People Detection with Heterogeneous Features anc
Explicit Optimization on Computation Time

A. A. Mekonnen, F. Lerasle, A. Herbulot, and C. Briand
CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulousendera
Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France
Email: {alhayat-ali.mekonnen, cyril.briand, frederic.leraglgane.herbulg@Iaas.fr

Abstract—In this paper we present a novel people detector that  [8], both of which contribute to added computation time ssle
employs discrete optimization for feature selection. Specifically, explicit computation considerations are made. In line ik,
we use binary integer programming to mine heterogeneous we present a person detector that uses heterogeneous pool
features taking both detection performance and computation tine of features and makes explicit computation time vs detactio
explicitly into consideration. The final trained detector exhibits trade-af optimization to build a performant detector that leads

low Miss Rates with significant boost in frame rate. For example, e L - . . S
it achieves a2.6%less Miss Rate atL0™ FPPW compared to Dalal to a S'Qr.“f'ca”t gain in computation time while maintaining
competitive detection performance.

and Triggs HOG detector with a 9.22x speed improvement.

Related Works: The entire literature in visual people
[.  INTRODUCTION detection is overwhelming and a discussion on thedint
techniques is beyond the scope of this paper (please refer
to [1], [2] for extensive surveys). We will focus on approash
that use heterogeneous pool of features with sliding-windo
detection paradigm. The best results in visual people tetec
Sre obtained using heterogeneous pool of features [1]H}

In modern era, computer vision is playing a significant role
in automated object perception; one such thriving role is au
tomated people detection. Visual people detectien, people
detection using visual cameras, is the most prominent mod

employed in the literature as cameras are cheap, Versaiie, o,geneous features help capture complementary infmmati
provide rich color and texture information. It is indispab® ;sef)| 1o handle various detection challenges. For example
primarily in surveillance systems, human-machine inB0ac  \yiek et al. [8] used Haar, HOG, and shape context features.
robotics, automotive industry, imag@leo indexing,etc EV-  hay hresented a comparative result obtained using bgpstin
idently, it is also one of the challenging tasks in computefigpniques and SVMs as classifiers and demonstrated that the
vision due to variations in peoples’ appearance, backgtoun

) o e ; combination of diferent features successfully outperformed in-
clutter, illumination, sensor motion, and so forth. In nece

di h b de by th ~~ _dividual variants and even the state-of-the-art at the. .tk
years astounding progress have been made by the scientilg 51 [7] also clearly showed they obtained the best detection
community [1], [2], but there is still room for improvement.

results when concatenating HOG, Histogram Of Flow [9], and

One important discipline where applications of visual peo-Color Self Similarity (CSS) features all together, rathieart
ple detection is highly proliferating is robotics. In rohmt individual features or a subset of them. _Slmllar cpnclusmn
systems that entail people perception, the aforementioneere made by Schwartt al.[10] and Hussain and Triggs [11]
challenges are further exacerbated by real-time requinesne Using—HOG, color frequency, and co-occurrence features—a
limited computational resources, and sensor motion. A teobi HOG, Local Binary (LBP) and Ternay (LTP) Pattern features—
robot needs to be reactive during navigatioteraction in  respectively.
human occupied environments. Thus, its people detection . .
module-which is one component of an entire functioning Given heterogeneous pool of featuresfaent ways can
system—should be fast. The advent of powerful camera s;zstenl?e used to build the final detector. Four main trends can be

in the robotic community that provide high resolution omnid 2PServed in the literature: (1) Direct concatenation [H] [
rectional imagesg.g, the Ladybug series [3] from Point Grey in which the diferent features are concatenated to make one

stresses this point further urging the need to give extragoc high dimensional feature vector and an SVM used afterwards
on computation time during detector design. for classification. This is Computatl_onally cos_tly owing to
the complex feature and SVM weights applied in sliding
In this work, we try to give explicit consideration to window detection. [11], [10] used dimensionality reduntio
computation time during detector design. Generally spepki techniques after concatenation which improved detectem p
balancing computation time and detection performance i$ormance but not detection speed. (2) Direct boosting [12],
challenging; best detection results are obtained usingptedm [8], [13] where an ensemble classifier is learned using the
features and descriptors which are computationally expens entire heterogeneous pool of features. The problem here is i
As an example, Histogram of Oriented Gradients (HOG) [4] isboosting, on each iteration, the feature with the least ktei)
the most discriminant feature thus far, but it is also coraput classification error is added to the ensemble irrespecfivis o
tionally expensive compared to simple features like Haar va computation time. This favors complex features resulting i
ants [5]. Furthermore, most detectors that improve over HOGomputationally costly detector. (3) Coarse-to-fine Hignaal
either use complex human modedsy, parts based models [6], arrangement [14], [15] where a cascade is constructed using
or consider various heterogeneous pool of featueas, [7], cheap features at the initial stages and using complexrésatu
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Fig. 1: Feature selection and classifier learning framework usedct aode of a cascade.

at later stages. This approach is quite advantageous asddri weak learner is trained using the examples provided anceid us
find a balance between detection performance and speed. Ttecharacterize the discriminating power of the featureeimts
concern is, how to decide which features to use at tiferéint  of True Positive Rate (TPR) and False Positive Rate (FPR).
stages systematically? Both [14], [15] adopt a heuristigeda Following, pareto-front analysis is used to select a sub$et
rule and use homogeneous family of features they deemeatures,#, taking their TPR, FPR, and computation time
cheap at the initial stages, and homogeneous complex ésaturinto account. This step is necessary to reduce the overwhelm
at the latter. Finally, (4) via a computation time vs dettti ing total number of features to a tractable size for discrete
trade-df. This notion has been considered by the works ofoptimization. Next, binary integer optimization, presahtin

Wu and Nevatia [16], Jourdheudt al. [17], and Mekonnen § Ill, is used to retain a subset of featurés, that have the

et al. [18]. In all cases, they defined a criterion composedrequired performance—detection plus minimum computation
of feature detection performance and computation time in aime. Finally, a nodal strong classifigf(x) is trained using
multiplicative manner. But, considering a multiplicatifactor  the retained feature st with discrete AdaBoost. Specific
masks the contributions from the corresponding objeci@eb  design choice motivations and brief descriptions of eacklbl

is not guaranteed to be optimal. are presented herein below.

Our proposed. framework faI[s in théh4category; but_, it A. Features
can also be considered as a variant of coarse-to-fine higrarc ) ) - )
in which the exact features to use at each cascade node Five different feature families are co_nS|der_ed,_name_Iy: Haar
are selected automatically via an optimization step. We usdke, CS-LBP, CSS, EOH, and HOG. This choice is motivate by
five frequently used heterogeneous features, namely: aar- WO aspects: (1) their frequent use in the literature fosper
features [5], Edge Orientation Histogram (EOH) [13], CSE [7 detection, and (_2) t_helr_ complementary nature. EOH and HOG
Center Surround Local Binary Patterns (CS-LBP) [19], andc@pture edge distributions, CSS focuses on color symmetry,
HOG [4] in a classical cascaded boosting configuration [5]Haar—llke and CS-LBP on intensity and texture varlat|9rf$eT
with an added explicit optimization step based on Binaryf€ature pool of each family is extracted from a XX pixels
Integer Programming (BIP) to select a subset of feature§uman template window.

that have the least combined computation time and achievd@ar like: Here, the extended set proposed by Lienhart and
a stipulated detection performance. Maydt [20] which includes tilted variants is used. The pool

is generated by extracting feature values at all positiords a

Contributions: This paper claims to make two important scales in the template window with the extended Haar set.
contributions. First, it presents a BIP formulation to mine CS-LBP: Computes per pixel CS-LBP [19] value by taking
heterogeneous features taking both detection performamte and modulating the intensity fiierence of center symmetric
computation time into consideration. The authors asseést th pixels for all the neighboring pixels. For each pixel, we
optimization applied to heterogeneous features is unique iprivilege a 3x 3 pixel region which results in a scalar integer
the literature and marks a key contribution. Second, théetween 0 and 16. Then, considering a rectangular region
paper presents a thorough evaluation of the proposed pefithin the human template, a histogram with 16 bins is
son detector—using both proprietary and public datasétis—w computed to signify one feature of this family. For all p&ési
detailed analysis of its performance compared to alter@ati positions and scales of the rectangular region a distirattfe

approaches and the state-of-the-art. (which is a histogram) is computed and added in to the set of
CS-LBP feature pool.
Il.  FrRAMEWORK CSS: Color self similarity, proposed by Wallet al. [7],

captures pairwise similarities of spatially localized arotlis-

The objective in this work is to develop a people detec- ibutions and can be used to capture the left and right
tion framework based on heterogeneous features that eaptuﬁr ) ; P 9
mmetry of persons’ clothing (upper body and lower body).

different facets of persons in an image. Our proposed detect O o .
training framework takes discriminative power of each fea-ﬁg %%r:.%l;l/?rtllgn fi'rrlSt féarifngycsgfgfjwﬁénc?éhepg?/Zgéﬁ"ﬁﬁ;k
ture and its associated computation time into consideratioa 3% 33 HS{)/pcc?Ior Eisto fam i constrﬁcted Then. the
explicitly to select, and subsequently use, a subset ofifeat 9 . !

that fulfill the required detection performance and have th%mllanty of block with the rest of the blocks is determined
minimum cumulative computation time. istogram intersection. In stead of concatenating all asegh
similarities like Walket al.[7], we define a single CSS feature

As detection speed is one of our design focus, we adopb be a vector of scalar values that are obtained by inténgect

the acclaimed Viola and Jones [5] attentional cascade tetec the histogram of one block with the rest of the blocks. The

configuration in a sliding window paradigm. To train a strongCSS feature pool set is then determined by computing this

classifier at each node of the cascade, the framework ddpictevector for all blocks. By dividing the template into blocké o

in figure 1 is employed. For a given set of positive and8 x 8 pixels, a total of 128 feature vectors, each with 127

negative training samples, a total of samples denoted as dimensions, are obtained.

{(%, ¥)}ien...n+ First, the features described §nll-A are ex-  EOH: This feature pool is generated exactly as described by

.....

tracted resulting in the feature s&t For each feature a uniqgue Geronimo et al. [13]: edge orientation histogram followed



by ratios of magnitude of two bins to get a single scalar I1l.  DISCRETE OPTIMIZATION FEATURE SELECTION
feature value and doing this for all positions and scales of
rectangular subregions for histogram computation witthia t
template window.

HOG: The HOG feature pool set is constructed as follows
Given the template window, it is divided to overlapping
blocks and a 36 dimensional histogram of oriented gradient
is computed just like [4]. But, rather than concatenatinlg al
block histograms to make one high dimensional feature, we Definition of parameters: The following are list of param-
consider concatenating a subset spanning a rectangulanreg eters used in the optimization specificati@= {0, 1} denotes
The HOG feature pool is generated by considering all passibla binary set. The applies to cascade nkde

positions, width, and hight of the rectangular region. The

features range from a 36 dimensional vector, a single block, ® N ={1,..,n}: set of training sample indexes withe
to 3780 dimensional one, all blocks in the template. Z; a total ofn training samples indexed ky

The BIP based feature selection applied to heterogeneous
features makes the core of this work’s contribution. The
(detailed optimization formulation to select a subset ofifess

‘that fulfill a stipulated nodal FRR TPR;, with the minimum
ombined computation time possible is provided as folldws,
enotes the node index.

Table | summarizes the total number of features, the scaled M = {1,...,m}: set of weak learners indexes withe
maximum and minimum feature computation timg,{; and Z, a total of m weak learners indexed by
Tmin), and the exact weak learner used in each feature family. " I L N oo
For CS-LBP families Linear Discriminant Analysis combined * Yy eBLy = {W}ieN’ y €BLy = {W}iEN
with a decision tree (which is trained after re-projectias)

privileged as SVM leads to overwhelming training periodgdu Vi = 1 ifiispositve __ | 1 ifiis negative
to the high number of CS-LBP features). i 7] 0 otherwise i 71 0 otherwise
TABLE I: Feature pool summary. Tlme is reported relatively as a multiple H € B™™ whereH = {hi j}ieN with hy; € {0, 1)
of the smallest feature computation time. iem ’
Feature Type No of features 7min Tmax Weak Learner 1 if K 4 i .
Haar like 672,406 1.0 3.48 Decision Tree hi i= It wea .eamer] etecls sampleas positive
EOH 712,960 4.83 317.75  Decision Tree : 0 otherwise
CS-LBP 59,520 15.45 393.64 LDA Decision Tree o .
Css 128 1017.94 1017.94 SVM e TPR € [0,1]: minimum true positive rate set at the
HoG 3,360 489.72 5142056 SVM considered nodek of the cascade;
B. Pareto-front extraction e FPR € [0,1]: maximum false positive rate at the

Given all set of featurest, along with their trained asso- node;
ciated weak learners, and characterized by three paraneter 7 € R™ with 7 = {Ti}
TPR, FPR, and computation time){ pareto-front analysis is learner .
used to find the optimal solutions that make up the pareto
optimal set—the solutions that cannot be improved in one Decision Variables: In BIP, the decision variables are
objective function without deteriorating their perforncanin  restricted to binary values, values from the &et= {0, 1}.
at least one of the rest. The subset of features that areoparethe BIP decision variables are the following.
optimal with respect to TPR, FPR, and computation time, .
denoted#, are extracted and passed on to be used for the ® VE€B™ V= {Vj}jeM vi €1{0,1): vj = 1 if weak learner

discrete optimization step. ] is selected, elsg; = 0,

computation time of weak

jeM

e TeB" te {01t =1if a positive sample has
been detected as positive (true positive) by at least
The final and decisive feature selection step is performed one selected weak learner, else 0;
by the BIP optimizer and is discussed §nlll. This module
provides the sef . Finally, the nodal strong classifief{(),
is built with discrete AdaBoost by using th€ feature set.

C. Feature selection and cascade classifier learning

F e B", fi €{01): fi =1 if a negative samplé has
been detected as positive (false positive) by at least
one selected classifier, elde= 0.

The complete classifier used for detection however contains Let vectorp = {pi}iy = Hv, which denotes the total
multiple nodes forming a cascade. The cascade constructigimber of weak learners that have labeled each traininglsamp
starts with all positive training samples and a subset of thé as positive.
negative training samples (equivalent to the positive pnes
to learn the set of relevant features and classifier for the
initial cascade node. Once this is done, all negative tngini

Objective Function and Constraints:

samples in the dataset are tested with it. All those that get min 7V . (1)
classified correctly are rejected while all those labeled as St <y -p v'_ . (2)
positive samples (false positives) are retained along thieh fizy-hij-v V@i, ) (3
positive samples for training the following nodes. Thigpsi®e IITll, > lly*l, - TPR (4)
repeated until all negative training sample are exhaudteis. Ill, < [lyll, - FPR (5)
data mining techniques makes it possible to use vast number vV eB™ T = {ti}ien, F = {filien; T,F € BN (6)

of negative training samples. [I1ll, is 11 norm.



The objective function (2) aims at minimizing the compwiati computation time of thé&" node during detection. Assuming
time. Constraints (2)-(6) express that a given rate of dietec the nodal FPR characteristics hold on a generic input image,
quality has to be reached (depending on the number of true arttle average time spent on a test candidate wind@uy, can
false positives). Constraints (2) link andt; variables (viap)  be estimated aSay = 70 + Y1 (I1a FPR)7«. Using Dalal

so thatt; = 0 if imagei has not been well-recognized by at leastand Triggs [4] detector, which take$oc per window, as a
one selected classifier. Constraints (3) linkand f; variables  reference, thé\verage Speed Up (ASUpver it is determined

so thatfi = 1 if a negative imagd has been recognized as ASU = ‘;‘_ﬂ Consequently, the ASU values reported
as positive by at least one selected classifier. Constrdnt ( henceforth are with respect to Dalal and Triggs detector.
expresses that the stipulated TPt true positives, obtained

with the selected classifiers, has to be reached. Similariyp. Dataset

constraint (5) expresses that the stipulated PR false
positives, obtained with the selected classifiers, mustheot
exceeded. In this formulation, there are a totalref+1)+2)
binary variables in the BIP, which could be huge for large
and m values. The final subset of featur#s corresponds to
only the selected featurege. non zerov entry; since each
feature indexed by is associated with a unique weak learner
h;, ¥ also represents the subset of weak learners retained

For evaluation, two dierent datasets are considered: The
Ladybug dataset, which is a proprietary dataset compiled
from indoor laboratory environment using thadybug2spher-
ical camera; and théNRIA public dataset [4], a publicly
available dataset most predominantly used for benchmgrkin
people detectors in the literature. A detailed descripisonot
provided here due to space considerations, but table Il satmm
rizes the actual data used for training and testing purpdses
Ladybug dataset is used for training and testing the framewo
IV. EXPERIMENTS AND RESULTS using cropped windows. On the INRIA dataset cropped win-
dows are used for training. For testing, both cropped wirgdow

investigate the performance of the proposed framework an@nd full images are used for a per window and full image

obtained results along with commentaries are presenteel. THFValuation respectively. In both datasets, the croppedtivey
evaluation is focused on the following two aspects: windows are uniformly sampled from provided person freé ful
images.
(1) Feature selection strategy evaluatiodere, the aim is to .
. . TABLE II:
analyze the pros and cons of using BIP over other simpler

In this section the dierent experiments carried out to

Summary of the dferent dataset used for training and testing.

alternatives. The proposed BIP based feature selection and pataset Training Test

classifier learning strategy, labeledBi® +AdaBoost is com- poswin.  negwin.  poswin. negwin.  full images
pared with two other modes. Firdeareto+AdaBoost which Ladybud 1990 488992 1000 319653 -
discards the BIP block in the framework and directly trains a _INRIA[4] 2,416  285x1¢° 1132  2x1C° 288

nodal strong classifier with discrete adaboost using theifesa
retained by the parto-front extraction block. And second,C. Training
Random+AdaBoost which directly builds a nodal classifier

using randomly sampled features from the total feature poo
(proportional to each feature pool family size) and AdaBoos k

Each cascade node training (learning) is governed by two
rovided parameters: the nodal TPPRnd FPR for node
. The training is carried out in such a way that the final
(2) General comparative evaluation with the state-of-#ine-  trained classifier conforms to these stipulated performanc
In this part, the performance of the trained BWRdaBoost is  requirements. Each cascade node is built using a subseg of th
compared with the prominent approaches in the literature. total negative training samples and all positive samplégs T

set is initially divided into a 60% training and a 40% validat

A. Evaluation Criteria set. The weak learners are trained using the 60% training set
Then, TPR and FPR values corresponding to each weak learner
are determined based on the validation set. All subsequent
Qomputation,i.e., pareto-front analysis and feature selection

For detector performance evaluation, we use two ap
proaches: (1) The per window approach, whereby a Detectio

Error Trade-& (DET) curve with Miss Rate versus False _. :
" \ . ; via BIP are performed using the weak learners performance
Positives Per Window (FPPW) is generated by using CrOppegonferred on the validation set. Once the pertinent featare

positive and negative windows; and (2) the per image APselected, the corresponding weak learners are re-traisiad u

proach which shows Miss Rate versus False Positives pefo" ombined training and validation set within the diseret
Image (FPPI). The first curve is used to compare experiment daBoost to build the per node final strong classifier, H(.).

variants of the proposed framework with respect to Dalal h P :
. . e complete cascaded classifier is then learned as exgliaine
gg?er-{rqli%gshgv(\?(c;)u[rﬂ)(:;pgd rlc;)a?:ﬂd ltgessf&oggnis aLIj’ngtOtoth II-C. For the associated weak learners, a decision tredndept
bp play P 2, 3, and 3 are used for Haar like, EOH, and LBP features

different techniques in the literatufaspect 2) To summarize : ; e
; > ~ respectively after detection performance and over-fittiage
the performance, the Miss Rate at"10FPPW and the log off analysis on a validation set.

average miss rate are used in the first and second approaches
respectively. D. Results and Discussiohs

Another criterion that is taken into account is the average | agybug Dataset: The main results obtained with the

computation time. For a cascade detector the average compuaqgyhug dataset are depicted in figure 2 and summarized in
tation time for a given candidate window istected by the

FPR of each node. LéK be the total number of nodes in the Iplease see httjhomepages.laagémmekonfiadybug dataset
cascade, FPRbe the false positive rate ang be the total 2All figures in this section are best viewed in color.




table lll. Clearly PareteAdaBoost results in the best detection 15.6x speed up while that of BHFAdaBoost(Ad) trails with a
performance, 3% MR, followed by Dalal and Triggs detector 9.22x speed up.

trained on this dataset,@®%b, at 164 FPPW. In terms of de-

tection, BIR-AdaBoost trails behind RandorAdaBoost with DET - Person Detection

marginal loss. But, the most important result to notice &t th
BIP+AdaBoost results in a drastic #X speed up over Dalal 107! &-.,91,:@ p
and Triggs with only a 7% loss in MR at 1OFPPW. The main 1 B
reason for this speed up is that BIRdaBoost systematically

miss rate

i inti 1021 Dalal and Triggs HOG @~ -
uses cheap features in the intial stages of the cascade nd on 3 algland Triggedios @~ -
starts using computationally expensive features at labeyes. | Random + AdaBoost ‘ TG
. s K BIP + AdaBoost (Fix.) —B—
The trained classifier has 10 cascade nodes with CSS features w0d L BIP + AdaBoost (Ad.) ‘ ‘ \
initially appearing at the 8 node and HOG at the final stage. 10 103 1072 107"
false positives per window (FPPW)
DET - Person Detection Fig. 3: DET of different detectors trained and tested on the INRIA dataset.
- ~ Dalal and Triggs HOG --@- o ) )
Random + Jgapoost &~ As the intial FPR constraints are stringent on the
BIP + AdaBoost —B— BIP+AdaBoost(Ad) variant, it will favor relatively discrim-

inative features with increased computation time. Buts thi

miss rate

2 L B b BN e
" also contributes to its superior detection performancesr ov
BIP+AdaBoost(Fix), throughout the FPPW range shown in
10° figure 3. Observe in the table, there are more proportion of
10 10° 102 107 Haar like features (8% more) and less proportions of HOG
false positives per window (FPPW) features (D% less) in the fixed variant compared to the

Fig. 2: DET of different detectors trained and tested on the Ladybug datasetadaptive variant resulting in the increase speed up

Apparently, PareteAdaBoo.St E.md Rand daBoost re- TABLE IV: Summary of the cascade detector trained on the INRIA
sult in worsened speeds. This is because AdaBoost alwayd%\tasets Miss Rate is reported at4GPPW
privileges the most discriminant feature, irrespectivecom- ' P '
putation cost, from the pool of features passed to it, antl bot

. . . Detect Feat P rti MR ASU
pareto front extraction and random sampling are likely tsspa " ealure Troportion
such kind of complex features. Hence, the set of features Haar CSLBP CSS EOH HOG
selected in the first node result in a conglomerate that iS paa and Triggs (4] - _ _  _  EEE 1.0% 10x

effectively computationally demanding than Dalal and Triggs pareto+ adaBoost 428% 145% 7.8% 256% 93% 7.0% 0.4x
detector. These result are obtained using a fixed nodal FPR Ofxandom+ AdaBoost ~ 263% 108% 3.7% |535% 56% 60% 0.4x
0.5 for all constructed nodes and the obtained results age Ve gp . adaBoost (Fix) |604% 108% 80% 9.7% 110% 8.0% | 15.6x

precise that altering the FPR is not necessary. BIP + AdaBoost (Ad)  550% |146% |81% 93% 130% 7.4% 9.22x
TABLE Ill: Summary of the cascade detector trained on the Ladybug Figure 5 shows histogram of the selected features, with
dataset. Miss Rate is reported at4G-PPW. relative proportions, for the first 9 nodes of both the fixed
and adaptive variants. Clearly, the fixed variant initialises
Detector Feature Proportion MR  ASU cheaper features and increases along the cascade both in num

ber and complexity. On the contrary, for the variable vatian

Haar CSLBP CSS EOH HOG . Lo . .
complex features appear in the initial nodes and increase in

Dalal and Triggs [4] - - - - 100% 3.0% 1.0x number along the cascade. Figure 4 illustrates a few of the
Paretor AdaBoost ~ 107% 00%  00% 00% [B8379%QgEgl] 0.7x selected features overlaid on an average human gradiegeima
Random+ AdaBoost  516% 62%  15% R 47% 80% 0.6x for BIP+AdaBoost(Ad). Observe that all selected features
BIP + AdaBoost 543% 8.6% 85% 257% 2.8% 100% 42.7x Capture dlscnmlnant facets Of people

INRIA Dataset: Similar results obtained for the INRIA |,
dataset are shown in figure 3 and summarized in table IV. As |
this dataset is challenging, two variants of the BMelaBoost 14 M B
classifier are trained. In the first case, a fixed nodal FPR of w

1HOG
mCss

.
® o~
|

ok N W & 0 O

0.5 is used for all nodes, calleBIP+AdaBoost(Fix). In the 6 = = .::
second case, an adaptive FPR is employed which starts at 0, ; I I I u Haar
in the initial stage and continues training nodes, whenaver | ° | L L L L S L L e e, e .
solution for the BIP optimization does not exist, this coaistt Fixed FPR AdaptiveFPR

is relaxedincremented by 0.1 and the procedure continues
fro_m .that node likewise until all negat“/.e samples are den.l'e Fig. 5: Histogram of selected features in the first 9 nodes of the model
This is calledBIP +AdaBoost(Ad). Again, the best detection yained on the INRIA dataset using both fixed FPR df Gnd adaptive FPR.
results at 16* FPPW are obtained by the RandeAdaBoost

and PareteAdaBoost variants. But, this time both variants of  Finally, figure 6 shows the comparative evaluation of
BIP+AdaBoost beat Dalal and Triggs detector at1By more  BIP+AdaBoost (Ad) detector on the INRIA dataset using
than 2%. On top of this, the BiAdaBoost(Fix) achieves a the full image evaluation criteria. Comparative evaluagio



(a) node 0 (b) node 1 (c) node 2 (d) node 8
Fig. 4: sample depictions (overlaid on an average human gradient Jnudidee heterogeneous features selected f¢mdint nodes of the cascade trained on

the INRIA dataset using an adaptive FPR. Black rectang@gions show Haar features, blue is for CS-LBP, green boxaesent CSS features and their
position indicates the reference block, and finally, vidkbws the spatial region spanned by the concatenated HQtRsblo
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(1]

miss rate

= = = 47% BIPAdaBoost-Ad
= = = 46% HOG

44% LatSvm-V1
10 43% HikSvm

= = = 40%Pis [2]

s 39% HogLbp

36% MultiFtr

25% MultiFtr+CSS
05 22% ChnFtrs

21% FPDW

20% LatSvm-V2 3]

107 107 107" 10° 10"
false positives per image

Fig. 6: Comparative full image evaluation on the INRIA test set. (4]

are taken from [1]; the reader is referred to this survey [5]
for explanation of each detector (as space does not permit
here). To generate these results, a Pairwise Max non-méaximal®l
suppression [1] with an overlap threshold 08®. Again, here,
BIP+AdaBoost(Ad) does well achieving a log-average miss 71
rate of 47%. At lower FPPI values, less than 0.1 FPPW, the
BIP variant consistently supersedes Dalal and Triggs HOG.[8]
Using the computation speed reported in [1] for people more
than 100 pixels in a 640480 image, our detectors achieves 2.3 [g]
frames per second (fps) for the adaptive variant, and 3.9 fps
for the fixed FPR variant trained on the INRIA dataset. Theseio]
values are amongst the top best only exceeded~BpW
which achieves approximately.® fps. But, actuallyFPDW

uses the underlying principles @hnFeatsand optimizes the [11]
detection process by approximating the features over scale
space. Similar techniques can be used to further improve t
fps of our detector. On the other hand, the model trained OEB]
the Ladybug dataset, achieves 10.6 fps on the simpler datas
This is an added advantage as a majority of the methods in the
state-of-the-art do not have the ability to automaticaltprge  [14]
the complexity of the trained detector based on the dataset;
examples include Dalal and Triggs HOG aHdgLbp which

have fixed size feature vector irrespective of dataset. [15]

V. CONCLUSIONS

In conclusion, a novel framework based on heterogeneod%ﬁl
pool of features and discrete optimization for developing a
computation time and detection performance optimizedguers (17
detector has been presented. The proposed framework hras bee
validated thoroughly using proprietary and public datsisEhe
results obtained conform to our aims and result in a fastej18]
detector with competitive detection performance amonigst t

state-of-the-art.
[19]

In the near future, we plan to investigate ways to achieve
more faster versions of the detector by focusing on implemen
tation optimization and specialized accelerator hardwéike  [20]
Graphical Processing Units (GPUS).
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