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Abstract
Human can interact with several kinds of machine (motor vehicle, robots, among others) in different ways.
One way is through his/her head pose. In this work we propose a head pose estimation framework that
combines 2D and 3D cues using the concept of Key-Frames (KF). KFs are a set frames learned
automatically offline that consist: 2D features, encoded through Speeded Up Robust Features (SURF)
descriptors; 3D information, captured by Fast Point Feature Histograms (FPFH) descriptors; and target’s
head orientation (pose) in real world coordinates, which is represented through a 3D facial model. Then,
the KF information is re-enforced through a global optimization process that minimizes error in a way
similar to bundle adjustment. The KF allows to formulate, in an online process, a hypothesis of the head
pose in new images that is then refined through an optimization process, performed by the Iterative
Closest Point (ICP) algorithm. This KF-based framework can handle partial occlusions and extreme
rotations even with noisy depth data, improving the accuracy of pose estimation and detection rate. We
evaluate the proposal using two public benchmarks in state-of-art: (1) BIWI Kinect Head Pose Database,
and (2) ICT 3D HeadPose Database. In addition, we evaluate this framework with a small but challenging
dataset of our own authorship where the targets perform more complex behaviors, that those in the
aforementioned public datasets. We show how our approach outperforms relevant state-of-the-art
proposals on all these datasets.
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1 Introduction
The head pose provides rich information about the emo-
tional state, behavior and intentionality of a person. This
knowledge is useful in several areas such as human-
machine interaction [1], augmented reality [2, 3], expres-
sion recognition [4], driver assistance [5], among others.

The task of correctly estimating the head pose with non-
invasive systems might seem easy, many current devices
(smart phones or webcams) can detect human faces from
videos or images in real time. Those are good for recre-
ation, but they cannot handle all the difficulties in Head
Pose Estimation (HPE) such as (self) occlusion, extreme
head poses, facial expressions and fast movements.

Driver assistance scenario is a particular case where the
user may exhibit complex behaviors such as zooming in /
out of the steering wheel, wide range of head rotation and
fast movements. Here, the pose can verify if the user pays
attention to the road allowing an autonomous system to as-
sist the driver when necessary. Therefore, HPE algorithms
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should provide fast and robust information because missed
detections or spurious estimates can lead to accidents.

Usually, HPE proposals [6, 7, 8] rely in RGB images to
find specific 2D facial features, such as eyes, eyebrows,
mount or nose. These heterogeneous features provide accu-
rate estimations but those are not available all the time, i.e.
working with blurry images or light changes. Depth-based
approaches, e.g. Fanelli et al. [4], can overcome some of
the limitations of the 2D estimation allowing a better 3D
HPE. Both methodologies perform well where the target’s
face is nearly frontal but, as mentioned above, this assump-
tion cannot be guaranteed. Some applications use 3D mod-
els ([9, 10]) to retrieve the pose because they also provide
semantic information, i.e. gaze estimation, facial expres-
sion.

We propose a framework that takes the best features of
the aforementioned methodologies, combining 2D and 3D
cues with a rigid 3D face model. It can handle challeng-
ing situations, such as large head poses, with a high detec-
tion rate and good accuracy for a wide range of orienta-
tions. Our approach follows an efficient Key-Frame (KF)
methodology with an offline learning phase and an online
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pose estimation step. Our fast and non-invasive offline step
learns target’s appearance and pose using a RGB-D sensor,
in such a way that it creates a set of Key-Frames (KFs) for
that specific person, see Fig. 1. The KFs could be spurious
or inaccurate, therefore we propose a global optimization
process based on bundle adjustment that improves the set
of KFs and updates the 3D face model to better fix the tar-
get. This information is later used to estimate an accurate
pose in the online step.

This process could be seen as a disadvantage due to it
needs to learn KFs for each new user, but our proposal in-
corporates an automatic learning system that only requires
the user to perform simple movements in a short time be-
fore launching the online step. In several contexts we can
afford to perform this initialization stage. This is the case
for driving assistance where learning could done when the
vehicle is stopped. Moreover, we might even suppose that
the offline process conditions the start of the vehicle, allow-
ing to verify in advance whether the user is in good condi-
tions to drive.

We show how this Key-Frames based proposal provides
competitive results to those in the state of the art. We eval-
uate our approach using: (i) the standard benchmark BIWI
Kinect Head Pose Database [4], (ii) ICT 3D HeadPose
Database and (iii) our own dataset recorded with a Mi-
crosoft Kinect v1.

BIWI and ICT-3DHP datasets are, in the literature, stan-
dard benchmarks for evaluating head pose detectors with
more than 240 and 200 cites respectively ([4, 11, 10, 12]),
where each target is recorded with neutral expression, ro-
tating the head at a slow-medium speed. However, these
datasets do not represent complex and challenging move-
ments that a human could do. Therefore we develop our
own dataset where the targets perform more natural move-
ments as those expected in real scenarios. It consists of
4 sequences where targets show complex behaviors, such
as: rapid head movements, self-occlusion, facial expres-
sion, among others. Although we evaluate several datasets,
all the examples shown in this paper use images from our
”ICU” dataset to describe the different steps of our pro-
posal. Thanks to quantitative evaluations of these challeng-
ing sequences, we demonstrate that our monocular RGB-
D based approach offers competitive results to current ap-
proaches in the state of the art.

The main contributions of this paper are:
1 A Key-Frame based framework, with state-of-the-art

accuracy, that consists of: an original offline process
with an automatic learning step with global consis-
tency, a KF optimization step based on error propa-
gation, and a 3D face model updating methodology.
All the above learned information is considered dur-
ing an online head pose estimation with a formulation
that takes into account the descriptors, normal surface
and self-occlusion.

2 A new dataset exhibiting more complex behaviors to
those present in the aforementioned datasets.

This paper has the following structure: we present the re-
lated work in Section 2. The formulation of our method-
ology for pose detection is given in Section 3. Section 4
presents the quantitative and qualitative results including a
discussion where we compare our framework with respect
to other two approaches in the state-of-the-art. Last, Sec-
tion 6 describes conclusions and future work.

2 Related works
In the fields of mobile robotics and computer vision, there
are works focused on monocular systems for HPE, i.e.
[13, 14], that can be categorized according to cue used.
Hereafter, we mention a few of the most relevant ones.

2.1 RGB-based approaches
Some approaches tackle the HPE problem by using 2D
deformable models that can approximate the human face
shape [15, 16]. In [6], Kazemi et al.propose a fast face
alignment framework based on a random forest where each
regression tree is learned by a gradient boosting-based loss
function. This methodology allows to detect multiple faces
with high accuracy at a speed of 1 ms per image even with
complex expression (strong facial deformations) or small
head rotations.

Other proposals seek specific facial features, i.e. eyes,
nose, among others. Valenti et al. [8] learn the location
of the eyes from a set of training images and, assuming that
head follows a geometrical shape, those are projected in a
cylinder. This person specific model is used then for detect-
ing and tracking the target. Barros et al. [7] follow a simi-
lar strategy, but including motion information from optical
flow to reinforce the estimation. Drouard et al. [17] pro-
pose a learning method based on histogram of oriented gra-
dients (HoG). HoG features are mapped (through a Gaus-
sian locally-linear model) onto the head pose space, which
is then used to predict a new head orientation. Chen et
al. [18] achieves good results with RGB images of low
resolution using a Support Vector Regression (SVR) clas-
sifier trained with a gradient-based feature. All these meth-
ods combine the information in a single model and achieve
state-of-art (SoA) results when sufficient training data is
provided.

Learning the appearance of a person with a single shot
is not always possible due to problems such as changes in
lighting or occlusions. Therefore, several works rely on the
information coming from a set of relevant frames, called
Key-Frames (KF)[19]. In [20], Vacchetti et al.propose a
KF-based method that detects and estimates the 3D pose
of static rigid objects using only RGB images. Each KF
consists of a set of key-points and a 3D model, projected
to image plane using camera calibration. The proposal pro-
vides SoA results by considering both 2D-3D key-frame
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Figure 1 Pipeline of the proposed head pose estimation method. Top: Offline framework. The input is a RGB-D stream of the person
to track. Rough pose estimation is done (red block) and most relevant frames are selected (yellow block). Then, an optimization
process improves the pose accuracy (green block). Bottom: Online pose estimation process. The current image is shown at left. The
Key-Frame with the best matching score is selected and depicted at right. Finally, ICP refines the estimation (right image).

matching and 2D-2D temporal matching. The work of Kim
et al. [21] exploits the idea of KF for pose estimation and
tracking of multiple 3D objects from 2D information. The
methodology can obtain results in real time, i.e. 40 objects
within 6 to 25 ms per frame. In the last two proposals the
camera is moving while the target remains static. Never-
theless, these methods can work in the opposite way, i.e.
static camera with moving targets. [22] proposes a general-
ized adaptive view-based appearance model (extension of
the AVAM algorithm of [23]) that estimate the head pose
for a specific image region. The final pose is inferred by
merging the results of: (1) a referential frame, (2) track-
ing between current and previous frame, and (3) matching
against a KF.

A more recent method ([24]) use Deep Learning to train a
Convolutional Neural Network (CNN) using RGB images.
The results are provided in real time and can handle chal-
lenging issues such as different light conditions.

The 2D-based proposals perform well with nearly frontal
views but they have difficulty estimating an accurate head
pose due to problems such as large poses, (self) occlusions
and changes in lighting. In this sense, depth cue is more
efficient in such situations.

2.2 Depth-based approaches
Many of nowadays SoA methods are based on the depth
cue because 3D information provides the shape of the head
in a more distinctive way [25, 4, 12] .

In [25], the authors use the depth image to tackle some
of the problem of pose estimation such as partial occlu-
sion and head orientation variations. The proposal rotates
a generic 3D human face model and each rotation is trans-
formed in a depth image, which is later used in the align-
ment process. This offline learned set is compared to the
input depth frame and the best match provides the pose hy-
pothesis. It achieves real-time results thanks to a framework
based on Graphics Processing Units (GPUs).

Fanelli et al. [4] train a Random Regression Forest that
allows to detect poses in real time through nose’ tip detec-
tion. The training data is generated in a similar way as [25]
using a 3D face model set with several orientations. Each
leaf of the regression tree votes for a possible nose position
and the final pose is inferred by considering all votes. The
high quality of their results has converted it in a baseline to
compare new proposals.

Papazov et al. [12] propose a new 3D invariant descriptor
that encodes facial landmarks. The descriptors are learned
in an offline training phase using a group of high-resolution
meshes with triangular paths. A CNN is used in [26] to esti-
mate head pose from pure depth data with the use a Siamese
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network (a couple of CNN) achieving high accurate results
in real time.

2.3 RGB-D-based approaches
The combination of color and depth cues has shown high
performance in challenging situations. In the work of [11],
the pose is inferred by fitting a morphable 3D model on
the target represented by a 3D point cloud. The model is
learned for a specific person in an offline training step. [27]
use HoG features, extracted from both RGB and D cues, to
train a classifier based on Support Vector Machine (SVM).
In [28], the authors present a similar method that combines
2D and 3D HoG features but to train a multi-layer percep-
tron classificator. In [29] the authors present an improve-
ment to the Constrained Local Model by including 3D in-
formation. Then, they train some SVM classifiers and lo-
gistic regressors using probabilistic features.

Some works enhance classical methods by including
depth information. This is the case with [30], the authors
use the depth cue in a visual odometry technique. Smolyan-
skiy et al. [31] add a depth-based constraint to an Ac-
tive Appearance Model fitting. However this approach suf-
fers from drift problems, where the final model is not well
aligned with target’s 3D position. Some other proposals
propose to combine depth and color cues using random for-
est [32]. Here, tensor-based regressors allow to model large
variations of head orientation.

In [10], Li proposes a method based on an energy mini-
mization function that optimizes the distance between a 3D
point cloud (current frame) and a rigid template model of
the human face. The optimization is carried out using ICP
algorithm, the color cue is used in two ways: (1) to detect
2D facial landmarks, using the method of Viola and Jones
([33]); and (2) to remove outliers, using a k-means cluster-
ing algorithm. The detected landmarks, i.e. eyes, are pro-
jected to 3D world through the depth image and included in
the energy function as a weight factor, which increasing the
accuracy and convergent speed of ICP. On the other hand,
k-means allows to separate relevant 3D points (i.e. those
belonging to the face) from the spurious ones (i.e. clutter).
The face model is updated online in a parallel process using
only the depth cues allowing to adapt to different kinds of
faces. The proposal relies in the work of Fanelli et al. [4] to
reinitialize the approach because ICP requires more time to
infer a face pose from an initial position that from previous
frame. Meanwhile Fanelli’s approach finds a face faster but
with less precision. Yu et al. [9] propose a similar method
that instead learns a 360◦ 3D morphable model, including a
motion cue, based on optical flow, in the ICP optimization
process.

2.4 Descriptors
Descriptors encode important information about the visual
characteristics of the objects present in images [34], such as

appearance [35, 36], motion [37] or geometry [38]. There-
fore, they have been used in multiple contexts. Yu et al.[39]
proposes a FAST-like descriptor which considers the orien-
tation of image intensity. Yu et al.[35] propose a 2D head
pose estimation framework using a combination of clas-
sic descriptors, e.g. HoG, SURF and Haar. [36] uses two
Convolutional Neuronal Network (CNN) features to model
global and local appearance of the target and a 3-D CNN
which codify the motion.
The computational cost of some descriptors could be ex-
pensive, e.g. especially those based on Deep Learning [36],
even using parallelization methods [37]. Therefore, we rely
on robust features with fair computational cost.

2.5 Synthesis
The aforementioned proposals have some qualities that
adapt well in specific scenarios. To mention some outstand-
ing methods, we have: Kazemi and Sullivan [6] a RGB-
based method with fast estimation and high accuracy in
frontal view, Fanelli et al. [4] proposal relies in depth infor-
mation and provides good detection rate, and Li et al. [10]
can achieve accurate results for head poses with large rota-
tion. A combination of these (or more) methods could face
the challenges of estimating head pose, but a direct combi-
nation could not generate results in real-time.

Finally, there are some datasets to evaluate the perfor-
mance of HPE algorithms, such as BIWI dataset [4] and
ICT-3DHP dataset [29], that are the standard benchmark
used in several relevant papers [4, 11, 10, 12, 9]. They
consist of multiple sequences, each with a different per-
son, where the target has a neutral expression, with slow-
medium speed head rotation and (mostly) remaining in the
same position.

From above, we can summaries our contributions as fol-
lows:
1 A robust HPE algorithm based on KF that combines

3D geometry information (Point Cloud), appearance
and shape (encoded through SURF and FPFH descrip-
tors), exploiting all RGB-D channels.

2 A double mechanism consisted of : (1) An offline
learning phase that exploits the complementarity of
aforementioned techniques to create a person-specific
set of KFs; and (2) An online framework based on KF
and ICP that estimates robustly and in real time the
head pose.

3 A bundle adjustment process that improves the accu-
racy, in terms of performance and CPU cost, of the
learned KFs in order that they are consistent between
them.

4 An online update of both the KFs and 3D face model.
5 A new dataset with more challenging behaviors and

situations that those in the literature consisting of 4
sequences with a ground truth generated from a Mo-
tion Caption (MoCap) system. It includes rapid head
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movements, facial deformation, self-occlusions, posi-
tion displacement, among others.

6 A rigorous and large-scale evaluation and comparison
with relevant existing approaches in the state of the
art.

3 Method
Our Key-Frame based approach is inspired by some works
like [20], [22] and [25] but for the applicative context of
HPE for human-machine interaction, i.e. human HPE in-
stead of static objects considering both appearance and
depth cues with a partial 3D face model. Each KF con-
sists of a set of 3D appearance features (SURF descriptors
projected to 3D world through the depth image), 3D-based
features and an approximate head pose, represented with a
3D template model. First, we describe the contents of each
Key-Frame to then show how they are learned consistently
and subsequently used in a pose estimation system.

3.1 Key-Frames generation
3.1.1 3D Face Model
A 3D morphable face model (3DMFM) is a shape represen-
tation of a human face that can be used to provide accurate
estimations for most of the head poses. Then, a face model
M is a set of 3D vertex/points created as a linear combina-
tion of a mean shape µ with a weighted deformation basis
DB as follows:

M = µ+

Vn∑
i=1

γiω̄iDBi. (1)

Here, γi and DBi are the eigenvalue and eigenvector,
respectively, learned from a set of 3D scans. In our ap-
proach, we use the Basel Face Model (BFM) [40], which
has learned the DB values from the 3D face scans of 200
subjects, each with different age, gender, height and width.
Traditionally, 3DMFM fitting is an off-line optimization
step that finds the ω̄i values through the minimization of
the distance between one (or more) 3D frame(s) and the
model. This allows to create a model with a facial shape
similar to a specific person, i.e. [9, 10].

Our offline Key-Frame learning step uses a generic hu-
man face model M with average characteristics, i.e. age,
weight and gender. This model fits well in most of the
cases, but it must be updated in order to fit some facial
structures. Section 3.2.3 describes an efficient optimization
scheme that does not rely in calculating ω̄ of Eq. 1 like
other methods, but in an error propagation-based approach
inspired by as bundle adjustment.

Even with a well-fitted model, some HPE algorithms
have problems handling face deformation such as mouth
movements or facial expressions. This is a common situa-
tion when a person is speaking with other one or reacting

to external situations, i.e. music, other people movements,
to mention a few. We keep this in consideration and create
a partial model with only the part between nasal base and
forehead. This region does not deform much and provides
results as accurate as more complete models.

In any case, we use Eq. 1 to build a partial face model
M = {p1, . . . , pm} consisting of m = 1000 3D points
p = {x, y, z}, an example of the model is shown in Fig. 1
represented as the output of the red block.

3.1.2 Face descriptors
Our proposal relies is based on natural facial landmarks en-
coded through SURF descriptors, which allow to estimate
features invariant to rotation and scale, and Fast Point Fea-
ture Histograms (FPFH) descriptors, which include 3D in-
formation invariant to illumination changes. These descrip-
tors enhance the robustness of the HPE and increase both
accuracy and detection orientation range.

SURF descriptors SURF is a robust and reliable descrip-
tor that has shown good performance in several topics such
as SLAM, camera pose estimation and image registration.
In the context of HPE, SURF describes a specific-person’s
face in a general way, avoiding the need to search specific
features (e.g. eyes, nose). Therefore, any relevant character-
istic is taken into account, regardless of its origin, i.e. beard,
mustache, glasses or other. In addition, these descriptors are
invariant to scale and rotation allowing to detect no-static
targets, i.e. drivers moving around in the cockpit, people
interacting with robots, among others.

We use SURF in a similar way as in image registration:
we calculate a set of ηα interest point in the foreground of
image plane using the Good Features to Track algorithm.
Since each RGB pixel has associated a depth value, we de-
fine the background as any point farther than a threshold
tha. Thereby, we have a set of fα features with their re-
spective 3D position pαj = {x, y, z} as follows:

dαj = {fαj , pαj } ∀ j ∈ {1 . . . ηα} : ||pαj || < thbg. (2)

From Eq. 2 we have a descriptor that encode the appearance
of a specific person in 3D world and by grouping them we
get the set:

Dα = {dα1 . . . dαη }. (3)

In practice, the parameters used in SURF get a ηα ≈
100−200 descriptors. SURF descriptors are robust in cases
with little luminosity changes and flat objects, and in our
problem they have proven to be useful for the pose esti-
mation. Although, certain changes of a 3D object, due to
lighting or rotation, can not be captured properly by these
descriptors, therefore we use a shape descriptor that rein-
forces the estimation.
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FPFH descriptors Curvature estimates and surface nor-
mals are a basic representation of the geometry of an object,
easy to compute and compare. Although the level of detail
captured is not much, with many points containing same (or
similar) feature information. An alternative are the 3D de-
scriptors, they summarize the object’s geometry taking into
account the aforementioned features in an efficient manner.

Fast Point Feature Histograms (FPFH) descriptor, pro-
posed by Rusu et al. [38], captures the normal surface vari-
ations around a point, resulting in a high hyperspace signa-
ture that is invariant to the 6D pose (rotation and position)
and robust against the neighborhood noise. It is formulated
as follows:

fβj = FPFH(pβj ) = SPFH(pβj )+
1

|Nj |
∑
i∈Nj

1

κi
· SPFH(pi),

(4)

where SPFH (Simplified Point Feature Histogram) com-
putes the set of angular features of the PFH descriptor, κi is
the distance between pβj and pi and Nj is the set of neigh-
boring points of pβj . We build the set point to evaluate by
considering: (1) the 3D projection of the points computed
by Good Feature to Track methods, in the same way as in
SURF, and (2) a down-sampling of the target point cloud.
The 3D frame descriptors are formulated in a similar way
as in the previous section:

Dβ = {dβ1 . . . dβη}, (5)

where

dβj = {fβj , p
β
j } ∀ j ∈ {1 . . . η

β} : ||pβj || < thbg. (6)

Finally, each KF contains these three elements: appear-
ance and shape signatures and a 3D face model, together
with the depth image. In practice, the number of descrip-
tors ηβ ≈ 200.

3.2 Offline Key-Frame learning
In this section we describe how the KFs are learned from a
RGB-D stream, see workflow in Fig. 1. First, target pose is
roughly estimated using a robust but computational expen-
sive system based on 3 state-of-the-art methods (red block
in Fig. 1). Only the most relevant frames, according to the
quality of the estimated pose and the descriptors, are se-
lected as Key-Frames, yellow block. Finally, an optimiza-
tion process (green block) improves the KF estimated poses
and suppresses spurious frames, i.e. which are not consis-
tent with any other.

3.2.1 Rough pose estimation
Some methods require the use of other algorithms for ini-
tialization or learning, [9, 10]. Our proposal requires a
rough estimation of the pose, or rough pose estimation, that
is computed by combining three HPE systems that have a
good accuracy/CPU-cost ratio: Kazemi et al. [6] 2D face
detector, Fanelli et al. [4] depth based and Li et al. [10]
RGB-D based method.

These proposals complement each other and provide a
first good estimate on which we rely to create a more ro-
bust method. Kazemi et al. [6] proposal is a fast-facial
feature detector and is part of a public library, DLib from
[41]. Fanelli et al. [4] approach has over 200 cites and has
been included as a module for the Robot Operating System
(ROS) library. Li et al. [10] method brings more accurate
results that Fanelli for far-reaching orientations.

The work of [10] consists of two independent parts (com-
puted in parallel): (1) a head pose tracking framework
based on ICP and (2) a 3D model update system. This
method is based on facial features that cannot handle well
large head rotations and therefore the accuracy decreases
when the 2D face landmark detector fails. Therefore, we
propose a simple but reliable 3D feature, see in Fig. 3.2.1,
that provides additional information for feature-based sys-
tems, i.e. [10].

Let’s assume qt−1 = {x, y, z} as the 3D position of nose
tip estimated from previous frame and θt−1 as the head ori-
entation, red sphere and blue line in Fig. 3.2.1-b respec-
tively. Assuming a slow movement of the target, the next
nose point qt should be close to previous estimation, we can
find this new nose by analyzing the neighboring of qt−1 in
the current target’ point cloud ψt−1:

Nt = {p ∈ ψt : ||p− qt−1|| < r},

where r = 0.2m is the searching radio. In other words,
Nt are the neighboring points of qt−1 and one of those is
a good candidate to be the next nose tip (qt ∈ Ut), see
yellow area of Fig. 3.2.1-d. From previous pose estimation,
we define as nose the furthest point in the orientation θt−1:

P̂t = arg min
p∈Nt

{υ(p, qt−1, θt−1)},

where υ(·) computes the distance between point p and a
line segment defined through qt−1 and θt−1. q̂t is shown as
the blue sphere in Fig. 3.2.1-e.

In [10], the author includes the 3D eye positions, detected
with Viola and Jones [33] algorithm and projected through
the depth image, as a weighted factor in the ICP algorithm.
We do the same with this nose feature q̂t, the correspon-
dences between q̂t and a 3D template model have a weight
of 40, as indicated in [10], and the rests are set to one. This
process guides the template to zones with high probability
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Figure 2 Estimation of nose feature using previous pose.

of been the target’s face, Fig. 3.2.1-f shows the final esti-
mation.

This feature enhances the accuracy of the original pro-
posal, thus we use this nose-based framework in the KF
learning. Like other person-specific methods [11], we must
learn the appearance of each new target, but the process is
worth it because, as detailed below, it improves the accu-
racy of the estimations.

3.2.2 Automatic frame selection
In some application context, e.g. driver assistance, we can

take some time to perform the KF learning before starting
the vehicle without any danger. Here, robust estimates of
head pose are essential because inaccurate or missed detec-
tions can cause accidents. This could be difficult to achieve
due to target behavior is sometimes complex with random
or abrupt movements. We develop our proposal considering
that the KFs can handle well these scenarios providing high
quality results. Therefore, we consider justifiable to take a
little time in order to learn a robust person-specific set of
KFs.

First, we estimate the rough pose as described in Sec.
3.2.1 where the methods (Kazemi, Fanelli and Li) pro-
pose each one a HPE P∗ = {q∗, θ∗} where q = {x, y, z}
is nose location and θ is head orientation. Thus, we
have at frame t three pose estimation candidates Ct =
{PKazemi, PLi, PFanelli}. In the best-case scenario all the
methods converge to a similar point, i.e. mean of the three
poses P̄t = {q̄t, θ̄T } have a small variance V ar(Ct). If this
is the case, we add P̄t to the set of Key-Frame pose SKF .
Otherwise, we select a pose according to the qualities of the
methods. Kazemi is highly accurate with frontal view tar-
gets, Fanelli can detect poses even with rapid motion and
Li works better with heads that exhibit large orientation
(looking to right/left, full profile). Therefore, we privilege
these techniques according to each situation:

PKFt =



P̄t if V ar(Ct) < thv
PKazemi if ||q̄t − qKazemi,t|| < thd

and θo < thθ
PLi if ||q̄t − qLi,t|| < thd

and θo > thθ
PFanelli if ||q̄t − qFanelli,t|| < thd

and s̄ < ths

,

where thd = 5cm and thθ = 45o are the pose and orienta-
tion thresholds, θo is the existing angle between camera ori-
gin and target pose and thv = 0.5 is the variance threshold.
We define s̄ = ||P̄t − PKFt−1 || as the angular speed between
two consecutive pose estimations with ths = 1rad/s as
speed threshold.

Descriptor computation So far, the descriptions Dα and
Dβ are calculated in the foreground and, therefore, may
include irrelevant non-face features. To remove spurious
information, we simply rely in the rough estimate PKFt

that defines the position of the 3D face model. We use this
knowledge to filter out the points far enough from the tem-
plate. Let us assume qM as the nose position of the model
zone and L2(d, p) as the Euclidean distance (norm L2) be-
tween 3D points. Then, we filter the points according to a
threshold the as follows:

D̂α = {dαj ∈ Dα : L2(pαj , q
M ) < the} (7)

D̂β = {dβj ∈ D
β : L2(pβj , q

M ) < the} (8)

Frame selection The accuracy of the estimation is related
to the number of Key-Frames. More KFs improve the re-
sults, but computational cost is also increased. We keep the
number low by discretizing the orientation space through
spherical coordinates discretized at 20 degrees. An exam-
ple is shown in Fig. 3 where a yellow polygon depicts the
discretized orientation.

Once an estimate is close to the center of the discretized
area, we keep the pose PKFt and compute the descriptors
D̂KF
t = {D̂α, D̂β} around it. We change the color of the

visited areas to green in such a way that the user can ob-
serve the missing orientations (Fig. 3). Sometimes an area
is visited more than once, in this case we keep the best
KF based on a fitting score (given by pose estimation al-
gorithms) and number of descriptors. Finally, the KF set is
defined as follows:

SKF = {PKFk , D̂KF
k } ∀ k = {1 . . .K}. (9)

In this learning process, target should move its head at
normal speed performing only head rotations, as recorded
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Figure 3 Key-Frame learning process. Each figure represents the same target observed from three views. The discretized
orientation is depicted as the region of the sphere. The color indicates visited areas (green) from regions without an associated pose
(yellow). The set of points in red is the 3D model of the estimated pose. Target orientation at current frame is shown with the blue line.

in BIWI and ICT-3DHP datasets. We consider around of
30 − 40 KF, covering most of the orientation space, and
100 SURF/FPFH descriptors. The set SKF can be used as
it is, however we can enhance the pose estimation of each
KF by applying an optimization step.

3.2.3 Key-Frame pose optimization
The KFs provide rich information of the pose and appear-
ance of the target. An automatic learning method provides
a good initial estimation, but small errors in the set of KF
limit the quality of new estimates. Moreover, it could in-
clude spurious frames (un-consistent estimate), red circle
in Fig. 4. Therefore, we can overcome those issues by ap-
plying an optimization process that provides a global and
simultaneous consistency between all KFs and the 3D face
model.

To achieve this we need to minimize the error between
the 3D face model and all KFs. Let’s assume M as the
template model in a reference position (origin of 3D world
with not rotation) and Kk as the point cloud of the k-th
KF. We need to process only the points corresponding to
the face. This position is known from the estimated poses
PKFk and therefore we filter the points p of Kk keep-
ing only those around 20 cm of the pose estimation, i.e.
Hk = {p ∈ Kk : L2(p, pKFk ) < 0.2m}.

Hence, the goal is to find the transformation parameters
τk = {Rk, tk} that minimize two aspect: (1) the local error
between the paired points of the human face model M and
the KF point cloud Hk,

Pk = {(h, p) : h ∈ Hk, p ∈M},

and (2) the global error between the rest of the KF facial
point cloud H∗,

Qik = {(hi, hk) : h ∈ Hi, hk ∈ Hk}.

This can be achieved by minimizing the following cost
function:

arg min
τ

K∑
k=1

1

|Pk|
∑

(h,p)∈Pk

||p− T(h, τk)||2+

K∑
i 6=k

λi
|Qk|

∑
(hi,hk)∈Qik

||T(hk, τk)− T(hi, τi)||2,

(10)

where T(·) apply the geometric transformation of a point h
with respect to τ∗, |·| is the cardinality and τ = {τ1 . . . τK}
is set of all transformations. The variable λi weights the
contribution of the i-th KF (Hi) to evaluate and is de-
rived from the percentage of paired points between the face
model M and the i-th KF point cloud:

λi =
|Pi|

|M | ∪ |Hi|
.

We can observe that λi is close to zero when the number
of paired points(Pi) is small, meaning this is KF is not a
good match to work with because it is desalinated or is a
spurious frame. At each iteration we remove the KFs with
a low weight λi < 0.25 because we cannot guaranty that
those are a real part of the face or point cloud coming from
bad estimates.

We optimize the Eq. 10 following an iterative scheme
such as ICP. First, we select a KF k and perform the op-
timization, and we repeat this process with the rest until
convergence. Fig. 4 shows the KFs (projected to a refer-
ence frame) before and after optimization, from which the
target’s face can be seen more clearly. Finally, we recalcu-
late the poses and filter 3D points of the model.

3D facial model update Some persons could have facial
features more different than generic model, i.e. a person
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(a) (b) (c)

(d) (e) (f)

Figure 4 Three views of the point cloud of all KFs projected to
a common frame before (top) and after optimization (bottom).

with mustache or beard, causing a bias in the estimate. We
can overcome this issue by adjusting the model according
to the refined 3D point clouds. Let’s assume Ĥ as the union
of all 3D mesh projected in the reference position:

Ĥ =

K⋃
k=1

T(Hk, τk),

This point cloud Ĥ is seen as a scattered data and though
an interpolation algorithm based on Delaunay triangulation
[42], we create a mesh F = Delaunay(Ĥ) that describes
the facial surface of the target. Then, the new model M̂ is
estimated from the paired vertex (M i,Fi) by minimizing
the cost function:

∑
i∈M
||M̂ i − Fi||2 +

γ

|Ni|
∑
j∈Ni

||M̂ i −M j ||2, (11)

where Ni are the neighboring vertex of M̂ i and γ weights
the similarity of the original model. This Eq. updates the
points ofM with respect to F allowing the generic template
to evolve in a model M̂ more similar to the target.

3.3 Online Head Pose estimation
In this section we present our original framework that ex-
ploits the characteristics of the KFs, in comparison with
other existing approaches. We have a set SKF with appear-
ance and shape descriptors (associated to 3D points) and
a robust pose estimation. As mentioned above, descriptors
are computed only on the area around the 3D model, so
we have D̂k = {d1, . . . , dηk} for each k KF. We apply a
similar process for the current frame.

3.3.1 Pose estimation
Initialization For a new frame t, we first compute the de-
scriptors following the steps as mentioned in section 3.1.2,

sampling over the whole foreground images because we
don’t know the location of the target. Thus, we have ex-
tracted the descriptors Dt = {Dα

t , D
β
t }. Although in some

cases it may not be necessary to use both types of descrip-
tors, the use of both allows to compensate any problem that
the other has, for example drastic changes in the lighting
affect SURF.

Key-Frame selection We need to find the KF SKFb =
{Pb, Db} that matches better with the current frame. Let’s
assume f is a vector with the feature part of the SURF
Dα and Dβ FPFH descriptors. Then, for paired features
{f (j)k , f

(j)
t } (KF and current frame respectively), we com-

pare Dt against each KF descriptor D̂KF
k as follows:

arg min
k

1

ρk

∑
j

dist(f̂
(j)
k , f

(j)
t ), (12)

where dist computes the distance between two features
and ρk is the number of correspondences. After optimiza-
tion, we set the k-th KF as the best candidate for the current
t frame, i.e. SKFb = SKFk . Finding the best KF is a time-
consuming process, but our proposal achieves real-time re-
sults by considering the previous estimation. We evaluate
first those KFs close to the last estimated pose and we ac-
cept it as the best frame if the number of correspondences
is enough (i.e. > 20). This selection reduces considerably
the computational cost.

Nevertheless, the correspondences between Dt and D̂b

could be inconsistent due to the symmetry of the face (i.e.
eyes) or matching between different parts with similar ap-
pearance (i.e. mustache and eyebrow). Coherent matches
must share similar geometrical characteristics such as dis-
tance and orientation in 3D coordinates.

Descriptor filtering Let’s assume M∗b,t as the correct
match set between Db and Dt and p̂ as a vector containing
the 3D position of both appearance (Dα) and shape (Dβ)
descriptors. We compute the mean and variance between
the KF points p̂∗b and current frame p̂∗t in terms of distance
and orientation, then we remove atypical points as follows:

Mb,t = {mb,t ∈M∗b,t :

Mah(mb,t, µd, σd) < thm

and

Mah(mb,t, µθ, σθ) < thm},

(13)

where Mah(·) calculates Mahalanobis distance, thm < 1.
is its associated threshold, µ∗ and σ∗ are the mean and vari-
ance, respectively, of: (1) Euclidean distance between p̂∗b
and p̂∗t , and (2) orientation of p̂∗b with respect p̂∗t .
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Initial pose We use the points p of the correspondences
Mb,t to compute a rigid transformation from Db to Dt in
order to get an initial head pose Pb. The relative transfor-
mation τ̂t = {R̂t, t̂t} is estimated by minimizing the cost
function:

arg min
R̂t ,̂tt

∑
j

ω̂j ||R̂tp̂(j)b + t̂t − p̂(j)t ||2, (14)

where ωj is the confidence weight of the matched pair, cal-
culated based on the distance between their corresponding
features as follows:

ω̂j = exp

(
−dist(f

(j)
k , f

(j)
t )2

σ1

)
.

Thus, reliable features contribute more in the estimate of
the transformation τ̂t. This pose is enhanced by considering
additional information such as occlusion of current frame.
Now, let’s assume Mt as the model M after applying this
rigid transformation. We improve the pose by aligning now
the points pm of the model Mt with the corresponding pt
points of the current frame, which is done by minimizing
the next point-to-plane cost function:

arg min
Rt,tt

∑
j

ωj

(
(Rtn(j)m )T (Rtp(j)m + tt − p(j)t )

)2
, (15)

where n(j)m is the normal surface of point p(j)m . The weight
ωj encodes the affinity between correspondences based on
their normals, distance and orientation with respect to the
camera. We formulate it as follows:

ωj = c1ω
1
j + c2ω

2
j + c3ω

3
j ,

s.t. c1 + c2 + c3 = 1,

where

ω1
j = exp

(
ang(n

(j)
m , n

(j)
t )

σa1

)
, (16)

ω2
j = exp

(
ang(n

(j)
m , oj)

σa2

)
, (17)

ω3
j = exp

(
L2(p

(j)
m , p

(j)
t )

σa3

)
, (18)

ang(a1, a2) = acos

(
a1 · a2
||a1|| ||a2||

)
. (19)

Eq. 16 measures the angle between the normals of points
p
(j)
m and p(j)t respectively. Eq. 17 considers that the model

itself could occlude some correspondences, which happens
when the normal of the point p(j)m and its orientation with
respect to the camera (i.e. a normal vector centered at p(j)m
pointing to the camera) oj have a large angle. Finally Eq. 18
weights the correspondences according to their distances.

Sometimes it is not possible to find a suitable KF for a
given frame, i.e. the number of matches is not enough. In
this case, we use the last KF-based estimation as a tempo-
ral KF and thus we continue the pose estimation without
interruptions.

We optimize the Eq. 10, 14 and 15 through an ICP
scheme with classic termination criteria, i.e. maximum
number of iteration (10) and mean square error in terms
of translation and rotation. Thus, we obtain the final pose
Pt = {pt, θt}, which corresponds to the nose tip and ori-
entation, respectively, of the model after the transformation
τt = {Rt, tt}.

3.3.2 Key-Frame updating
Our system does not require a to learn all the 50 discretized
orientation in order to be launched, but it benefits the more
KFs there are. Therefore, the online system begins when
it has 20 frames, then new KFs could be added from the
current estimates of our proposal. This is done by checking
the current estimated pose Pt, if the orientation θt does not
have a KF associated in discretized space, we include it in
the set following the considerations of Section 3.2.2. Oth-
erwise we compare the fitness score of current frame with
the closest KF. The score checks the average distance be-
tween the model and point cloud, the number of descriptors
and the feature distance and we keep the one with more de-
scriptors and smaller distance. The optimization described
in Section 3.2.3 is carried out when enough KFs have been
added or modified, i.e. 5 frames. Since this operation is per-
formed in parallel and only when necessary, no additional
time is added to the online estimate.

4 Experimental evaluations
We evaluate our KF-based proposal, Fanelli’s method and
Li’ approach with the variant of the 3D nose feature,
see Section 3.2.1, on two public benchmarks: ICT-3DHP
dataset [29] and BIWI Kinect Head Pose Database [4].
Also, we create a more realistic dataset with complex be-
haviors that challenge these pose estimation frameworks.

4.1 Datasets
BIWI Kinect Head Pose Database [4] is a baseline for

evaluating HPE algorithms. It consists of 24 sequences with
20 persons of different gender, age and facial characteris-
tics. It has over 15K RGB-D images aiming to frame-by-
frame detection and not tracking because there are many
sequences with some missed frames. Each sequence has a
single target rotating him/her head, with a range of±75 and
±60 degrees for yaw and pitch respectively, slowly with a
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Figure 5 Example of the 4 sequences of our dataset. The
images show the 3D point cloud (on the left) and the RGB
image (on the right) for each sequence.

Seq Frames Rot. Range Mean Speed
(degrees) (rad/s)

Seq1 1890 ±60 yaw ±40 pitch 0.94
Seq2 1083 ±80 yaw [+30, -65] pitch 0.83
Seq3 1535 ±80 yaw ±45 pitch 2.3
Seq4 1929 ±80 yaw [+20, -80] pitch 2.51

Table 1 Description of our own head pose sequences.

neutral expression. Head pose annotations are estimated us-
ing a tracking system.

ICT-3DHP Dataset is proposed in [29]. It is divided
into 10 sequences containing about 14k RGB-D frames
with both color and depth images. The targets perform
a similar head motion as in BIWI dataset, but some tar-
gets present facial expressions, self-occlusion (e.g. hair)
and small change of position. The ground-truth is gener-
ated through a Polhemus FASTRAK flock of birds tracker,
which is a commercial system that estimate head pose from
sensors located over a white sport cap.

Our ICU-Head Pose Dataset consists of 4 sequences
each with a unique person, see Fig. 5. The targets have
different facial morphology and features, i.e. glasses, mus-
taches or beards. The sequences are created to test the
performance of HPE algorithms under challenging scenar-
ios. Therefore, targets perform complex behaviors includ-
ing change of head position, large range head orientation,
self-occlusions, fast motion and facial deformation.

We collect the sequences with a Microsoft Kinect v1
under controlled conditions with a resolution of 640 ×
480. The ground-truth is automatically annotated through
a commercial Motion Caption (MoCap) system with a to-
tal of 6 marks (reflective spheres) fixed over a bicycle hel-
met using metallic bars of 10cm, see Fig.6. The MoCap
detects these markers as a rigid object and estimates the
location and orientation of the helmet, and therefore the
target’s head, with high precision.

Each target performs a different set of behaviors with
unique characteristics such as speed. A summary of the se-
quences is presented in Tab. 1. The details of each sequence
are the following: In Seq1 the target performs simple ac-
tions at slow speed. It presents small range over the head

Figure 6 Helmet used for the acquisition of the ground-truth.

orientation with a complexity similar to the public BIWI
and ICT-3DHP datasets. We rate Seq2 as medium diffi-
culty because it presents a large orientation range and fast
motions. Also, the target changes its head position several
times, approaching and moving away to the camera. Seq3
and Seq4 are the most challenging of the whole set. In Seq3
the target performs extreme head orientation and multiple
self-occlusion. Finally, Seq4 depicts fast head movements
in orientation and position. Throughout the article, we show
several examples using our dataset.

4.2 Evaluation criteria
We evaluate the performance of the HPE algorithms
through standard metrics such as Missed Detection, Eu-
ler Angles Error (roll, pitch and yaw) and Mean Angular
Error. A head pose is labeled as missed detection whether
the estimation algorithm does not converge to a solution,
according to the termination criteria, or the proposed pose
has an error of more than 45 degrees. We learn the KFs for
each sequence using the system described in Section 3.2.2
and those frames are not considered in the evaluation step.

We evaluate and report the results of 3 proposals: (1)
Fanelli method [4], using the open source code, (2) an im-
plementation of Li proposal [10] and (3) Li Nose that in-
cludes our nose-based feature in the approach of Li. We
analyze different parts of our proposal separately creating 3
variants, an overview is shown in Tab. 2. Recall that KFv1
is our a basic version, published in [43], which only uses
the SURF descriptors.

We only report the results with respect to the orientation
because an incorrect position estimate is reflected in the
orientation error as well.

4.3 Results
First, we analyze the BIWI dataset, the Fig. 9 reports the
Mean Error in all sequences per proposal and Fig. 8 shows
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Figure 7 Qualitative results. Head pose estimated by 4
different proposals using the same frame.

Table 2 Evaluation of our proposal considering the different
elements.

Variants
Descriptors Global 3D Model Weighted

SURF FPFH optimization Update ICP
(Eq. 10) (Eq. 11) (Eq. 15)

KFv1 YES NO NO NO NO
KFv2 YES NO YES YES NO
kFv3 YES YES YES YES YES

the Missed Detection percentage. The mean error in the Li-
based approaches (red and green columns) is almost the
same but number of missed detection has decreased sub-
stantially when we incorporate the nose feature (green col-
umn). The last three columns (purple and cyan) depict the
results of our proposal. The performance, in both accuracy
and detection rate, is improved after we apply the optimiza-
tion process over the KFs. Also, Tab. 3 reports the results
and compares them against other methods in the state of
the art. Our proposal has the best accuracy in terms of pitch
and yaw meanwhile Venturelli’s approach [26] has a simi-
lar performance for roll. Nevertheless, the variance of our
KFv3 proposal is smaller in all cases, making this approach
more stable.

Similarly, we evaluate the proposals with the ICT-3DHP
dataset and we show the results in Fig. 10 and 11. The
mean error is almost the same for both Li approach and
KFv1 proposal, but we can observe that the optimized ap-
proach KFv3 is more accurate with a missed detection rate
of less than 0.5%. We compare our results with other ap-
proaches in Tab. 4. KFv3 method gives the best results, with
a smaller variance of all the techniques, meaning it is more
stable.

Fig. 12-13 and Tab. 5 show the results using our dataset.
Fanelli approach has the biggest error, Li-based proposals
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Figure 8 Mean of the results on the BIWI dataset. Percentage
of missed detections.

have a similar Mean Error around 8◦ and KF-based ap-
proaches have the smallest error. By observing Fig. 12, we
point out a great improvement with respect to missed de-
tection because our KF-based approach handles better fast
motions and occlusions. In Fig. 7 we see a qualitative ex-
ample for Seq3 where, for a given frame, we estimate the
pose depicted with a blue line and the 3D template model
in green. We observe that Fanelli and Li have limitations
detecting the pose meanwhile our approach can detect a
sufficient part of the face to infer a correct pose.

From all the results, we observe that Fanelli’s approach
has the bigger error in most of the cases. This is because
it is difficult to find the point of the nose when the face is
in full profile, which makes the nose barely distinguishable.
A better training could improve this aspect but that requires
more pre-processing.

In general, Li’s basic approach has a better performance
than Fanelli’s, but in our dataset Li’s proposal has prob-
lem detecting the pose. Fig. 14 shows more detailed re-
sults of each sequence. We can observe how sequences 1
and 2 have a performance similar to those of the previ-
ous public datasets, nonetheless in sequences 3 and 4 the
missed detection rate of Li is higher than the rest. These
sequences present fast motion with both targets wearing
glasses, therefore the images are blurred and, in some oc-
casions, the light is reflected in the glasses. This makes it
difficult for the 2D face landmark detector to find the eyes,
forcing Li’s proposal to use ICP without any additional in-
formation. If we compare the red and green column, we
observe an improvement, meaning that the addition of the
3D nose feature overcomes the aforementioned problems.

In Figs. 15 and 16 we analyze the results in terms of
missed detection. These Figs. are 2D histograms of the dis-
cretized orientation for pitch and yaw. When a frame is la-
beled as missed detection, we use the ground-truth and in-
crease a counter of the corresponding pose. The histograms
are normalized considering the number of frames, so each
cell (for a specific orientation) depicts the percentage of
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Figure 9 Mean of the results on the BIWI dataset. Mean orientation error (in degrees).

Method Yaw Pitch Roll Mean
Fanelli et al. [4] (*) 9.3 ±8.8 7.4 ± 8.1 8.5 ± 9.9 8.40 ± 8.93
Li et al.[10](*) 5.5± 4.6 3.7 ± 5.9 4.77 ± 5.2 4.66 ± 5.23
Li Nose (*) 5.3± 3.5 3.6 ± 5.5 4.66 ± 4.9 4.52 ± 4.63
Saeed et al. [27] (+) 3.9±4.2 5.0 ± 5.8 4.3 ± 4.6 4.4 ± 4.9
Baltrušaitis et al.[29](+) 14.80 12.03 23.26 16.69
Venturelli et al. [26] (+) 2.8±3.3 2.3±2.7 2.1 ± 2.2 2.4 ± 2.73
Yang et al. [28] (+) 8.9±8.2 9.1±7.4 7.4 ± 4.9 8.5 ± 6.9
Papazov et al. [12] (+) 3.0±9.6 2.5±7.4 3.8±16.0 4.0 ± 11.0
Ahn et al. [24] (+) 2.8 ± 2.4 3.4±2.9 2.6 ± 2.5 2.9 ± 2.6
Yu et al. [9] 2.54 1.45 2.10 2.03±3.0
KFv1 4.3 ± 2.8 2.8± 2.9 4.15 ± 3.19 3.91 ± 3.19
KFv2 3.21 ± 1.4 2.5± 1.5 2.75 ± 2.77 2.82 ± 2.08
KFv3 2.28 ± 1.7 2.12± 1.17 2.1 ± 1.46 2.18 ± 1.44

Table 3 Results on BIWI dataset in Euler angles. (*) Estimation that we calculated. (+) Results taken from author’s papers.
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Figure 10 Mean of the results on the ICT dataset. Percentage
of missed detections.

missed detections. The histogram center, highlighted with
the green and blue arrows, represents a target in frontal
view (looking to the camera). Following over x axis means
the head is moving from left to right (blue arrow) or from
up to down with the y axis. In Fig. 15 we report the results
of sequence 14 of BIWI dataset where we can observe how
Fanelli’s proposal (left image) cannot detect well a pose
at full profile. In other words, it has problems to handle
a target looking up on the right. The rest of the proposals

(Li, Li with nose feature and KFv3) perform well in this
sequence. Fig. 16 shows other case but with BIWI dataset
using the sequence 24. Both approaches based on Li (first
two images at the left) do not detect well the head when it
is looking a little to the upper right corner. The third figure
shows the results with our KF-based method without op-
timization (KFv1). Most of the undetected frames happen
when the target is looking upward. On the contrary, this
does not happen with the KFv3 because it improves the de-
tection rate in that orientation.

The previous results show how our approach improves
the HPE performance under challenging scenarios. In some
cases, other proposals provide a little more accurate result,
but in all cases the KF-based approach is more stable, it
does not require a specific architecture (i.e. GPUs) with
a reasonable computation time. This makes the approach
more reliable and robust.

4.4 Discussion
Our learning step uses the output of two state-of-the-art
HPE methods, e.g. Fanelli and Li, but several proposals in
Tables 3 and 4 outperform them. The intuitive question is
why we privilege those instead of more accurate proposals.
This can be answered by observing Tab. 6 that summaries
some features of the most relevant approaches. The propos-
als of Ahn, Saeed and Venturelli [24, 27, 26] are more ac-
curate and faster, but they require the use a GPU card. This
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Figure 11 Mean of the results on the ICT dataset. Mean orientation error (in degrees).

Method Yaw Pitch Roll Mean
Fanelli et al. [4] (*) 10.80 ± 7.8 14.83 ± 9.4 7.03 ± 8.5 10.89 ± 8.1
Li et al.[10](*) 8.3 ± 8.0 5.44 ± 4.3 4.71 ± 5.2 6.15 ± 5.85
Li Nose (*) 8.31 ± 7.3 5.10 ± 5.2 4.74 ± 5.4 6.05 ± 5.92
Saeed et al. [27] (+) 5.1 ± 5.4 4.9 ± 5.3 4.4 ± 4.6 4.8 ± 5.1
Baltrušaitis et al. [29](+) 6.9 7.06 10.48 8.15
Venturelli et al. [26] (+) 9.8±10.1 4.5±4.6 4.4±4.5 6.23 ± 6.4
KFv1 8.13 ± 8.7 6.01 ± 5.8 5.93 ± 5.2 6.69 ± 6.49
KFv2 5.40 ± 6.4 4.74 ± 4.1 5.09 ± 5.7 5.07 ± 5.44
KFv3 4.19 ± 4.8 3.88 ± 4.2 4.33 ± 4.9 4.14 ± 4.47

Table 4 Results on ICT-3DHP dataset in Euler angles. (*) Estimation that we calculated. (+) Results taken from author’s papers.
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Figure 12 Mean of the results on the ICU dataset.
Percentage of missed detections.

makes them more expensive and complex to use in embed-
ded systems. The other proposals, e.g. [12, 28, 9], require
more computational time with high variance in their esti-
mate, i.e. [12] has a variance of 16 and 9.6 degrees for yaw
and pitch respectively.

Our proposal has a computational cost of≈ 10 fps, which
is reasonable for most applications. One characteristic is
that most of our proposal is highly parallelized, so we can
improve calculation times if necessary.

When comparing the results of each dataset, we observe
that in the simplest sequences our proposal obtains results
with equivalent precision. Also, the results with the most
complex sequences (i.e. ICU dataset) show that our pro-
posal has a better performance both in accuracy and missed
detection percentage.

If we compare the three versions of KF, we observe how
the versions with global optimization (KFv2 and KFv3),
described in the Section 3.2.3, improves the stability of the
performance in comparison with the KFv1. The accuracy is
further improved in KFv3 by including: (1) the descriptor
distance as weighting factors in the optimization process
and (2) an adaptive model to the target’s face.

We give a qualitative evaluation of the tested methods
in Tab. 7, based on our personal experience. Here we grade
them according to our impression in each aspect as follows:
(+) low, (++) good and (+++) excellent.

As show in the first row, Li does not handle well fast
motions. In this case, blurry images affect directly two
appearance-based aspects of the proposal: the 2D (eye)
landmark detector and the Color-based k-means, which re-
move no-face correspondences of the ICP algorithm. This
makes it unstable in fast situation and therefore it gives a
low detection rate. In the other hand, it can detect poses in
a wide range of orientations with a good precision.

Li’s proposal improves when more features are available.
The inclusion of the nose feature enhances the accuracy of
the estimations and reduce the missed detection rate. This
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Figure 13 Mean of the results on the ICU dataset. Mean orientation error (in degrees).

Method Yaw Pitch Roll Mean
Fanelli et al. [4] (*) 16.19± 8.5 8.02 ± 4.6 18.29 ± 12.1 14.17 ± 8.4
Li et al. [10](*) 6.21± 6.9 4.65 ± 2.6 13.59 ± 6.7 8.15 ± 5.4
Li Nose (*) 6.23 ± 6.6 4.31 ± 2.1 12.20 ± 4.8 7.58 ± 4.5
KFv1 6.23± 6.1 4.02± 2.66 9.48± 8.47 6.58± 6.2
Kfv2 6.17± 5.5 3.83 ± 1.9 9.08 ± 4.1 6.36 ± 3.8
KFv3 4.08± 4.6 3.88± 2.1 3.74± 3.6 3.90 ± 3.5

Table 5 Results on ICU dataset in Euler angles. (*) Estimation that we calculated.

Method Time Architecture
(ms per frame)

Kazemi et al. [6](*) 12.0 ± 1 CPU
Fanelli et al. [4](*) 20.1 ± 2 CPU
Li et al. [10](*) 62.4 ± 5 CPU
Li Nose(*) 64.2 ± 5 CPU
KFv3 (*) 89.9 ± 10 CPU
Papazov et al. [12](+) 122 CPU
Yang et al. [28](+) ∼ 100 CPU
Yu et al. [9](+) ∼ 250 CPU
Ahn et al. [24](+) 0.98 GPU
Venturelli et al. [26](+) 10 GPU
Saeed et al. [27](+) > 45 GPU

Table 6 Evaluation of computational cost of each pose proposals.
(*) Time that we calculated. (+) Results taken from author’ papers.

is because the 3D feature is based on depth information,
which is not much affected by blurry images. In general, the
orientation range and accuracy are better than the classic
implementation but still needs more improvement.

Fanelli’s approach deals better with fast motions because
depth information is not distorted by movement. In con-
trast, it has a more restricted detection range due to the nose
tip, the key element of Fanelli method, is undistinguished at
images of full profile. In other words, there is not enough
evidence to distinguish the nose tip from the edge of the
face. The rest of the time, it has no problem detecting a
pose in short time and this is why Li used this method to
initialize its proposal. Nevertheless, the accuracy of the re-
sults is low.

In most of the fast motions, our proposal could find
enough features to estimate the pose. Also, it estimates the

Method Fast Orient. Detection Precision
motion range rate

Li et al. [10] + ++ + ++
Li Nose ++ ++ ++ ++
Fanelli et al. [4] +++ + +++ +
KFv3 ++ +++ +++ ++

Table 7 Evaluation summary of each head pose estimator.

pose even with targets at full profile (i.e. looking to the left
of right) with an excellent orientation range. From these
two aspects, it has less problems detecting the target most
of the time with competitive results to those in the state of
the art.

From the results, we observe how the use of KF-based
approach improves the estimation, and those are enhanced
by applying the global optimization process. The inclusion
of the descriptor weights (KFv3) helps to estimate more ro-
bustly the pose because it reduces the importance of weak
correspondences, which may not be good match (great dis-
tance between descriptors), and prioritizes strong matches.

5 Conclusion and future work
This paper has presented a framework for HPE based on
Key-Frames, which includes information of appearance,
shape head pose hypothesis. This includes an original of-
fline learning proposal consists of two stages: (1) an auto-
matic KF learning step and (2) an original post-processing
step that minimize globally the error between KFs and the
3D face model, enhancing the accuracy and consistency of
the KF set. We evaluated this person specific approach in
two public benchmarks and we have shown that the use of
the KF provides robust estimates for a wide range of ori-
entations in reasonable time. Also, we presented a more
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Figure 14 Results of ICU sequences using: (blue) Fanelli, (red) Li simple approach, (green) Li proposal including of nose detection
heuristic, and (purple) our descriptor-based method without and with optimization (cyan). The first row shows the mean angular error
and the second the missed detection. For clarity, each graphic only shows two sequences.

challenging dataset with complex behaviors that includes
self-occlusions, fast motion, change of the head position
and extreme head orientation. The results in this dataset
showed that our approach can estimate a pose even in com-
plex situations, contrarily to other approaches. At the same
time, we have shown that our proposal is more stable than
others and with a gain in precision as the complexity of the
datasets increases.

We have compared against several works and considered
classic benchmarks datasets. Regarding the benchmarked
datasets, the results have shown how the KF-based ap-
proach, learned from weaker estimation algorithms, pro-
vides good performance and how those are enhanced after
optimization. Furthermore, our approach maintains a com-
petitive CPU cost with respect to other applications.

A natural investigation track is to relax the offline stage
(to leave a mostly online system) by learning only a couple
of KFs of the target, with neutral pose and looking into the
camera direction. Then, we perform our pose estimation al-
gorithm where we learn more KFs as soon as new estimates
are available. The set of KF is updated as described in Sec-
tion 3.3.2.
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Authors’ contributions
All authors participate in the work described in this paper and have read and
approved the final manuscript.

Author details
1CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France.
2Univ. de Toulouse, UPS, LAAS, , , F-31400 Toulouse, France.

References
1. Sheikhi, S., Odobez, J.-M.: Combining dynamic head pose–gaze

mapping with the robot conversational state for attention recognition in
human–robot interactions. Pattern Recognition Letters 66, 81–90
(2015). Pattern Recognition in Human Computer Interaction

2. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation and
augmented reality tracking: An integrated system and evaluation for
monitoring driver awareness. IEEE Transactions on Intelligent
Transportation Systems 11(2), 300–311 (2010)



Madrigal and Lerasle Page 17 of 18

Figure 15 2D Histogram of the missed detection distribution on sequence BIWI 14. Results using: (a) Fanelli, (b) Li approach, (c) Li
proposal including of nose detection heuristic, and (d) our descriptor-based method, KFv3.

Figure 16 2D Histogram of the missed detection distribution on sequence BIWI 24. Results using: (a) Li approach, (b) Li proposal
including of nose detection heuristic, and (c) our KF-based method without optimization (KFv1) and (d) our KFv3 proposals.

3. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for
augmented reality: A hands-on survey. IEEE Transactions on
Visualization and Computer Graphics 22(12), 2633–2651 (2016)

4. Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random
forests for real time 3d face analysis. Int. J. Comput. Vision, 437–458
(2013)

5. Tawari, A., Martin, S., Trivedi, M.M.: Continuous head movement
estimator for driver assistance: Issues, algorithms, and on-road
evaluations. IEEE Transactions on Intelligent Transportation Systems
15(2), 818–830 (2014)

6. Kazemi, V., Sullivan, J.: One millisecond face alignment with an
ensemble of regression trees. In: Conf. on Computer Vision and
Pattern Recognition, pp. 1867–1874 (2014)

7. Barros, J.M., Mirbach, B., Garcia, F., Varanasi, K., Stricker, D.: Fusion
of keypoint tracking and facial landmark detection for real-time head
pose estimation. In: 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), vol. 00, pp. 2028–2037 (2018).
doi:10.1109/WACV.2018.00224.
doi.ieeecomputersociety.org/10.1109/WACV.2018.00224

8. Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye
location information for gaze estimation. IEEE Transactions on Image
Processing 21(2), 802–815 (2012)

9. Yu, Y., Mora, K.F., Odobez, J.M.: Headfusion: 360◦ head pose tracking
combining 3d morphable model and 3d reconstruction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1–1 (2018).
doi:10.1109/TPAMI.2018.2841403

10. Li, S., Ngan, K.N., Paramesran, R., Sheng, L.: Real-time head pose
tracking with online face template reconstruction. IEEE Trans. on
Pattern Analysis and Machine Intelligence 38(9), 1922–1928 (2016)
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