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Abstract

This article describes visual functions dedicated to the
extraction and recognition of visual landmarks, here
planar quadrangles detected from a single camera. The
extraction of these landmarks is based on a relaxation
scheme, used to verify constraints between image seg-
ments. Once extracted, such a landmark must be char-
acterized by invariant attributes, and then recognized
from any viewpoint, distance and orientation. The
landmark is represented by an icon of fixed size, built
using the homography between the current viewpoint
and an invariable one. A landmark which is detected
again, is recognized, relying on distances between icons:
either a classical correlation score or the Hausdorff dis-
tance between sets of interest points extracted from
the icons. An evaluation on actual and synthetic im-
ages, shows how invariant and discriminating, is our
landmark representation, and allows to select the best
distance for the recognition procedure. Results issued
from experimentations of a mobile robot navigating in-
door are finally presented.

1 Introduction

This paper presents visual functions integrated on a
mobile robot equipped with a single camera, to extract,
characterize and recognize landmarks while navigating
indoor. For visual navigation, many strategies have
already been proposed, based among others, either on
the environment representation by an image data base,
and indexation methods [5], or on landmarks, detected
by the robot during a learning step, and recognized
during the execution of a navigation task [6]. For in-
door scenes, these landmarks could be simple features
(vertical lines, interet points, vanishing points) or some
characteristic objects, like doors, furnitures, posters. . .

Previous works [1, 2] have been devoted to our dif-
ferent strategies to deal with robot navigation. Land-
marks detection was limited to quadrangular and pla-
nar posters lying on the lateral walls. This pa-
per describes a more generic method suitable to de-
tect and recognize visual landmarks not limited to
such vertically-oriented quadrangles: neons on ceiling,
groundsheet, doors, posters in any orientation and pos-
sibly partially occluded. The detection is based on
a relaxation scheme to match image segments corre-
sponding to landmarks boundaries. Fach discovered
landmark is characterized by an intrinsic representa-
tion, a fixed-size icon invariant with respect to illumi-
nation, scale changes and small occlusions. When it
is perceived again from any viewpoint, this same icon
will be built and compared to the ones learnt for ev-
ery known landmark. Several distances are proposed
to make more robust this recognition step.

This paper focuses only on the visual functions, deal-
ing only with the extraction and the recognition of
visual landmarks, without considering explicit local-
ization, which could be required for several naviga-
tion strategies. Using only qualitative information, our
method can be performed with an uncalibrated and ac-
tive camera. Sections 2 and 3 detail respectively the de-
tection and the recognition procedures. In section 4, a
systematic evaluation of our recognition method, with
respect to different criteria, shows how robust is this
method, especially when variable light, scale and view-
point conditions are considered. Experimental results
from images acquired by a robot navigating indoor, are
commented in section 5. Finally, section 6 sums up our
approach and opens a discussion for our future works.



2 Landmarks detection

2.1 Overview of the method

The visual landmark extraction is focused on pla-
nar, mostly quadrangular objects (e.g. doors, windows,
posters, cupboard,...). A natural way of extracting
quadrilaterons has been selected, relying upon percep-
tual grouping on edges segments. QOur approach re-
quires an image segmentation in edge segments. Con-
straints at different levels of features complexity are
then taken into account to label the segments . =
{li}1<i<n, on the classes £ U {0}. Figure 1 sums up
all this process on a simplified way.
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Figure 1: Edge grouping for landmarks detection

Sequential application of constraints between single
segments I, noted Uy allows to filter the extracted seg-
ment set .Z. Constraints, between couples (Ix, 1)k,
noted By, are then applied through a first relaxation
scheme in order to define an initial set of couples of
segments matchings. For the remaining matchings be-
tween segment couples, three-segment sets (resp. four-
segment, sets) are generated from last types of con-
straints noted Ty, (resp. Qkimn). Finally, a second
relaxation process based in particular on spatial config-
urations for one or two four-segments sets are proposed
to select quadrangles corresponding to potential land-
marks. Note that we do not deal only with quadrangles
but with three-segment sets, that may also be a par-
tially occluded door or quadrangle.

All these constraints, specified in sections 2.3
from 2.5, are applied through a continuous relaxation
scheme depicted here after.

2.2 Relaxation formulation

Like Hummel in [3], we define a probability pg; € [0,1]
for the event ey; corresponding to the association be-
tween image segments k and [, given By;. This formu-
lation can be transposed afterwards to other entities,
for example couples of segments given Qximn-

pr; = 1 if k is unambiguously associated with [, 0
if it is not the case. The relaxation process consists in
making the ambiguous matchings (px; € [0,1]) evolve
towards 0 or 1. The n x n matrix A such as Ay =
pri = Pler/By;) and & the space defined as:

o ={A€R"™ xR | V(k,1) Ay > 0et Vk Y Ay =1}
1

The iterative relaxation algorithm maximizes the
global consistency score G(A) using gradient ascent in
the & space:

G(A) = Z Tkimn-Akl-Amn

kimn

where the rg;,,,, represents the compatibility degree
between associations (k,l) and (m,n). In opposition
to [3], the gradient step o' at iteration 7 is adaptative
and defined by: of = arg min G(A' — a.VGY)

Regarding the relaxation process initialization, con-
fidence measures sy; for the event e;; based on By, are
computed. For measures inferior to a certain threshold
Smaz, we have p}, = 0. For the others:

p(o) _ Skl
kl E Skn

N/Skn>Smaxz

2.3 Constraints on single segment

This first class of constraints Uy filter the initial seg-
ment set . issued from the edge segmentation. The
vector Uy, for a given segment k is composed on: |l
(resp. O;) the length (resp. the orientation) in the im-
age, uly the local unicity which is a flag indicating its
conservation or not for the next step. Typically, seg-
ments corresponding to the floor tiling will be labelled
(by a accumulator technique) and so eliminated.

We have introduced a very simple but quite effec-
tive heuristic that reduces computer time by limiting
the initial number of segments to be managed. From
the estimation of the position of the robot, an expected
average length of the segments corresponding to the
landmarks edges, can be computed. This value is se-
lected as the minimum segment lenght, with a confi-
dence margin of 20% .



2.4 Constraints on segment couples

Segment couples corresponding to potential landmarks
are formed according to geometric and luminance con-
sistency criteria.
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Figure 2: Geometric criteria for segments couples

With the notations in figure 2, the geometric criteria
expressed by the vector By, are as follows:

e the segments length ratio %(% |‘ll ” || );

e the overlapping rate in the segment orientation;

e the angular difference |6;, — 6,

[l |11k hkm+hmk)‘

hem~+homk [lm [+ [0k ]

o athird segment in the neighbourhood that forms a
polygonal convex chain (three-segments set) with
the given couple.

m |7

e a shape criteria 3 (

For the luminance criteria, an average grey-level pro-
file is computed in the direction orthogonal to each ex-
tracted segment l;. For each association (lg,l.,), we
can deduce a photogrammetric similarity score result-
ing from correlation between these profiles. All these
criteria are taken into account in the computation of

the elements p,(g) .

2.5 Constraints between two segments
couples

Uniqueness and convex rules are checked for the po-
tential segments couples matchings. Uniqueness con-
straint allows to reduce the relaxation algorithm com-
plexity. Convexity rule says that two segments couples
define two quadrangles which must verify rules of full
inclusion or no intersection.

The entities Qgimn and rmy correspond to the veri-
fication of these two constraints. The entities T}, use-
ful in the heuristic for three-segments sets are based on
the same criteria.

3 Landmarks recognition

Once landmarks are detected, landmark models must
be built in order to deal with their recognition from

different viewpoints. At first, the boundaries of a de-
tected quadrangular landmark allow to rectify the ob-
served pattern. Using such a mapping for recognition
provides an invariant representation under scale and
perspective changes.

To perform recognition, the simplest methods could
be based on correlation between these icons. In the sec-
tion 4, a correlation-based method is compared with an
approach based on interest points extracted from the
icons. At first, we describe hereafter how appearance
models of landmarks are learnt and compared.

3.1 Landmark iconification

Let us consider, (1) an extracted quadrangular land-
mark @ = {P;}1<i<4 from an image I, and (2) a fixed-
size square S, corresponding to a s X s picture (s typi-
cally equal to 75), at lower scale than in image I. The
four matchings between the S and I corners, allow to
define an homography Hsg mapping points from S to
Q. Using Hsg, a new small-sized image I’ is built from
the image I by averaging pixels from [ into the pixels
in I'. This process is illustrated on figure 3-(a). To
handle perspective distortions, averaging is done in or-
der to avoid too much information compression in the
low-scale front view I' approximated from the view I.
If we consider a pixel (a,b) in image I', its grey level
value is determined by taking into account all the pix-
els in image I belonging to a certain neighbourhood of
Hsg(a,b,1)T, its image in I. This neighbourhood is
computed by approximating with simple heuristics the
image of a pixel square, i.e. a certain quadrilateron
(figure 3-(b)).

This icon I' is processed by the Harris operator to
get a set of n interest points {P;}1<i<n. A local de-
scriptor [8] in R”, based on Gaussian derivatives is then
associated to every point.

Image | (zoomed)

Homography Hso Image!’ (zoomed)
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Figure 3: (a) landmark model construction, (b) aver-
aging invariant with respect to perspective distortions

3.2 Distance between landmark models

To perform recognition between a set of N learnt land-
marks noted {C;}i<;<n and a detected landmark Q,




Figure 4: Icon divided in buckets

we must define for each Cj, a distance noted 9, =
2(9,C)). From the icons built for the C; and Q land-
marks, the classical centered and normalized correla-
tion score noted €7, provides a distance invariant to
overall light changes. However two drawbacks arise:
first, the lack of compactness of the data to be stored,
as we would need to memorize the icons for each learnt
landmark Cj, and, second, the difficulty to handle par-
tial occlusions, or local light effects.

Using the ZNCC score makes this distance more ro-
bust against the illumination changes. To be less sen-
sitive to local variations or occlusions, the correlation
score between two icons Q and C, is based on the sep-
arated correlations C;;(Q, C;) between buckets ¢ et j
(1 <i,5 < np, typically ng = 5, figure 4). A robust
correlation score is provided using the k*" greatest cor-
relation score between buckets, k selected to ignore the
more important local differences between Q and Cj,

(gf(Q, Cl) =1- kihgi,jgmg Cz'j(Qa Cl)

Another popular appearance-based method [8] for
object recognition, is based on interest points matched
thanks to their local descriptors; the remarkable be-
havior of the Harris operator as far as scale, rotation
or light changes are concerned, has been proven in [9].

Here, the partial Hausdorff distance, introduced by
Huttenlocher[4], is used to compare sets of interest
points. Let be two sets of points S; = {P'}1<i<n,
extracted from a learnt landmark Cj;, and S =
{P;}1<j<n, extracted from a detected landmark Q.
The Hausdorff distance between S; and S is defined
from a distance d between points:

{ dh(Sl,S) :maX(h(Sl,S),h(S, Sl))

h(Sl, S) = maxi<i<n minlSan d(le, Pj)

A natural way of avoiding outliers, consists in re-
laxing this definition, taking the k" greatest minimum
distance or, equivalently, a fraction r of min(n;,n), to

define:

d;(Sl, S) = max(h" (S}, S), h"(S,S]))
h"(S;,S) = kf}le miny <;j<n d(Pila Pj)
k = r.min(n;,n)

A threshold 7 on the computed distance must be
selected to recognize the current landmark Q. Phys-
ically speaking, an object is recognized provided that
we can find a matched point in the first set for at least
k points in the second, and vice versa. From this def-
inition, we see that we can stop computation as soon
as min(n;,n) — k outliers have been detected, so recog-
nition tests can be performed in relatively short time.

The Hausdorff partial distance between two sets of
points, depends on the d distance. Comparing only the
spatial configuration of the interest points in the com-
pared icons, the euclidian distance ds could be used
between two points a and b:ds(a,b) = ||a — b||> . Com-
paring only photogrammetric attributes expressed on
each point by the local descriptors, the Mahalanobis
distance d, could be proposed. In order to take into
account both spatial and photogrammetric similarities
between points, these two distances are combined to
define a distance noted d,:d,(a,b) = d,(a,b).d2(a,b).

The Hausdorff distance based on the simple eu-
clidean distance ds, will be noted %f ; the one based
on the composite distance d, will be noted jf;,f .

3.3 Learning appearance models

The learning step is performed for each landmark (i,
from a set of N; representative images I; (typically 50
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Figure 5: (a) Some icons generated for a landmark (b)
the three more representative icons



images) from which iconified views I] are extracted.
From these icons, stable interest points must be ex-
tracted, and knowing all landmark models, an optimal
recognition threshold could be learnt.

3.3.1 Learning landmark representation

For the distance %7, a Principal Component Analysis
on the raw data extracted from each landmark allows
to keep only the three most representative icons I} built
from the landmark images (figure 5), noted Q}, 97, O3:
Qll corresponds to the mean icon from I/,1 < i < Nj;
0? and Q} correspond to the more significative varia-
tions on this icon set.

For the distances %@f and e%’;,f , interest points
could be extracted from these three icons, but another
method, based on a clustering technic, has been pre-
ferred in order to keep only the more salient points
amongst all the icons I;. The figure 6 presents the his-
tograms of the interest point positions extracted from
all the icons shown on figure 5(a); the local extrema ex-
tracted from this histogram, provide the more invariant
interest points.

Figure 6: Clusters of the interest points.

3.3.2 Learning recognition thresholds

During the recognition step, a detected landmark will
be successively compared to each learnt landmark C,
using a recognition threshold 7. During the learn-
ing step, the distances between all C; models and all
the other models noted —Cj, are computed, using the
distances ¢/, 4 or Jf. Let us note p(d|C;) and
p(d|~C}), the probability densities. These probabili-
ties are approximated by their corresponding distance

distributions (figure 9).
Given a threshold 7, we aim to minimize the sum:

T “+o0
S(r) = A /Op(d\c—'l)dd [ pdcad
—_—— — ™
Si(7) ~Si(7)

(1)

with A and p two weights respectively for the false
positive and false negative decisions, noted —.5;(7) and
S;(7) in figure 7. For our application, we fix u = ;A to
enforce the security in the robot navigation. From this

r(d|C)

Figure 7: Confusion area for threshold determination

assumption and relation (1), the two graphs presented
on figure 8, show the function S(7) and the estimated
thresholds for distances ¢/ and .

3 o

Figure 8: Graphs S(7) for thresholds determination

3.3.3 Learning validation

For every landmark Cj, the learning step ends with
a verification of two criteria: (1) C; must be salient
enough, and (2) the N, learning images I; from which
the C; appearance model has been generated, must give
a good approximation of all possible viewpoints on Cj.

The saliency criterion to be satisfied, is verified
from the covariance of the iconified views I' and from
the number of stable interest points extracted from I'.

The visibility criterion indicates how far from each
other are the extreme positions at which the landmark
is seen. For all the couples (i,j) € [1,N;]%, an inter-
image homography H% allows to map the vertices of
the landmark in image I; to its corresponding vertices
in image I;. Let us consider the normalized homogra-
phy H% such as Hi} = 1. Then we define the visibility
confidence by: v, = maz;;|HY — I||.

I is the identity matrix. The greater is v., the more
extended is the area on which the landmark has been
perceived during the learning step.

3.4 Confidence in the recognition result

The recognition task requires the robot to index and
compare the detected visual landmarks during its nav-



igation task. For a set of N learnt landmarks (classes)
noted {C;}1<i<n and a detected landmark Q, we can
define for each class Cj, a distance noted 2, = 2(Q, C})
and an a priori probability P(C;|Q) of labeling to Ci:

P(Cy|Q) = 1 and VI P(C;|Q) = 0 when VI 7 > 7
P(Cn|Q) =1 and VI # m P(C;|Q) = 0 when 3'm P, < 7

P(Cg|Q) = 0 and VI P(C;|Q) = —{r=21)

= m otherwise
D
p

with Cy refers the empty class and h the Heavi-
side function: h(zx) = 1 if > 0, 0 otherwise. Leray
in [7] proposed an entropy based measure in order to
minimize the probabilities on the losing classes:

1

me(Q,{Cl}) =1+ N+1

> _(Ci|Q)log P(Ci|Q)

P

The learning step, considering for each landmark,
a set of representative images, makes possible also a
bootstrapping method to estimate a variance on the
a posteriori probabilities. Considering only the three
representative Q] icons with j =1 < j < 3, a second
confidence measure, related to the learning quality, can
be computed by:

3
my(Q, ¢ = 2L Q)
2(0, Q)

with 7.7 corresponding to the minimum and median
of Q] with 1 <j <3 (§3.3.1).

Finally, a global confidence measure on the recogni-
tion task, taking into account the learning quality, is
given by:

m(Q,{Ci}) = me(Q,{Ci}).my(Q, C1)

4 Method evaluation

An important issue we must care about our recognition
process is the way the algorithm behaves with light ef-
fects (classic in indoor environment), scale/perspective
changes and bad warping from the detection step. Es-
pecially, does our landmark representation is stable
enough? Other questions are relative to the discrimi-
nating power, especially with partial occlusions of land-
mark areas. To investigate this robustness problem, a
test image database is both constituted by:

1. real images of different landmarks Q,, acquired
while the robot wandered around the lab.

2. synthetic images of 300 movie posters Q',, with dif-
ferent light, scale/perspective conditions and oc-
clusions, these modalities remaining quite difficult
to perform and quantify in real conditions.

4.1 Discriminating power

First, the representation discriminating power is ana-
lyzed through the distribution of the distances we get
between a given landmark and other ones from the
database Q,. A poster we find in this database has
been selected and learned as a landmark, and figure 9
now represents the distributions of the distance values
we get (a) for the objects corresponding to this learned
landmark (class C;) and (b) for the objects not corre-
sponding to it (class —C)).

Probability density

DDDDDDDD

Figure 9: Distances distribution on C; U ~C) (Q,,) for:
(a) distance %', (b) distance

We note that classes are well separated even if the
separability is partial, especially for distance %f for
which the confusion area is more important. This dis-
tance has been neglected during the remainder of the
evaluation. Moreover, these distances distribution can
be approximated by a Gaussian function, which center
and variance depends on the Hausdorff fraction and on
the sets cardinals.

4.2 Behavior under view point change

The graphs in figure 10 represent the evolution under
scale change of the ratio [Z51nce for the distances 67
and %’;,f . For a scale factor about 3, the values for the
two remain small comparatively to the thresholds 7.
and 7, defined in § 3.3.2 and so scale changes do not
really affect recognition results. Moreover and as ex-
pected, results are deteriorated as soon as the pattern
apparent size is below the size of the square we use for
representation, i.e. 75.

As far as perspective distortions are concerned, we
have studied the evolution of the ratio % for the
distances €/ and j@f when performing a planar ro-
tation in the horizontal plane of a quadrangular land-
mark. The results (not illustrated here) show that the
combination of invariants vectors and interest points is
a powerful tool to achieve recognition of planar objects,
as distances remain reliable up to +75°, a situation
that may occur in corridor-like environments.
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4.3 Behavior under light effects and
partial occlusions

The two graphs in figure 11 show that it is possible
to have good recognition results for distances ¢/ and
,%ﬂpf until local or global light saturations appear in the
image.
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Global illumination coefr. Global illumination coefr.

Figure 11: Variations and standard deviation of the
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Other studies concern the robustness to the partial
occlusions because partially detected landmarks com-
pose the majority of detected landmarks in indoor en-

: : distance
vironment. The aspect of the ratio 2% for the

distances %’ and # when performing partial oc-
clusions is close to one of figure 11. These partial oc-
clusions are quantified by the percentage po of the oc-
clused surface in the two bottom graphs in figure 11.
We have noted that we can consider partial occlusions
of the landmark up to 46%, 51% and 56% of its area
(maximum of pp), respectively for distance €7, %”Qf ,
.

4.4 Discussion

These robustness performances have been verified dur-
ing robot navigation task. From all these experiments,
we finally conclude that each of the two landmark rep-
resentations and associated distances ¢/ and ,%’;f for
recognition task are robust with respect to the view-

ing conditions changes. This behavior can be extended
to scale change and perspective distortion. Moreover
the behavior under partial occlusions of the two met-
rics is quite interesting. All these characteristics prove
that our approach seems to be suitable for mobile robot
navigation in variable environment.

We have noted in § 4.1 that distances ¢/ and .

are more discriminant than distance %”Qf . Beside the
well-known partial correlation technique, distance %’;f
gives some advantages in terms of information compac-
ity since it guarantuees the same robustness. An other
key that makes this distance more practice is that this
representation is adapted to landmark pose refinement
from interest points matchings. In this way, recogni-
tion process embelled on the mobile robot is carried
out using this last representation.

5 Mobile robot navigation

Experiments in a large images database of variable en-
vironments have been realized: the environment can be
either a corridor network or environment with complex
background. The robot is a Nomadic X R400, equipped
with a SICK laser range finder, two belts of ultrasonic
sensors and a CCD camera mounted on a pan and tilt
platform. Figure 12 shows examples of landmarks de-
tection in an office-like environment represented in fig-
ure 13 by laser SICK data. Detected landmarks do not
necessarily correspond to physically distinct objects.

All the detected landmarks have been super-
imposed on the figure: windows or posters in red color
(lateral walls or ceiling), neons in blue color (noted Ne),
doors represented by a grey icon.

During its navigation task, where the robot stopped
to perform detection and recognition procedures, it is
able to achieve these tasks dynamically. The detec-
tion rates are computed over the images database 9,
taken by the robot in the office environment. On this
database, landmarks detection rates are 88% in the cor-
ridors and 89% in the open spaces. Only detected land-
marks which are detected from different view points
(§ 4) are considered for the environment modeling.

6 Conclusion

We have presented an original framework for the use
of visual landmarks. A first contribution concerns the
method proposed for extracting landmarks: a relax-
ation scheme allows us to extract potential quadran-
gles from the set of segments extracted from a single
image. These quadrangles can correspond to planar ob-
jects (poster, doors, cupboard,...) located everywhere
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Figure 12: Landmarks detection

in the scene.

A new representation and associated recognition
method for this kind of landmarks is presented and
is dedicated to robot navigation. We have shown that
this method remains efficient despite the lightening or
viewing changes due to our application.

Navigation experiments have been performed; the
extraction of visual landmarks is very efficient, as well
as the landmark recognition method. During the envi-
ronment exploration, about 90% of the pertinent land-
marks are extracted; after, when the robot goes along
a path planned in the environment model, these land-
marks are actively searched and exploited for the robot
localization: if we consider landmarks corresponding
to posters, the recognition fails only in 3% of the sit-
uations, due to some unforeseen occlusions or specific
lightening conditions.

In future works, our navigation system could be im-
proved considering a more active visual system; up-to-
now only pan and tilt rotations are generated in order
to point the camera towards the searched landmarks.
Zooming will be used to actively adapt the focal lenght
with respect to the landmark-robot distance.
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Figure 13: Landmarks detection in office environment

References

[1] J.B. Hayet, C. Esteves, M.Devy, and F.Lerasle. Qual-
itative Modeling of Indoor Environments from Visual
Landmarks and Range Data. In Proc. Int. Conf. on In-
telligent Robots and Systems (IROS), Lausanne, 2002.

[2] J.B. Hayet, F.Lerasle, and M.Devy. A Visual Land-
mark Framework for Indoor Mobile Robot Navigation.
In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), Washington, volume 4, pages 3942-3947, 2002.

[3] R.A. Hummel and S.W. Zucker. On the Foundations of
Relaxation Labeling Processes. IEEE trans. on Pattern
Analysis and Machine Intelligence (PAMI), 5(3):267—
287, 1983.

[4] D.P. Huttenlocher, A. Klanderman, and J. Rucklidge.
Comparing ITmages Using the Hausdorff Distance. I[EEE

trans. on Pattern Analysis and Machine Intelligence
(PAMI), 15(9), 1993.

[6] J.Santos-Victor, R.Vassallo, and H.J. Schneebeli. Topo-
logical maps for visual navigation. In Ist Int. Conf. on
computer Vision Systems (ICVS’99), pages 1799-1803,
jan 1999.

[6] D. Kortenkampf and T. Weymouth. Topological Map-
ping for Mobile Robots using a Combination of Sonar
and Vision Sensing. In National Conf. on Artificial In-
telligence (AAAI), 1994.



[7]

P. Leray, H. Zaragoza, and F. d’Alché Buc. Relevance
of Confidence Measurement in Classification. In Re-
connaissance des Formes et Intelligences Artificielles
(RFIA), Paris, volume 1, pages 267-276, 2000.

C. Schmid and R. Mohr. Local Gray-value Invariants
for Image Retrieval. IEEE trans. on Pattern Analysis
and Machine Intelligence (PAMI), 1(19):530-535, May
1997.

C. Schmid, R. Mohr, and C. Bauckhage. Comparing
and Evaluating Interest Points. In Int. Conf. on Vision
System (ICCV), Bombay, pages 313-320, 1998.



