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Abstract—The activities we do in our daily-life are generally
carried out as a succession of atomic actions, following a logical
order. During a video sequence, actions usually follow a logical
order. In this paper, we propose a hybrid approach resulting from
the fusion of a deep learning neural network with a Bayesian-
based approach. The latter models human-object interactions
and transition between actions. The key idea is to combine both
approaches in the final prediction. We validate our strategy in
two public datasets: CAD-120 and Watch-n-Patch. We show that
our fusion approach yields performance gains in accuracy of
respectively +4 percentage points (pp) and +6 pp over a baseline
approach. Temporal action recognition performances are clearly
improved by the fusion, especially when classes are imbalanced.

I. INTRODUCTION

The recognition of human activities is at the core of the
development of many practical applications such as monitor-
ing of domestic activities or human-robot collaboration. An
activity is defined by successive time sequences of actions [1],
[2] e.g.: prepare coffee involves the successive actions pour
in water, add ground coffee and start the machine. On the
one hand, activities performed by humans in a domestic or
industrial environment can be very different, for example in
the nature of the objects involved. On the other hand, the
atomic actions performed may be similar in any context.
Indeed, these atomic actions concern the movement of objects,
their capture, or the interactions they may have with their
environment. Therefore, we are interested in the recognition
of atomic actions and their sequencing because higher level
activities can be represented by atomic actions arranged in
sequences following a logical order.

Data-driven approaches based on convolutional neural net-
works (CNN) adapted to the video domain with 3D convo-
lutions allow the recognition of actions in video streams. 3D
convolutional neural networks learn spatio-temporal features
simultaneously. Approaches like C3D [3] obtain an accuracy
of 90.4% in the action recognition dataset UCF101 [4].
However, 3D convolutions increase the size of the network
and thus the number of parameters to be learned (i.e., 17M
with C3D). As any CNN, they require a lot of annotated
data, hence the emergence of larger annotated datasets such as
NTU RGB+D [5], UCF101 [4] and Kinetic [6]. For example
UCF101 contains 27 hours of videos and NTU RGB+D [5]
56880 clips. Despite these advances, action recognition is still

Fig. 1: Different individual approaches (1) (2) (3) and their
fusion (4). During training, the trained layers are represented
in green.

a challenge because 3D convolution networks only aggregate
temporal features on video clips i.e. pre-segmented actions
without temporal relations between those clips. They are taken
independently and do not take into account the temporal logic
in a sequence of actions.

Often, large datasets like Kinetic [6] and UCF101 [4]
are created from videos collected on YouTube. The different
classes are performed in radically different environments, for
example swimming vs. playing guitar. However in the context
of monitoring domestic activities, the actions to detect take
place in a similar environment and have a temporal coherence
in their sequence representing a certain activity. Recognition
of sequential actions with low inter-class variance, imbalanced
classes, and/or under-represented classes is still a challenge for
conventional convolution networks.

Historically, probabilistic-based approaches [7], [8] propose
to characterize the actions in a more explicit way through
modeling the observations of the scene elements: human pose,
objects and their interaction through time. These approaches
usually based on probabilistic models generally offer lower



performance compared to convolutional networks. Neverthe-
less, they generally require less data because they also have
fewer underlying free parameters to tune. Therefore their
interpretability is less dependent on the available learning
data (e.g. less subject to over-fitting). These approaches are
relevant in the case of a small number of samples available
for training. For example, our previous Bayesian approach for
action recognition ANBM (for A New Bayesian Model [9]),
models both the interactions between objects and human-
objects through about 50 parameters. Let us note that our
ANBM approach also takes into account the transitions be-
tween different actions in order to ensure temporal consistency
throughout the sequence of actions.

Building on the observation of a possible synergy of the two
approaches, we propose a hybrid framework with a fusion at
the decision level, of a C3D [3] convolutional network and our
probabilistic ANBM [9] approach based on explicit human-
object observations.These two approaches take into account
the spatio-temporal characteristics of the different classes of
actions. Due to the large number of parameters, the C3D
network needs a lot of annotated data to be relevant since
learning is difficult in the case of under-represented classes.
The ANBM approach depends on handcrafted models and
even with a little data the prediction of under-represented
classes is possible.

Thus, our contributions are: (1) one first minor contribution
is the addition of a Gated Recurrent Unit (GRU) recurrent
layer to the C3D architecture for action recognition which
also models the temporal correlations between actions, (2)
the comparison of both approaches (ANBM and C3D-GRU)
on two public datasets CAD-120 and Watch-n-Patch, (3)
implementation and evaluation of a late fusion mechanism of
the predictions of these two approaches and comparison with
the literature. We observe a performance gain from this hybrid
approach.

The article is organized as follows. In section 2 we present
the state of the art and the context of our work. Then in
section 3 we present our hybrid approach for action detection.
A comparative study of our results is presented in section 4.
Finally, section 5 presents our conclusion and future prospects.

II. STATE OF THE ART

The recognition of static actions on single image can be
done by localizing certain objects in an image, i.e., Zhou
et al. [10] or Oquab et al. [11]. This kind of approach has
been popularized by the Pascal VOC 2012 challenge, where
the goal is to recognize actions in images [12]. While this is
relevant when the classes of actions to be recognized occur in
different environments, these approaches are inappropriate for
recognizing successive atomic actions occurring in a sequence
of action taking place in the same scene. It is movements and
objects involved in the execution of an action that allow it to be
discriminated, for example when opening or closing a door.
This is why we focus on approaches using spatio-temporal
information from videos in order to consider the dynamics of
gestures and objects during action classification.

Historical approaches perform dynamic action recognition
through probabilistic modeling of the observations involved. In
addition, these model-based approaches may include trajectory
models for human pose, information of the spatial configura-
tion of the objects in the scene or their affordance [13]. Li
et al. [7] propose the use of Gaussian mixture to recognize
different actions in the MSRAction dataset [7]. Koppula and
Saxena [8] propose the use of conditional random fields
(CRFs) to model the scene and the spatio-temporal relation-
ships that appear in CAD-120 [8]. More recently, we have
proposed a new Bayesian ANBM [9] approach based on
explicit 3D modeling of contextual features, both spatially and
temporally. These approaches rely on a smaller number of
parameters than those of C3D networks. In fact, they require
less data and are evaluated on datasets that are generally
smaller. For example MSRAction [7] contains 420 sequences
and CAD-120 [8] contains 120 videos for about 1000 clips
after segmentation of the actions. They also have the advantage
of being more interpretable than CNN approaches.

One of the challenges with convolutional networks is their
dependency to the amount of data available for training.
Learning their many parameters is based on the amount
of data available for training. The introduction of 3D [14]
convolution filters allows to simultaneously extract spatio-
temporal descriptors from a set of frames representing an
action, called a clip. These descriptors are appropriate for
implicitly capturing the context related to the video content.
This idea has been taken up by C3D [3] and other variants [15],
[16], [17] for action detection. Adding video clips at the
input of the network requires increasing its size compared
to its 2D CNN counterpart. C3D networks extract a global
descriptor from the clip independently of the action that took
place previously. This is particularly suitable and shows strong
results for large-scale datasets with many small clips such as
UCF101 [4] with its 13000 clips and an average duration of
7 seconds. These arrays only aggregate temporal information
over a fixed window size, typically 16 frames. This is not
suitable for recognizing actions that have temporal consistency
within their sequencing.

Hence the interest in adding a recurrent layer to a 3D-
convolutional network. Wang et al. [18] propose to add a Long
Short Term Memory layer (LSTM) to such a network. Also in
[19], [20] the authors propose to either add a LSTM-layer or
a GRU-layer to reinforce the temporal coherence within the
action clip and evaluate themselves on UCF101 for example.
Instead, we propose to add logical consistency in the actions
sequencing.

The fusion of C3D networks with other modalities has
already improved its performance in various challenges of
the Computer Vision community. For example, space-time
fusion [21] consists in merging an image with an optical
flow sequence that describes motion. This improves the per-
formance in comparison to a C3D network alone, which seeks
to simultaneously extract temporal and spatial features at the
3D convolution layers. There are also methods that propose
a fusion of different features of different nature such as



audio and video [22]. These different approaches show the
advantages of using a fusion mechanism to increase overall
performance. However, this gain is achieved at the expense
of the amount of data required for training. The addition of
more modalities increases the number of parameters to be
learned for the convolution network. This has two effects:
first it required the existence of a such dataset, and second it
increases the training time. A late fusion is proposed by [23]
for pose attention in RGB videos.

We propose to merge two spatio-temporal approaches, one
based on context modeling via learning such as C3D [3] and
our ANBM [9] approach based on Bayesian models and 3D
human and objects observations of the scene. This fusion is
not done at the feature level but later at their predictions level
towards the same layer. We propose to merge them using
a fully connected layer, i.e. dense layer. Only a few works
study the late fusion of two classes of approaches that a priori
complement each other and the gains that this can yield.

Public datasets such as Watch-n-Patch [24] and CAD-
120 [8] allow to evaluate the recognition of atomic actions.
These datasets offer approximately 20-seconds long videos
in which different atomic actions are annotated. The actions
follow each other in a logical order, for example we cannot
move an object that has not been previously captured. In these
datasets, the sequences of actions are more or less correlated.
Moreover some classes are under-represented in these datasets,
which is generally a lock for C3D learning.

III. PROPOSED APPROACH

In this section we describe the proposed architecture for the
fusion of probabilities predicted by the ANBM [9] Bayesian
approach with those of the modified C3D [3] network. We
recall our previous ANBM approach in Section III-A, and
then briefly describe the C3D network in section III-B and
its modification (C3D-GRU) in Section III-C. Section III-D
details the proposed late fusion strategy.

A. Bayesian Approach With Human-Object Observations

This approach [9] is based on the following insights:
human pose, human-object and object-to-object interactions,
performed during the execution of an action, provide spatio-
temporal information that allows the recognition of the on-
going action. Moreover, it considers temporal information such
as transition between actions during a sequence. We have
modeled these observations in order to be able to estimate,
at each time of the video, the probabilities of each considered
actions.

All the elements of the scene are first localized in the
image plane by 2D state-of-the-art detectors one for human
pose estimation an another for the objects. Then they are
modeled in 3D space using RGB-D sensor (e.g. Kinect)
calibration data. The detection of the human pose in the image
is based on OpenPose [25], which is trained on MSCOCO
Keypoints Challenge [26]. We use Single Shot Multi-Box
Detector (SSD) [27] to recognize objects, which is trained
with the MSCOCO dataset [26].

Each action a is associated to a model. Let A =
{a1, a2, ..., aN} be the set of N actions. The joint observation
of the human pose st and the set of objects Ωt is described at
time t by Ot = {st,Ωt} where Ωt = {ω1, ω2, ..., ωCard(Ω)}
with Card(Ω) being the number of objects in the scene. The
inference is performed on a sliding window of T frames, so
that this approach does not require video clips segmentation
beforehand, and ensure temporal consistency of the observa-
tions. We model the a posteriori probability of the actions
given the observations as follows:

p(a0:T |O0:T ) ∝
T∏

t=0

p(Ot|at)
T∏

t=1

p(at|at−1). (1)

Where p(Ot|at) is the likelihood of the observation given the
action at. The term p(at|at−1) characterizes the probabilities
of transitions between two successive actions. All the obser-
vations of the scene in this approach are modelled in 3D.
Objects and pose 2D coordinates are projected onto the 3D
space thanks to the sensor calibration data. It allows ANBM
to be more robust to changes of point of view than an approach
based solely on 2D spatial characteristics. We invite the reader
to consult [9] the paper for more in-depth details.

B. 3D convolution network: C3D

C3D [3] is a deep learning network that takes into account,
in addition to images, a third dimension corresponding to time.
The architecture includes 3 x 3 x 3 convolution filters, followed
by 2 x 2 x 2 pooling layers. The introduction of 3D convolution
filters allows to learn spatio-temporal descriptors from a video
stream.

On the one hand, they provide a compact (4096) description
of a video stream of size H x W x C x L. With L the length
of the video clip containing the action, usually 16 frames.
These networks are able to learn those spatio-temporal descrip-
tors implicitly. Like other networks they perform end-to-end
learning without expert information (unlike any probabilistic
approach e.g. ANBM).

On the other hand, given the millions of parameters to be
learned, poorly represented classes are hardly well recognized
and it is more difficult to predict them correctly. The action
must be sampled on 16 frames in the original implementation,
of course it is possible to enlarge this time window but it
requires more memory. Tran et al [3] also offer a sliding
window system of descriptor averaging. However, in all cases,
C3D requires a pre-segmentation of actions in sequences,
which does not make it a suitable method for online action
recognition. Moreover, there are no mechanisms to take into
account the temporal context in which the video clip is inserted
during training. Therefore there is no consideration of the
previous action.

C. Adding a recurrent layer: C3D-GRU

In order to compensate the lack of a mechanism that ensure
the temporal consistency along the sequence, across the video-
clips. We propose to take into account the previous action in
the detection of the current action by adding a recurrent layer.



Fig. 2: An action sequence from CAD-120 [8] dataset: actor 1, video 2305260828, action microwaving-food. From left to right
: reach, open, reach, move, place. In blue: human pose detected by OpenPose. In yellow: objects detected by SSD.

Once we trained C3D, we retrieve its weights, freeze them
and add a recurrent GRU-type layer. C3D is trained with data
augmentation that is not able to perform in the same manner
for the GRU-type layer. Indeed we need to preserve temporal
coherence and segments to train in logic order.

Then we adapt the GRU layer to take into account two
successive clips corresponding to two different, but successive,
actions. We do not re-train the whole C3D network but we only
perform a fine-tuning at the level of the last layers. To illustrate
the importance of the nature of the previous actions we notice
that among all the possible transitions between any two pairs
of actions in Watch-n-Patch [8], only about 20 % are actually
occurring. By adding this extra constraint while training the
GRU-layer, we hope to reduce the number of false positive
detections of some classes. This strategy is illustrated in Fig. 1,
number 3. We call this approach C3D-GRU afterwards.

D. Late fusion with a dense layer

We therefore have two approaches to predict actions from
video clips based on spatio-temporal data, explicitly with
ANBM and implicitly with C3D-GRU. Both approaches also
consider the existing transitions between two successive ac-
tions. On the one hand with ANBM we have modeled each
action, on the other hand C3D-GRU learns from the datasets,
whose classes are not equally distributed. Indeed in the detec-
tion of atomic actions, some actions are found more frequently.
For example the displacement of an object (moving) represents
34% of the actions of CAD-120, it mandatory occurs before
many different actions such as to drink because we need to
move the bottle before. We propose a fusion of their respective
predictions. Both approaches estimate probabilities for each
class. We have one for ANBM and for C3D-GRU we have a
vector corresponding to the output of the soft-max layer.

We propose a strategy that takes as input video clips that
are processed through the ANBM approach and also through
the C3D-GRU network described above, whose C3D layers
weights are frozen. We thus obtain two prediction vectors
for each of the approaches that are later concatenated. This
concatenation is connected to a dense layer of the same size
as the number of classes, as shown with only N = 4 classes
as example in Fig 1, number 4. So there are only N2 + N
parameters to learn (N2 weights related to the dense layer and
N bias related to activation). This interconnection enables to
take the advantage of both approaches in the final decision.
We call this approach C3D-GRU-DF thereafter.

IV. EXPERIMENTS AND RESULTS

A. Public Datasets

Let us recall that we propose an initial approach to detect
actions in [9]. This online approach is able to detect actions
sequences of from a video stream and to manage transitions
between actions. We wish to take advantage of this asset, so
we evaluate ourselves on two public datasets which contain
such action sequences: CAD-120 [8] and Watch-n-Patch [24].

a) CAD-120: The CAD-120 [8] dataset consists of 120
videos with RGB-D channels, played by 4 actors. It contains
10 daily life activities (preparing a bowl of cereal, taking
medication...). These activities involve 10 actions: reaching,
moving, pouring, eating, drinking, placing, opening, closing,
null. Here, each video represents an activity as defined in the
section I. The inequitable distribution of actions, expressed
by the corresponding percentage of frames, is described in
Tab. III. An illustration of this dataset is presented in Fig. 2.

b) Watch-n-Patch: The office environment consists of
196 videos recorded in 8 different offices. There are 10
annotated actions: read, walk, leave-office, fetch-book, put-
back-book, put-down-item, pick-up-item, play-computer, turn-
on computer, turn-off computer. Here again some actions are
dependent on the action that takes place previously, e.g. to play
the computer, the screen must be turned on. Action classes are
not equally distributed as shown in Tab. III.

TABLE III: Detail of class distribution within datasets and the
number of clips.

Dataset Number of clips Distribution (% per class)

CAD-120 1149 [23,30,3,3,3,15,4,3,1,14]

Watch-n-Patch 1148 [12,16,21,6,4,14,9,9,5,3]

B. System Evaluation

a) Managing ANBM’s Predictions: We record the pre-
diction probabilities of ANBM at each frame, then we take
their averages over the duration of each action to assign a
class to each video clip representing an action.

b) Pre-processing for C3D: We keep the original settings
of the publication [3] for the input image size by setting it to
112 x 112 pixels. The video clips are cropped around the
enlarged bounding box containing the actor and objects in the
action context. This bounding box is detected using the human
pose inferred by OpenPose [25]. This allows the network to



TABLE I: Results of our different variants on Watch-n-Patch. Performance metrics considered are macro-accuracy (M) and
micro-accuracy (µ).

Architecture Sample 0 Sample 1 Sample 2 Sample 3 Mean Standard Deviation

µ M µ M µ M µ M µ M µ M

1 - ANBM 0.78 0.79 0.73 0.74 0.76 0.77 0.75 0.75 0.76 0.76 0.02 0.02

2 - C3D 0.72 0.65 0.73 0.64 0.75 0.69 0.74 0.64 0.74 0.66 0.01 0.02

3 - C3D-GRU 0.89 0.87 0.86 0.77 0.85 0.77 0.89 0.84 0.87 0.81 0.02 0.05

4 - C3D-GRU-ANBM-DF 0.94 0.91 0.93 0.90 0.93 0.91 0.93 0.89 0.93 0.90 0.001 0.01

TABLE II: Results of our different variants on CAD-120. Performance metrics considered are macro-accuracy (M) and micro-
accuracy (µ).

Architecture Actor 1 Actor 2 Actor 3 Actor 4 Mean Standard Deviation

µ M µ M µ M µ M µ M µ M

1 - ANBM 0.84 0.77 0.78 0.81 0.82 0.76 0.82 0.77 0.82 0.78 0.03 0.02

2 - C3D 0.58 0.45 0.70 0.61 0.64 0.57 0.56 0.35 0.62 0.50 0.06 0.12

3 - C3D-GRU 0.61 0.49 0.76 0.73 0.66 0.60 0.60 0.45 0.66 0.57 0.07 0.13

4 - C3D-GRU-ANBM-DF 0.86 0.80 0.89 0.91 0.84 0.82 0.83 0.79 0.86 0.83 0.03 0.05

focus its attention on the area where the activity is taking
place. The C3D network takes an action sequence of fixed
size: 16 frames. In practice, since we consider atomic actions,
which are relatively short, we do not use a sliding window on
the sequences but rather simply re-sample the sequences.

c) Training: The network weights are trained using a
stochastic gradient descent on mini-batches of size 16 with a
momentum of 0.9. We initialize the learning rate to 0.01 and it
decreases over time. The training is done on a GeForce GTX
1080 Ti graphics card. We use the cross-entropy categorical
loss function.

d) Testing: The performance of our hybrid approach is
evaluated according to the principle of k-fold cross-validation
where the k-folds form a partition of the dataset (with k =
4). Each fold is used exactly once as a validation set during
training. In the CAD-120 dataset there are four actors and
each fold is associated with one actor. In Watch-n-Patch, the
original publication [24] provides one test and training sets, we
generate 3 more folds while keeping the actions in the same
sequence within the same fold. We obtain the final prediction
at the last activation layer, softmax, present in variants 2,3 and
4 described in section III and illustrated in Fig. 1.

C. Metrics for Evaluation

We evaluate the different variants proposed in section III
with two metrics. The first one is the accuracy, later called
micro-accuracy (µ), which is defined as follows:

µ-accuracy =
number of correct predictions
total number of predictions

. (2)

This measures the ratio of correctly recognized actions to the
total number of actions to recognize. In contrast, the second

metric called macro-accuracy (M) measures the average of
the accuracy for each class. The accuracy of each class is
calculated and the macro-accuracy is the average of these
accuracies. Macro-accuracy gives the same weight to each
class, regardless of the number of samples the class has in the
dataset. This makes possible to see if only the most represented
classes are correctly recognized or if globally all the classes,
including the under-represented ones, are correctly recognized.
These two metrics are complementary in performance evalu-
ation for datasets with imbalanced classes.

D. Results and discussion

We first compare the individual results of C3D, C3D-GRU
and ANBM variants described in section III before evaluating
their late fusion.

Here we evaluate the contribution of the GRU recurrent
layer at the output of C3D to take into account the temporal
logic between actions (C3D-GRU). According to Tab. I in
Watch-n-Patch we observe, on average, a gain in micro-
accuracy of +13 percentage points (cf. lines 2 and 3). Re-
garding CAD-120 dataset, we observe on Tab. II (cf. lines
2 and 3) a gain in micro-accuracy of +4 percentage points
thanks to the addition of a GRU layer to the C3D network
compared to C3D alone. Looking in detail at the different
confusion matrices obtained on Watch-n-Patch on Fig. 5 and 6,
we see that classes that benefit the most are the following:
put-back-book, put-down-item and take-item. Indeed the action
put-back-book is often preceded by the action read. When the
previous action is labeled as read, it reduces and conditions the
choice of the following possibilities. The action put-down-item
is often preceded by action walk. Indeed, in Watch-n-Patch it



is a common scenario for a person to walk into the office
and put his or her phone on the table. The gains on CAD-
120 are more modest because for the recurrent layer to bring
information, the frozen C3D network must have learned to
recognize classes with a sufficient accuracy.

The C3D-GRU network therefore outperforms C3D and
now we are comparing it with our ANBM approach before
evaluating their fusion. On the Watch-n-Patch dataset, C3D-
GRU has a better micro-accuracy than ANBM (+11 percentage
points pp) but the improvement of the macro-accuracy is less
important (+5 pp), cf. lines 1 and 3 of Tab.I. As it can be seen
on the confusion matrix on Fig. 6, the best detected actions
by C3D-GRU are read, walk and leave-office with scores of
1, 0.98, and 0.97% respectively. These actions represent 49%
of the data (cf. Tab. III of the dataset) and contribute more
to the micro-accuracy than, for example, turn-off-computer
which represents only 3%. The confusion matrix of Fig. 4
shows us that the ANBM approach outperforms C3D-GRU
on 3 classes: play-computer, turn-on-computer and turn-off-
computer. Both approaches perform best on different classes,
but the nature of false positives also varies. As we can see
from the confusion matrices in Figs. 4 and 6, both approaches
have similar performances for the action fetch-book (0.71%
for ANBM and 0.81% for C3D-GRU) but the errors differ.
Indeed ANBM sometimes detects reach while C3D-GRU
detects place instead of fetch-book On CAD-120 the C3D-
GRU network distinguishes better reaching and placing than
ANBM, these two actions represent 45% of the dataset.

Thus, both datasets C3D-GRU and ANBM bring perfor-
mances that complement each other. Giving best performances
on different classes and different false positive sources of error
may be one reason why the fusion using a fully connected
layer may capture more information than a simple average
of the two outputs. Here we evaluate the benefits that can
be derived from their fusion. On CAD-120, the ability of the
C3D-GRU network to distinguish reach and place from other
classes allows, when merging both approaches, a gain of +4
percentage points in micro-accuracy, see Tab. II. The fusion
of C3D-GRU and ANBM improves the recognition of every
actions on Watch-n-Patch except the action walk (1) which
drops from 0.98 with C3D-GRU to 0.97 as well as actions
play-computer (7) and turn-off-computer (9) that also drop
by 1% with C3D-GRU-ANBM-DF fusion as shown by the
confusion matrices on Figs. 4 6 and 7. Overall, predictions
fusion increases the micro-accuracy by +6 percentage points
with respect to C3D-GRU and by +17 percentage points with
respect to ANBM. In the fusion, for actions involving a
computer the performances of ANBM are favoured over those
of C3D-GRU. The fact that both approaches complement each
other is also well exploited when they individually present
similar performances for a same class. For example, with the
fusion approach the action fetch-book reaches 0.94 whereas
with C3D-GRU and ANBM this action was correctly predicted
in respectively 0.81 and 0.77.

Here we propose to evaluate the robustness of this fusion
approach on Watch-n-Patch by smoothing or further degrad-

Fig. 3: Macro-accuracy with respect to Watch-n-Patch dataset
with classes synthetically augmented in order to decrease or
increase the class imbalance.

TABLE IV: Comparison to the literature. Action recognition
accuracy on two public datasets: CAD-120 and Watch-n-Patch.

Dataset Approaches Accuracy

CAD-120 GEPHAPP [28] 79.4
ANBM [9] 82.2
GPNN [29] 87.3

Ours 86.1

Watch-n-Patch CaTM [24] 32.9
WBTM [30] 35.2
PoT [31] 49.93
ANBM [9] 76.4
GEPHAPP [28] 84.8

Ours 93.0

ing the class imbalance within the dataset. We synthetically
augment or degrade the dataset and we re-train the networks
C3D, C3D-GRU, C3D-GRU-ANBM-DF to obtain the results
presented in Fig. 3. We observe that C3D training is sensitive
to the number of samples in the training. We also observe the
dependency of C3D-GRU on the result of C3D. Indeed C3D-
GRU performance drops faster than C3D, because to capture
temporal coherence, the previous action must be well detected.
When classes are strongly imbalanced, C3D detects poorly
some actions and some temporal transitions between action
are not modeled. Overall, as expected we note that the fusion
of C3D-GRU-ANBM-DF resist more to the degradation of the
samples, with a slightly less important slope value.

As shown in Tab. IV, our hybrid fusion strategy allows
us to improve our previous performance, while still having
near or better than the state of the art performances. We
select recent state-of-the-art benchmark approaches and if
possible that are evaluated on the same two datasets such as



Fig. 4: Confusion matrix of ANBM (original test set from
Watch-n-Patch). Predictions are on columns are ground truth
on rows. [0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book
; 4 - put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 -
play-computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

Qi et al. [28]. The two approaches considered in our hybrid
fusion strategy take into account the transitions between two
successive actions. In CAD-120, the action moving precedes
almost all the others, which is not very informative. We may
consider to take into account more transitions. It also shows
that our merging strategy allows us to surpass the state of
the art in action recognition on the Watch-n-Patch dataset
by improving action recognition by +8.2 percentage points
compared to the approach proposed by Qi et al [28].

A video illustrates our results on video sequences of both
datasets is available at the address indicated in the footnote 1.

V. CONCLUSION AND FUTURE WORK

In this paper we have compared different approaches for
action detection and proposed the addition of a recurrent layer
to C3D to benefit from the temporal relationships between
actions. We explored a way to merge at the decision level
of data driven and Bayesian-based approaches for action
recognition using a dense layer. We experimented with two
datasets in the literature presenting an imbalance between their
classes, and we show gains in accuracy that are even more
significant when the approaches complement each other.

In the perspectives we plan to evaluate our merging ap-
proach on the detection of high-level activities composed by
the succession of atomic actions. In the future we also plan
to further investigate deep learning architectures for automatic
action segmentation in order to deal with untrimmed video
data.

1https://youtu.be/7txCiHx3OwA

Fig. 5: Confusion matrix of C3D (original test set from Watch-
n-Patch). Predictions are on columns are ground truth on rows.
[0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book ; 4 -
put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 - play-
computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

Fig. 6: Confusion matrix of C3D-GRU (original test set from
Watch-n-Patch). Predictions are on columns are ground truth
on rows. [0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book
; 4 - put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 -
play-computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

https://youtu.be/7txCiHx3OwA


Fig. 7: Confusion matrix of our fusion approach C3D-GRU-
ANBM-DF (original test set from Watch-n-Patch). Predictions
are on columns are ground truth on rows. [0 - read ; 1 - walk
; 2 - leave-office ; 3 - fetch-book ; 4 - put-back-book ; 5 -
put-down-item ; 6 - take-item ; 7 - play-computer ; 8 - turn-
on-computer ; 9 - turn-off-computer]
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