Shape cue.

p(zs
k|xk) ∝ exp

(

−
D2

2σ2
s

)

,D =

Np
∑

l=0

|x(l) − z(l)|,

where l indexes the Np template point x(l) and associated

closest edge z(l) in the image. Finally, the unified measure-

ment function in step 5 of Table 2 can then be formulated

as p(zs
k, zc

k|xk) = p(zs
k|xk).p(zc

k|xk). The examples in Table 3(a)

and 3(b) show for the above example the likelihood function

p(zs
k|xk) and the more discriminant unified likelihood function p(zc

k, zs
k|xk).

The runs presented in Table 3 show the efficiency of the strategy of data fu-

sion in both the importance and measurement function. These results are discussed

below. The template corresponding to the estimate of the position of the target

is represented by the blue rectangles (color template) and the green curve (shape

template) while the dots materialize the hypotheses and their weight after normal-

ization (black is 0 and red is 1).

The first run (Table 3(a)) shows the execution of a simple CONDENSATION

strategy based on both aforementioned random walk dynamic for particles sam-

pling and multi-patch color measurement. After some iteration, we can observe a

drift of the tracker as the histogram model update corrupts the reference histogram

due to the cluttered background. The second run (Table 3(b)) better matches to

the targeted person because the measurement function considers the shape-based

likelihood in addition to the color measurement. Even if the template fits a person,

fusing cues in the measurement function is not enough to remain robust to occlu-

sion between persons (in this instance between t = 15 and t = 81). The run (c) in

Table 3 combines face and skin color detection with the random walk dynamic in
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Data fusion strategy t = 15. t = 81 t = 126 t = 284

q(xk|xk−1, zk) = p(.)

(a) p(zk|xk) = p(zc

k
|xk)

q(xk|xk−1, zk) = p(.)

(b) p(zk|xk) = p(zs

k
|xk).p(zc

k
|xk)

q(xk|xk−1, zk) = απ(.) + βp(.)
(c) with face detection

p(zk|xk) = p(zs

k
|xk).p(zc

k
|xk)

q(xk|xk−1, zk) = απ(.) + βp(.)

(d) with face classification
p(zk|xk) = p(zs

k
|xk).p(zc

k
|xk)

Table 3. Four different data fusion strategies involved in importance sampling and measurement
function.

the importance function in order to guide the particle sampling on specific addi-

tional areas of the current image (mainly on detected faces). We can see that this

strategy is not sufficient to distinguish whether the template is on the right targeted

person or not. The last run in Table 3(d) shows the complete system used in our

experiments involving the face classification process in the importance function as

described in (9). We can see, at time t = 81, that after a sporadic occlusion of the

target by another person (with the black trousers), the face classification helps to

direct the particle sampling only on the desired person and so helps the template

to recover the target.

4.4. Evaluations and results

The above tracker has been prototyped on a 1.8GHz Pentium Dual Core using

Linux and the OpenCV library. Both quantitative and qualitative off-line evalu-

ations on sequences are reported below. This database of two different sequences

(800 images) acquired from our Jido mobile robot in a wide range of realistic con-

ditions allows us to: (i) determine the optimal parameter values of the tracker, (ii)

identify its strengths and weaknesses, and in particular characterize its robustness

to environmental artifacts: clutter, occlusion or out-field of sight, lighting changes.

Several filter runs per sequence are performed and analyzed.
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Quantitative performance evaluations summarized below have been carried out

on the sequence database. Since the main concern of tracking is the accuracy of the

tracker results, location as well as face label, we compare the tracking performance

quantitatively by defining the False Position Rate (FPR) and the False Label Rate

(FLR). If the tracker locks onto none of the observed person, this is considered as

a position failure while a tracker lock onto the non-desired person is considered as

a label failure.
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Figure 8. (a) Face tracker performance for the whole sequence database. (b) Face classification
performance for the database image subset involving detected frontal faces.

Figure 8(a) presents the performance considering or not the FR in the tracking

loop whereas Figure 8(b) considers the FR performance with or without tracking.

Our advanced tracker is shown to outperform the conventional tracker (without

FR) with much lower false position and label rates for slight additional time con-

sumption. In Figure 8(a), we note that the estimate of the position of the targeted

person is more precise when the tracking loop is fed by the FR results. In this case,

the average FPR is reduced from 5.58% to 2.47% and the average FLR falls from

43.20% to 20.21%. These results have been processed on the basis of 10 runs of

our tracker on each sequence due to stochastic context. The standard deviations of

these results are represented by the ellipses on the graph. In the same vein, Figure

8(b) presents the classification results. For each sequence, these results are com-

pared to tracking results in terms of FLR (or False Acceptance Rate) and FRR

(False Rejection Rate). To be more consistent, the only images involving face de-

tection have been taken into account. We note that the runs involving tracking are

more robust to environmental changes, mainly due to spatiotemporal effects. More

precisely, the FLR is decreased from 35.09% to 26.47% (with a standard deviation
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of 1.97%) while the FRR is divided by more than 2 (60.22% against 25.73%). These

evaluations prove that when combining all the above cues, both FR and tracking

performances are considerably increased.

These results have been obtained for the empirically designed tracker parameter

values listed in Table 4.

Symbol Meaning Value

(α, β) coeff. in the importance function q(xk|xk−1, zk) (0.4, 0.6)

(σu, σv, σs) standard deviation in random walk models (40, 20, 0.2)

(κface, κskin) coeff. in the weighted sum π(x
(i)
k |z1

k, . . . , zL
k ) defined in (6) (0.8, 0.2)

κ coeff. for reference histograms hc
ref,1, h

c
ref,2 update in (10) 0.1

σs standard deviation in shape-based likelihood p(zs|xk) 20

σc standard deviation in color-based likelihood p(zc|xk) 0.2

Nbi number of color bins per channel involved in p(zc|xk) 32

Table 4. Parameter values used in our face tracker.

5. Conclusion and future works

This paper has presented the development of a set of visual functions dedicated

to Human/Robot interaction in a household framework used for face recognition.

First, we propose a non-dominated sorting genetic algorithm to find the optimal

free-parameters of a SVM-based face classifier in an optimized fashion. Besides, the

second and main contribution is the design of a video-based face recognition process

integrated through a particle filtering framework combining both intermittent fea-

tures (face and skin blob detection, face recognition) and multiple persistent visual

cues (shape and color) in a principled, robust and probabilistically motivated way.

Off-line evaluations on sequences acquired from the robot show that the overall

system enjoys the valuable capabilities: (1) remaining locked on to the targeted

person in populated and continuously changing environments, (2) recovering this

person automatically after full occlusion or temporary disappearance from the field-

of view. Eigenface subspace and SVM makes it possible to improve the face recog-

nition process while the multi-cue fusion in the tracking loop is proven to be more

robust than any of the individual cues. Clothing color and also face classification

probabilities increase tracker reliability in presence of several persons in the vicinity

of the robot. Finally, we have integrated this advanced tracker into a mobile robot

companion called Jido. The visual-based tracker was then successfully tested in

Jido’s long-term operations in natural settings. To the best of our knowledge, quite

few mature robotic systems enjoy such scalable human perception capabilities.

Several directions are studied regarding our video-based face recognition. A first

line of investigation concerns the fusion of heterogeneous information such as RFID
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or sound cues. Detection of an RFID tag worn by individuals will allow us to direct

the camera using a pan-tilt unit and thus trigger tracker initialization, and will

contribute as another measurement in the tracking loop. The sound cue will endow

the tracker with the ability to switch its focus between speakers. Then, we aim

to adapt our tracker in order to be able to recognize and track multiple persons

simultaneously. In the same vein as our previous developments, we will consider

distributed Bayesian multiple-target trackers based on particle filtering 36.
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