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Abstract

In this paper, we present a cooperative passers-by tracking system between
fixed view wall mounted cameras and a mobile robot. The proposed system
fuses visual detections from wall mounted cameras and detections from a
mobile robot—in a centralized manner—employing a “tracking-by-detection”
approach within a Particle Filtering strategy. This tracking information is
then used to endow the robot with passers-by avoidance ability to facilitate its
navigation in crowds during the execution of a person following mission. The
multi-person tracker’s ability to track passers-by near the robot distinctively
is demonstrated through qualitative and quantitative off-line experiments.
Finally, the designed perceptual modalities are deployed on our robotic plat-
form, controlling its actuators via visual servoing techniques and free space
diagrams in the vicinity of the robot, to illustrate the robot’s ability to follow
a given target person in human crowded areas.

Keywords: Multi-target Tracking, Multi-sensor Fusion, Automated Person
Detection, Cooperative Perception Systems

1. Introduction

Currently, there is an increasing demand for the deployment of service
robots in public all day human environments. In an effort to fuel this de-
mand, various researchers have deployed prototype robotic systems in pop-
ulated environments like hospitals [1], supermarkets [2], museums [3], and
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office environments [4] to name a few. A core issue that should not be
overlooked, as robots come out of their isolated industrial milieu and start
interacting with humans in a shared workspace, is safe interaction. For a
service robot to exhibit safe and acceptable interactive behavior—it needs to
know the presence, whereabouts, and movements of people to better under-
stand and anticipate their intentions and actions. In general, a service robot
should have two main capabilities (i) identifying (discriminating) interesting
person(s) to interact with-depending on the task at hand, and (ii) carrying
out the task with as minimal interference as possible with the other per-
sons in the workspace. The first capability necessitates an active interaction
task that requires the robot to clearly identify a subject for interaction and
engage with him/her. The interaction could, for example, be following or
intercepting that person. The second capability entails a passive interaction
with the passers-by in the environment. The robot should consider them as
dynamic obstacles with special requirements and control its maneuver so as
to avoid them. To achieve all this, the robot needs to have a robust human
perception and motion control functionality.

Though extremely desirable, this coupled human perception and motion
control task is a very complex and challenging task to accomplish from a
mobile platform. Automated person detection is by far one of the most
challenging tasks due to physical variation of persons, body deformations,
appearance variation due to different clothings, etc. These challenges are
further amplified in mobile robots because of mobility of the sensors, limited
Field-Of-View (FOV) of on-board sensors, and limited on-board computa-
tional resources. These challenges are partly alleviated by fusing various
sensor outputs to make best informed decisions, e.g., [5, 6, 7]. The extent
of the improvement depends on how well the different sensors complement
each other. Generally, the more complementary information the different
sensors provide, the better the perception [8]. Recently, some researchers
have considered cooperative perception systems using a mobile robot and
wall mounted camera(s) [9, 10]. This opens up more possibilities as it allows
the system to benefit from the advantages of both perception modes: percep-
tion from wall mounted cameras and perception from the mobile platform.
For instance, the system will have global perception from the wall-mounted
cameras which lead to increased anticipation capabilities; on the other hand,
the mobile platform provides local perception, a means for action, and (as
it can move around) the ability to cover dead spots and possibly alleviate
occlusions. These kinds of cooperative systems have the potential to lead to



more generic surveillance systems as they can handle various scenarios.

In this paper, we present a cooperative perception system made up of wall
mounted cameras and a mobile robot to perceive passers-by in a surveilled
area. The purpose is not motion capture and/or articulated motion analysis,
rather, it is to obtain the positions and trajectories of passers-by on the
ground plane. This work builds upon our previous work on a person following
mobile robot presented in Germa et al. [5]. Our goal is to realize a person
following mobile robot that will follow a single target (user) person wearing
an RFID tag while at the same time taking the dynamics of the passers-by
into consideration to adjust its motion accordingly to avoid them. In [5], the
functionalities to detect/track a target person (based on vision and RFID)
and follow him/her robustly have been exhaustively addressed. This work
addresses and thoroughly presents the missing functionalities: passers-by
perception via a cooperative perceptual system and associated control law
for avoidance. The remainder of this paper is structured as follows: Section 2
presents general overview and related works. Section 3 presents framework
and architecture of the overall envisaged system in detail. Consequently,
section 4 explains the different multi-person detection modalities that drive
the passers-by tracking (presented in section 5). Sections 6 and 7 present
offline evaluation of the passers-by tracking in various modes; and passers-by
avoidance, integration details of the developed functionalities on the target
robotic platform, and associated live runs, respectively. Finally, the paper
concludes with concluding remarks and brief perspectives in section 8.

2. Overview and Related Works

The problem we are concerned with is multi-person (passers-by) detection
and tracking in an environment co-occupied by humans (possibly crowded)
and a mobile robot. This perception capability is imperative for an active
robot that needs to interact with individuals in the environment. Broadly
speaking, the literature in automated multi-person detection and tracking
encompasses works that use sensors fixed in the environment and those that
use mobile sensors (either mounted on a mobile robot or a moving vehicle).
This work spans both realms by combining information from fixed sensors
with information from mobile sensors. To put the proposed framework into
context, it is necessary to give an overview and mention related works in:
(i) fixed sensor(s) based person detection and tracking, (ii) mobile sensor(s)



based person detection and tracking, (iii) sensor fusion modes, and (iv) co-
operative systems that try to combine fixed and mobile sensors.

Apparently, research works that use sensors fixed in the environment are
vast in number [11, 12]; they include works that use a single classical camera,
network of overlapping [12] and/or non-overlapping cameras [13, 14], and a
network of heterogeneous sensors (e.g., Laser Range Finders (LRFs) and
vision [15]). Since the sensors are stationary, simple and fast algorithms
like background subtraction and optical flow could be used to detect moving
persons within the FOV. Depending on actual sensor configuration, they
can encompass wide areas—therefore, provide global perception. They can
view and track subjects over a broad area for an extended period of time.
But, their main pitfalls include evident dead-spots that could arise from
configuration (placement and number of sensors used), possible occlusions,
and their passiveness.

On the other hand, mobile robot based systems, as a consequence of
their mobility, are generally more suited for surveilling and/or monitoring
large areas as they provide a means to reduce the environment structuring
and the number of devices needed to cover a given area [16]. But, multi-
person detection and tracking from mobile robots is more challenging due
to on-board sensors’ motion (during robot mobility), limited FOV of on-
board sensors, and limited on-board computational resources. On the other
hand, sensors mounted on robots provide localized perception and can pick
up details. As a result, robotic based surveillance applications are mostly
limited to activities that require close monitoring. They are also suitable
for patrolling wide areas owing to their ability to re-position themselves. In
addition, they also provide a means for action which can be of paramount
advantage for following a target [5], intruder intervention [17], provision of
assistance [2], and possibly physical restraint of an assailant [18].

When working with mobile robots, most researchers make use of 2D Laser
Range Finders (LRFs) and vision sensors mounted extensively for human de-
tection and tracking. 2D LRFs provide a 2D depth scan of an environment.
They have high accuracy, high scanning rates, and are insensitive to lighting
conditions. Since they are mostly mounted at a height corresponding to a
human leg, person detection proceeds by detecting leg scan patterns in each
frame [19, 20]. Some researchers have also mounted LRFs in two layers,
scanning at the height of a leg and chest to improve the detection rate, e.g.,
[21]. Unfortunately, due to their planar scan nature, they are very suscepti-
ble to occlusions and are easily fooled by geometrically leg like structures in
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the environment. They are also not suitable for multi-person tracking with
unique identities as they furnish no relevant information for discriminating
amongst persons leading to frequent failures in crowded environments. It can
be emphasized here that in these scenarios, they ought to be combined with
other sensors with more rich perception capabilities. On the contrary, vi-
sual sensors provide rich information that capture persons’ appearance well.
To detect persons, either background subtraction techniques [22] or motion
segmentation [23] can be used from a stationary mobile robot. In case of
an active moving robot, recent single frame based approaches like Histogram
of Orientation Gradients (HOGs) based person detection [24, 25|, face de-
tection [24], and though with questionable performance, skin color segmen-
tation [26] can be used. For platforms equipped with stereo-vision camera,
3D human like blob segmentation is also a viable option [27]. In effect,
vision based multi-person tracking implementations have shown far better
results than those based on LRFs owing to rich appearance information and
lessened confusion with environment structures. But, they still suffer from
narrow FOVs (unless special omni-directional cameras are used), occlusions,
and high processing time requirements.

Evidently, most robotic systems are equipped with various sensors and it
is only natural to consider fusing the different sensor data to improve individ-
ual sensor percepts. The extent of the improvement depends on how well the
different sensors complement each other. In the robotic community, fusion of
LRF and vision for people detection and tracking has shown to outperform
individual counterpart modalities [28, 29]. The fusion, for example, can be
done in a sequential manner at the detection level, using the laser hypothesis
to constrain the search in the visual data as in [25], or in the tracking step [30].
Variants of Kalman Filters [31] and Particle Filters [23] have been principally
used for fusing laser and vision at the tracking step for multi-person tracking.
The key interest in laser and vision fusion is combined provision of precise 3D
position and rich appearance information which leads to a detection/tracking
system with high precision and accuracy. The availability of wide FOV vision
system further improves this performance as demonstrated through fusion of
a laser with omni-directional cameras [28, 23, 32.

Furthermore, some researchers have considered fusing vision and audio
data [33, 34, 35]. Audio data can be used to localize the sound source (pos-
sibly a person) and identify the speaker. These are additional features that
would enrich the vision data leading to better tracking and identification
in crowds. Some works have also considered special sensors like thermal



cameras [36] mounted on a mobile robot. Since humans have distinct ther-
mal profile compared to indoor environments, they stand out bright in ther-
mal images which leads to easy detection. But, multi-person tracking in a
crowded environment using a thermal camera solely is challenging as human
thermal signature is the same for every individual, leading to difficulty in
tracked target discrimination amongst each other. [37] augmented a thermal
camera with classical gray scale camera to realize a system that can detect
individuals easily and then use the gray scale image for identification (dis-
ambiguation). Another special sensor recently burgeoning is the Kinect [38].
The Kinect provides an RGB color image and 3D information. In some
works, it has been mounted on a mobile robot and used for multi-person per-
ception by fusing the heterogeneous data it provides [6, 39]. Though highly
promising, its narrow FOV still remains a problem.

Sensor fusion is certainly not limited to two sensors; depending on avail-
ability of sensors and computational time constraint, more sensor data could
be fused. For example, Martin et al. [26] fused LRF, omni-directional cam-
era, and a ring of sonar beams, in a probabilistic aggregation scheme to
detect and track individuals in the vicinity of the robot. Zivkovic et al. [32]
combined sensor data from an omni-directional camera, a classical camera
mounted on Pan-Tilt-Unit (PTU), and LRF to detect multiple persons using
a parts based model. Both cases attest that the plethora of sensors used
improve performance well. The improvement comes about mainly because of
the complementary nature of the utilized sensors. The rich vision informa-
tion from cameras can be complemented by employing cameras with different
FOVs [32],e.9., wide FOV from wall mounted cameras and narrow localized
FOV from a camera on a robot.

In recent years, researchers have considered surveillance systems that in-
corporate mobile robots and environment fixed sensors cooperatively. These
cooperative surveillance systems combine the merits of fixed and mobile per-
ception modes. They acquire global and wide area perception from the fixed
sensors, localized perception and a means for action from the mobile robot.
This kind of cooperative systems have the potential to lead to more generic
surveillance systems as they can handle various scenarios. Li et al. [40]
presented a time-related abnormal events detecting and monitoring system
using wireless sensor network and a mobile robot. In their work, intruders are
detected using the sensor networks. Upon detection, the mobile robot travels
to the position to further investigate the situation locally with its camera.
Similarly, in [9] three networked wall mounted fixed view cameras and a mo-
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bile robot are used to track and follow a target. The target is first detected
using the fixed cameras. Once detected, the information is passed onto the
robot which navigates to that position and continues to follow the target per-
son. Chakravarty et al. [10] presented an intruder interception system using
external cameras and a mobile robot cooperatively. The external cameras
are used to detect an intruder and aid the mobile robot in navigation. The
mobile robot, once it has received the location of the intruder, proceeds and
intercepts it acting as a means of action to the system. All the above coop-
erative perception systems portray similar approaches in which perception
of interesting targets is initially carried out based on the fixed sensors. The
mobile robot’s target perception capability is delayed until target presence
is communicated to the robot. The perceptual decision making is somewhat
decentralized with no data fusion. There is no centralized scheme to collect
evidence from the fixed and on-boarded (mobile) sensors to track the targets,
rather, either the deported vision, in [10], or the mobile robot, in [9], does
the tracking after the initial target detection. But, an important observation
that needs to be made from the related works is data fusion actually leads
to robust perception modes. Marching on this line, we propose a perceptual
system that makes use of the localized perception capabilities of the sensors
on the mobile robot in cooperation with external fixed cameras both to de-
tect and distinctly track persons in the vicinity of the robot in a centralized
manner. In short, a centralized data fusion between fixed sensor percepts and
a mobile sensor percept is proposed. The proposed system has the ability to
complement local perception with global perception and vice-versa. To the
best of our knowledge this cooperative framework is unique in the literature.

Contributions: The work presented in this paper makes two core con-
tributions, namely: (1) It proposes and validates a centralized cooperative
framework and data fusion scheme between wall mounted fixed view cameras
and sensors embedded on a mobile robot to track multiple passers-by in a
surveilled area; this is unique in the literature as it differs from discussed
existing cooperative frameworks( [9, 10]). (2) It realizes a person following
mobile robot system with passers-by avoidance in crowds by deploying the
developed perceptual functionalities on the actual platform—with seamless,
coherent integration and coupling with the robot’s actuators. To the best
of our knowledge, a person following mobile robot with passers-by avoidance
in crowded environment does not yet exist in the literature. Even though
the works of Hoeller et al. [41] has the capability to avoid passers-by, it has
not been validated in crowded scenes and it relies only on LRF for passers-by
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tracking which in our experience leads to frequent tracker failures in crowded
environments. Various formulations, implementation details, and experimen-
tal validations that clearly and consistently highlight our contributions are
detailed in the rest of this paper.

3. Framework and Architecture

Our goal is to realize a person following mobile robot that will follow
a single target person, hereafter referred as the user, wearing an RFID tag
while at the same time perceiving the passers-by and taking their dynamics
into consideration to adjust its motion accordingly. To robustly perceive the
user and all passers-by and increase the anticipation capability of our robot,
we have devised a cooperative perception system made up of two fixed view
wall mounted cameras and various sensors on-board a mobile robot.

3.1. Development Platform and Environment

Our cooperative framework is made up of a mobile robot and two fixed
view wall-mounted RGB flea2 cameras. The cameras have a maximum res-
olution of 640x480 pixels and are connected to a dual-core Intel Centrino
computer via a fire-wire cable (figure 1). The robot, called Rackham, is an
iRobot B21r mobile platform. Rackham has various sensors, of which its
SICK Laser Range Finder (LRF), positioned 38cm above the ground and
with a 180° FOV, Micropix digital camera mounted on a Directed Percep-
tion pan tilt unit (PTU), and an omni-directional RF system custom-built in
the lab for detecting RF tagged person all around the robot [5], are utilized
in this work. Rackham has two PCs (one mono-CPU and one bi-CPU PIII
running at 850 MHz) and a Wireless Ethernet. Figure 1 shows the hardware
aspect of our framework. Communication between the mobile robot and the
computer hosting the cameras is accomplished through a wi-fi connection.
The visual camera on Rackham has a very narrow FOV (< 50°). This means
the robot does not have any visual information for the rest of 310° of the
surrounding. This limits the perception capability of the robot impairing its
anticipation capability. But by fusing this information with wall mounted
cameras that collectively span a wide area, this problem could be mediated
if not alleviated.

Rackham’s software architecture is based on the GenoM architecture for
autonomy [42]. All its functionalities have been embedded in modules created
by GenoM using C/C++ interface.
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Figure 2: Overall system block diagram.

3.2. System Block Diagram and Description

A block diagram of our overall envisaged system to realize person fol-
lowing with passers-by avoidance with a mobile robot is shown in figure 2.
It has three main components labeled A, B, and C. Block A is responsible
for the user tracking and following activity and has been addressed in [5].
Briefly speaking, it relies on an RF reader and a visual camera mounted on
the robot. The RF reader is capable of detecting and localizing an RFID tag



placed around the robot (360° FOV) within the range of 0.5m to 4.5m. The
detection yields a unique id corresponding to the tag and a course position
estimate (range and azimuth) of the tag. Only the user wears an RFID tag
which plays the major role to disambiguate him /her from the passers-by. An
instance of an RFID detection is shown in figure 3(c). The on-board visual
sensor is used for face detection based on Viola and Jones [43] face detector
and skin segmentation of close by persons. It is true a generic head detector
could be used rather than a face detector here. But, we have retained the use
of the face detector because of the following reasons: (i) We already have full
body detections of the user from the fixed-cameras and a more complemen-
tary information would be the face; (ii) this work is in a Robotic context and
further steps will involve user-robot interaction establishment which neces-
sitates face detection to know when a person is engaging the robot (we are
basically laying the ground work here); and (iii) previous experiments have
been done with face recognition for identification purposes so we wanted to
have this perspective open for future additions that would involve user iden-
tification based on face rather than RFID. Figure 3(b) shows an exemplar
view from the on-board camera. These detections are passed onto the user
(target) tracking module which fuses them to identify the user to be followed
by the robotu and track it accordingly. This fusion and tracking is based on
sequential Monte Carlo simulation methods. The only modification here is
the addition of detections from the LRF and deported vision (presented in
section 4) in the same tracking framework. The 3D target position estimate
of the tracker is used as a goal to drive the robot to the person and directly
control the PTU of the mobile camera to keep the target at the center of
focus of the on-board vision via visual servoing techniques.

Component B is responsible for perceiving passers-by in the robot sur-
rounding and is addressed in this paper. Component C, also addressed here,
is responsible for navigation of the robot to the dynamic goal, i.e., the user
pursuit with passers-by avoidance based on the spatio-temporal trajectory
information of humans’ from the passers-by tracking modality (component
B). All the sensors are connected to detection modules. The heterogeneous
detection modules take the raw input from the respective sensors and auto-
matically detect humans. The tracking modules then take the various detec-
tions as input, fuse them to make best informed user and passers-by tracks.
Finally, the tracking outputs are fed to the two control laws, one controls
the PTU of the visual camera on the robot to keep the target in the FOV.
The second control system uses the passers-by spatio-temporal information
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Figure 3: On-board vision and RFID detection. The view from the on-board camera,
corresponding to the H/R situation in (a), is shown in (b) with a detected face. (c) shows
an instance of the RFID detection. The red circle in the middle corresponds to the robot
while the white circle shows the range of the RF reader. A detected tag is shown as a
saliency map in this region depending on its azimuth and range. The red arc shows the
pan position of the on-board camera.

to avoid the passers-by while following the user.

4. Multi-person Detection

The perceptual functionalities of the entire system are based on various
detections. The detection modules are responsible for automatically detect-
ing persons in the area. Different person detection modalities are utilized
depending on the data provided by each sensor.

4.1. Leg Detection with LRF

Laser Range Finders (LRFs) have become attractive tools in the robotics
area for environment detection due to their accuracy and reliability. As the
LRFs rotate and acquire range data, they will have distinct scan signatures
corresponding to the shape of an obstacle in the scan region. In our case, the
LRF provides horizontal depth scans with a 180° FOV and 0.5° resolution
at a height of 38¢m above the ground. Person detection, hence, follows by
segmenting leg patterns within the scan. In our implementation a set of
geometric properties characteristic to human legs outlined in [44] are used.
Figure 4 shows an instance of a scan with leg signatures circled and the actual
human-robot situation. The detection proceeds in three steps:

1. Blob segmentation. All sequential candidate scan points that are close
to each other are grouped to make blobs of points. The grouping is
done based on the distance between consecutive points.
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2. Blob filtering. The blobs formed are filtered using geometric properties
outlined in [44]. The filtering criteria used are: Number of scan points,
Mid point distance, Mean Internal Angle and Internal Angle Variance, and
Sharp structure removal. For details on these criteria, the reader is re-
ferred to [44].

3. Leg formation. All the blobs that are not filtered out by the above
stated requirements are considered to be legs. Each formed leg is then
paired with a detected leg in its vicinity (if there is one). The center
of the paired legs makes the position of the detected human.

Each person detection has an associated appearance representation ob-
tained by projecting a rectangular region, corresponding to an average per-
son, onto the wall mounted camera images thanks to the fully calibrated sys-
tem. The appearance is captured in the form Hue-Saturation-Value (HSV) [45]
histogram. Individual histograms are obtained from the two cameras, of
course if the detections are within the field of view, and are treated sepa-
rately. These detections are passed on to both the passers-by tracking and
user (target) tracking modules.

.....

Figure 4: LRF scan illustrations showing the human-robot situation in (a) and the
associated laser scan in (b). Scans corresponding to legs are shown circled. Rackham is
shown as the red circle in (b).

4.2. Foreground Segmentation (Detection)

The two wall mounted cameras with partially overlapping FOV provide a
video stream of the area. One person detection mode employed is foreground
segmentation using background subtraction as these cameras are static. To
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accomplish this, a simple 3-A background subtraction technique [46] is used.
After a series of morphological operations, only foreground blobs with an as-
pect ratio comparable to an average human being are kept and treated as
detected persons. The mobile robot is masked out of the foreground images
using its position from its localization module. The person detections are
matched with an adaptive HSV appearance model of the user. Detections
very similar to the model, only one per camera, are assumed to be of the
user and are passed along to the target tracking module whereas the rest
are passed along to the passers-by tracking module. The target appearance
model is initially initialized with the appearance histogram captured dur-
ing the beginning of the person following activity and is distinct to each
deported camera. The rest of the detections are projected to yield ground
positions, (x,y)qs, with associated color appearance information (in the form
of HSV histograms) of individuals in the area and are then passed along to the
passers-by tracking module. Figure 5b shows sample foreground segmented
image with bounding box to show detected humans from both cameras.

Figure 5: Sample images from the two wall mounted cameras. (a) shows the actual
feed, (b) shows the segmented foreground/background image based on %-A background
subtraction technique with bounding boxes, and (c¢) shows HOG based detections.

4.3. HOG Person Detection

Similar to the foreground segmentation step, HOG person detection [47]
is used to automatically detect persons in the surveilled area using the feed
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from the wall mounted cameras. This method makes no assumption of any
sort about the scene or the state of the camera (mobile or static). It de-
tects persons in each frame using histogram of orientation gradient features.
Again, detections very similar to the appearance of the target person, only
one per camera, are passed to the user tracking module. The rest are passed
to the passers-by module once projected into ground position, (x,y)q, with an
associated HSV histogram. Sample HOG based person detections are shown
in figure 5(c); corresponding sample HSV histograms computed as in [45] are
shown in figure 6. The histograms have an 8x8 HS bin and 8 V bin. They
are shown unrolled in a single dimension for ease of visualization.

HS v » HS \

Figure 6: HSV histograms computed for two targets. The histograms have 8x8 HS bin
and 8 V bin. They are shown here unrolled in a single dimension.

In summary, five sub-set of detections are produced for the passers-by
tracking module, namely: one from the LRF (1), two from the wall mounted
cameras via foreground segmentation (fseg,,, fseg.,), and another two via
HOG detection from the same cameras (hog.,, hog.,). Hence, the com-
plete set of detections passed along at time t is denoted as {ztcfj s d €
{l, fs€ge,, [S€Gey, hOGe,, hoge, }, 7 € {1, .., Ng}} where N, represents the num-
ber of detections in the d** detector and each z denotes a detected person
position on the ground floor (x,y)g.

5. Passers-by Tracking

Tracking of passers-by is the problem of Multi-Person Tracking (MPT),
which is concerned with the problem of tracking a variable number of persons—
possibly interacting. Our aim here is to correctly track and obtain trajecto-
ries of multiple persons within the field of view of the utilized sensors. The
literature in multi-target tracking contains different approaches. Multiple
Hypothesis Tracker (MHT)[48], Joint Probabilistic Data Association Filter
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(JPDAF)[49], centralized [50] and decentralized Particle Filters (PFs) [51],
and Markov Chain Monte Carlo Particle Filtering (MCMC-PF) [52]. MHT is
computationally expensive as the number of hypothesis grows exponentially
over time, while JPDAF is applicable to tracking a fixed number of targets.
The decentralized particle filtering scheme, based on multiple independent
PFs per target, suffers from the “hijacking” problem since whenever targets
pass close to one another, the target with the best likelihood score takes the
filters of nearby targets. The centralized PF scheme-a particle filter with
a joint state space of all targets—is not viable for more than three or four
targets due to the associated computational requirement. A more appealing
alternative in terms of performance and computational requirement is the
MCMC-PF. MCMC-PF replaces the traditional importance sampling step in
joint PFs by an MCMC sampling step overcoming the exponential complex-
ity and leading to a more tractable solution. For varying number of targets,
Reversible Jump Markov Chain Monte Carlo - Particle Filters (RJMCMC-
PFs), an extension of MCMC to variable dimensional state space, has been
pioneered to perform successful tracking [52]. When it comes to tracking
multiple interacting targets of varying number [52] has clearly shown that
RJMCMC-PFs are more appealing taking performance and computational
requirements into consideration. This is also attested in various recent re-
search works,e.g., [6, 53, 54]. Inspired by this, we have used RIMCMC-PF,
adapted to our cooperative perceptual strategy, for passers-by tracking driven
by the various heterogeneous detectors.

5.1. RIMCMC-PF Formalism

RIJIMCMC-PF replaces the importance sampling step of Particle Fil-
ters with an RJIMCMC sampling step. For a given sequence of measure-
ments upto a time ¢, denoted as 7., the posterior distribution over the
targets state, P(X;|Z1.), is approximated in terms of N unweighted sam-
ples, P(X;|Z1.;) ~ { X"}, where X[ denotes the n'" particle, in a Bayesian
Framework. The state of a particle in RIMCMC-PF encodes the configura-
tion of the entire tracked targets: X" = {I", x&i)},i € {1,...,I'}, where I} is
the number of tracked objects of hypothesis n at time ¢, and (. ;) 1s a vector
encoding the state of object ¢. The posterior estimation is achieved by defin-
ing a Markov Chain over the variable dimension state space configuration X}’
such that the stationary distribution of the chain approximates the desired
posterior well. Roughly, at each time step, the filter starts the Markov Chain

from a sampled initial configuration and iterates N 4+ Np times, where NN is
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the number of particles and Np represents the number of burn-in iterations
needed to converge to stationary samples. At time ¢, in each iteration,n,
of the RIMCMC-PF, the filter proposes a new state hypothesis, X*, from
the previous iteration state hypothesis (X* from X/ ') depending on the
chosen proposal move that either varies or leaves the dimension of the state
unaltered. The final N particles represent the sought approximation to the
required posterior.

5.2. Implementation

Our RIMCMC-PF tracker is driven by the heterogeneous detectors that
provide ground position of individual persons and their corresponding ap-
pearance information (section 4). The actual detectors are: the LRF based
person detector, the foreground segmentation (detection) from each wall
mounted camera, and the HOG based person detector on each wall mounted
camera. The passers-by tracking is performed on the ground plane. RJIMCMC-
PF accounts for the variability of the tracked targets by defining a variable
dimension state space. The state space dimension is considered as a union
of several subspaces. Whenever tracking of a new passer-by starts, the state
“jumps” to a large dimensional subspace and there will be a “jump” to a low
dimensional subspace whenever a tracked person is removed from a hypoth-
esis. In each iteration, the state space exploration is driven by the proposal
move ¢,, that proposes a specific move and computation of the acceptance
ratio 8 according to the chosen move. Equation 1 shows computation of
the acceptance ratio of a proposal X* at the n* iteration. It makes use of
the jump move distribution, g¢,,; proposal move distribution, @,,(), associ-
ated with each move; the observation likelihood, 7(X]"); and the interaction
model, W(X}'). Our choice of these components that are crucial to any
RIJMCMC-PF implementation are briefly discussed below. The complete
passers-by tracking implementation is summarized in algorithm 1.

B = min (1, - 7 (X*) Qs (X771 X7) g ¥ (X7) ) (1)

(X771 Qm (X1X7 1) gm ¥ (X7)

where m denotes the proposed move and m* denotes the reverse move.

5.2.1. State space

The state vector of a person 7 in hypothesis n at time ¢ is a vector encap-
sulating the id and (x,y)¢ position of an individual on the ground plane with
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Algorithm 1: RIMCMC-PF Passers-by Tracking

10

11

12

13

14

15

16

input : {X7 YV ; Xt_l;A{zt}
output: {Xf}gjjqf and X; (MAP estimate)

Init: pick a random particle from the set {X; 1} with similar

configuration to X, 1 and perturb each target with a zero mean
Gaussian to obtain X?;
forn <+ 1to N+ Ny do
Choose a move m € {Add, Update, Remove, Swap} ~ qp;
switch m do
case Add:
X* ={X"' 2,}; x, is randomly taken from {zgj};
: T(X*)Qremove (X7 [X* )qremove ¥ (X*)

f = min (1’ W(th_l)QaddEX*|th_1§%dd‘1’(th_1) ) ; break;
case Remowve:
X* ={X "\ x,} where p € {1,..., "}

R m(X*)Qada (X[ [X*)gaaa ¥ (X*) .
f = min (1’ w(x;l—1>czmmm<x*xy*)qmmw(x;—l))’

break;
case Update:
Randomly select a target x, from xpt
Select x, a random subspace corresponding to x;, in the
particle set at t — 1;
Replace x, with a sample from N (; T, E) proposing X*;
. m(X*)W(X*
B = min <1, n(Xg(l—l))q;((Xy)—l)); break;
case Swap:

Swap the ids of two near tracked persons to propose X*;
B = min (1, (”(X*)‘II(X*) ); break;

m(x;phe(xph)

if 8 > 1 then X' < X*;

else

Accept X[ <— X* with probability 5 or reject and set
X X7

[

Discard the first Ng samples of the chain;
MAP estimate, X, := Eyix,| 200 [ X¢] = arg maxxr [count(z}))];
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respect to a defined coordinate base, x; = {Id;,x};,y;;}. Consequently, the
n'" particle at time ¢ is represented as X" = {I", Tha bt € {1, .., []'}, where

I is the number of tracked persons by this particle at time ¢.

5.2.2. Proposal moves

Four sets of proposal moves are used: m = {Add, Update, Remove, Swap}.
The choice of the proposal privileged in each iteration is determined by ¢,,,
the jump move distribution. These values are determined empirically and
are set to {0.15,0.8,0.02,0.03} respectively. They are tuned to better reflect
the occurrences of these events in the scene. It is evident that, once a target
appears in the scene, he/she does not disappear immediately. So there will
more Update moves rather than Add, Remove, and Swap moves. These values
could actual be set arbitrary, but then a lot of MCMC iterations would
be required to obtain a steady state approximation of the posterior. To
formulate the proposal move distributions, @,,(), a Gaussian Mixture model
is used. A Gaussian distribution better represents the confidence obtained
from a detector and tracker that provides a point estimate for the target
position. This distribution clearly exemplifies the highest confidence at the
point estimate (mean) and how the confidence wears off as we move away
from the centroid radially.

To simplify both the transition of the new proposed state hypothesis X*
(at the n" iteration from X! at time ¢) and evaluation of the acceptance
ratio only changes to a randomly chosen subset of the state is considered.
In multi-target tracking, this translates into changing a single target per
iteration.

Add: The add move, randomly selects a detected person, x,, from the
pool of provided detections and appends its state vector on X;"' resulting
in a proposal state X*. The proposal density driving the Add proposal,
Q Add (X *|Xt”_1), is then computed according to equation 2. This equation
represents a mixture of Gaussian map made from the detected passers-by
and tracked passers-by at time ¢ — 1. Each detection is represented as a
Gaussian on the ground plane. It is then masked by a similar mixture derived
from the tracked persons (Maximum A Posteriori (MAP) estimate X) at
time ¢ — 1 in such a way that the distribution will have higher values on
locations conforming to detected passers-by that are not yet being tracked.
The covariance matrix used for all Gaussian mixtures from detector and
tracking are identical to simplify normalization.
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ki o JRLA )
Quaa (XX 1) =3 ﬁd >N (ﬂ% th’j’z) o >N (l‘p;thl,jv E)
j=1

q i
(2)

Where d represents the set of detectors, namely: from laser ({), fixed
camera 1 (¢1), and fixed camera 2 (¢o); d € {l,c1,c2} (each camera has two
detections HOG, hog, and Foreground Segmentation, fseg), Ny is the total
number of detections in each detector, ky is a weighting term for each de-
tector such that ) kg =1, Xt_l is the MAP estimate of the filter at time
t—1, and Nr is the number of targets in this MAP. Figure 7 clearly illustrates
what the add move proposal density looks like on a specific situation. When
a new passer-by is added, its appearance is cross-checked with the appear-
ance of passers-by that have been tracked. If there is a high similarity, deter-
mined based on Bhattacharyya distance, the new person is given the id of the
matched person and the situation is treated as a simple re-identification step.

Remove: The remove move, randomly selects a tracked person z, from
the particle being considered, X!, and removes it, proposing a news state
X*. Contrary to the add move, the proposal density used when computing
the acceptance ratio, Qremove(X*|X;" 1) (equation 3), is given by the dis-
tribution map from the tracked persons masked by a map derived from the
detected passers-by. This distribution favors removal of targets that have
gone out of the tracking area but are still being tracked.

kd Nd 1 NT A
Qremove (X71X]™) = 1_ZEZN<%?Z§Z‘72> ‘ FTZN<xp;Xt-1,j72)
d j=1 =1
(3)

Even though the tracker of a person who left the scene ceases to exist, a
dynamic appearance model of the person is kept for a later re-identification.

Update: In the update proposal move, the state vector of a randomly
chosen passer-by is perturbed by a zero mean normal distribution. The up-
date proposal density, Qupdate(X *| X7 1), is a normal distribution with the
position of the newly updated target as mean. Hence, the acceptance ratio
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Figure 7: Tllustration of the add proposal distribution. (a)-(b) shows the wall mounted
cameras feed with various detections (laser in black, foreground segmentation in red, and
HOG in green). (c) projection of each detection onto the ground plane. (d) shows the
mixture of Gaussian distribution determined from the various detections. (e) shows the
tracked target at time ¢t — 1 and (f) shows its corresponding Gaussian mask. Finally, (g)
shows the add proposal distribution obtained by masking (d) with (f), and it indeed shows
salient values on the position of the untracked passer-by.

is influenced only by the likelihood evaluation and interaction amongst the
targets.

Swap: The swap move handles the possibility of id switches amongst
near or interacting targets. When this move is selected, the ids of the two
nearest tracked persons are swapped and a new hypothesis X* is proposed.
The acceptance ratio is computed similar to the Update move.

5.2.3. Interaction model (V(.))

Since the passers-by are likely to interact, an Interaction Model is included
to maintain tracked person identity and penalize fitting of two trackers to the
same object during interaction. Similar to [52, 55], a Markov Random Field
(MRF) is adopted to address this. A pairwise MRF where the cliques are
restricted to the pairs of nodes (targets define the nodes of the graph), that
are directly connected to the graph, is implemented as part of our tracker.
For a given state X}', the MRF model is given by equation 4. As can be seen
from this equation, as long as the o term is not set to zero, ¢(,) will always
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be greater than 0 and less than 1. The sigma determines how well the effect
should be pronounced when the targets are close by.

U(X]) = Wizl af;)
d(xniv n ) 2
‘b(wﬁmﬁj) =1—exp (— <ttJ> ) )

g

where d(zy;, zf;) is Euclidean distance; 4,5 € {1,...,[{'}; and I}" is the
number of targets in X/'.

5.2.4. Observation Likelihood (7 (.))

The observation likelihood, 7(.) in equation 1, is derived from all detector
outputs except the LRF for which blobs formed from the raw laser range data
are considered. If the specific proposal move is an Update or Swap move, a
Bhattacharyya likelihood measure is also incorporated. The raw laser data
is filtered to make blob and keep those within a range of radius, denoted
as l,. This filters out laser data pertaining to walls, thin table or chair
legs, and other wide structures. Then every filtered blob is represented as
a Gaussian on the ground plane centered on the centroid of the blob. HOG
based person detection, and detection from foreground segmentation are also
represented as a Gaussian mixtures on the ground plane averaged over the
number of detections with each Gaussian centered on the detection points.
Representing the measurement information at time ¢ as z;, the observation
likelihood of the n'* particle X7 at time ¢ is computed as shown in equation
5.

X7 — Hf‘il ngl @*/\35,67 if move = Update or Swap
T (X{) = .
1 , otherwise

M
mp (X[ = %Z <Z kq.m (xlzfl)> ,Zkzd =1
i d d

i—1

1
T (lezf) = EZN (xi;zgj,E)
=1
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In equation 5, B; . represents the Bhattacharyya distance computed be-
tween the appearance histogram of a proposed target ¢ in particle X' and
the target model in each camera c. M represents the number of targets in the
particle, and Ny the total number of detections in each detection modality
d, d = {ly, 1,2}, in this case including the measures from the laser blobs.
kg is a weight assigned to each detection modality taking their respective
accuracy into consideration and x; represents the position of target 7 in the
ground plane.

At this point, it is interesting to point out that, even though the fusion
of information from only three sensors (laser and two wall mounted cameras)
is considered, the framework is equally applicable for the fusion of more
heterogeneous sensors.

5.2.5. Adaptive Color Appearance Model

For each tracked passer-by, an adaptive color appearance model in the
form of an HSV histogram per camera, h{,, is stored. This histogram is kept
even after passers-by have left the scene. It is mainly used to re-identify a
previously tracked passer-by when a new track is initiated on him/her. The
new track could be initiated either due to re-entrance of the passer-by in
the surveiled arena once having left, or re-initialization after tracker failure.
Whenever a new passer-by is added, its color histogram is checked with
existing models. If the Bhattacharyya distance is below a threshold value £,,
the new track is given the id corresponding to the matched histogram. In each
time step, the appearance model of tracked passers-by is updated according
to equation 6 only if the Bhattacharyya distance with the adaptive model
and estimated target histogram is below a threshold value ;.

flt) = ax hiy(t = 1) + (1 — a) % hiy(1) (6)

Where h,(t) represents the adaptive histogram of passer-by id in the camera
c at time step t, and ﬁfd corresponds to the current passer-by’s appearance
computed at the estimated position. « is a weighing term that determines
how much the current appearance affects the global model.

6. Offline Evaluations

To evaluate the performance of our RIMCMC-PF multi-person tracker,
three sequences acquired using Rackham (kept static during acquisition)
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and the wall mounted cameras are used. The sequences are acquired in-
side LAAS’s robotic room which has an area of approximately 10x8.20m?
where Rackham can actually move. Each sequence contains a laser scan and
video stream from both cameras. Sequence I is a 200 frame sequence con-
taining two targets in each frame. Similarly, sequence II contains 200 frames
featuring three moving targets. Sequence III contains four targets moving
in the vicinity of the robot and is 186 frames long. The quantitative perfor-
mance evaluation is carried out using the CLEAR MOT metrics [56] which
are the de-facto for evaluating multi-object tracking.

The following metrics are computed and reported:

Tracking Success Rate (T'SR): given by ﬁ > ;i Or,j where &y ; = 1 if
target j is tracked at frame k, else 0. Jp = Zk’j Jk, and jj represents
the number of persons in the tracking area at frame k.

Miss Rate (MR): is the ratio of misses in the sequence, computed over
the total number of objects in all frames, i.e. % > kj Orj With 6y ; =1
if the target 7 in the area is not tracked by any tracker at frame k, else
0.

Ghost Rate (GR): computes the number of candidate targets over no
target (ghosts) averaged over the total number of targets in the dataset,
ie. % Zk’j Ok,; with 05 ; = 1 if tracked target j is a ghost at frame £,
else 0.

Mismatch: mismatch error occurs when an existing tracked target is
initialized as a new target or takes the id of another existing tracked
target. mismatch is computed by averaging the number of mismatch
errors over the total number of targets in the dataset.

Multiple Object Tracking Precision (MOTP): measures how precisely
the targets are tracked as the sum of the error between tracker position
estimate and ground truth averaged over the total number of correct
tracks made. It is expressed in centimeters (cms).

Multiple Object Tracking Accuracy (MOTA): is an accuracy metrics
computed by taking the total errors (Miss Rate, False Positive (FP),
and Mismatch) in each frame k into consideration.

MRy, + F Py, + Mismatchy,)

MoTA =1 - 2
Jr

(7)
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e [d Swap: this criterion quantifies how many times an id switch between
two different tracked targets occurred. It is represented as >, Zl ; i j,
where ¢; ; = 1 when an id switch occurs between tracked target 7 and
j in frame k, otherwise it is 0,

In the above criteria, an observation that should be made is the delin-
eation of Mismatch and Id Swap. The Mismatch criterion counts the number
of mismatches that occur for all tracks. It counts both initialization of an
already tracked target with a new identifier and id swap between tracked tar-
gets as a mismatch error. For our application, id swaps are very detrimental;
but, if a target is initialized as a new target, the error imparted is less severe.
Hence, id swaps are separately reported in table 6.

For evaluation, a hand labeled ground truth with (x,y) ground position
and unique id for each person is used for each sequence. A person is consid-
ered to be correctly tracked (True Success), if the tracking position is within
a 30 cm radius of the ground truth. Each sequence is run eight times to
account for the stochastic nature of the filter. Results are reported as mean
value and associated standard deviation. The values set for various param-
eters (determined empirically) to produce the evaluation results reported in
this section are listed in table 1.

Table 1: Parameter values used to produce the results reported in this section.

Symbol Stands for Value
kg detector weights, d = {l,c1,c2} with ¢; = kg ={0.16,{0.22,0.2},{0.22,0.2}}
{fsegci, hogei}
qm jump move distribution gm = {0.15,0.8,0.02,0.03}
P random walk and Gaussian mixture covariance {0'09 0 }
o 0 0.09
(m? units)
o interaction model standard deviation (cm) 75 cms
N number of particles in RIMCMC-PF 150
Np number of burn-in iterations in RIMCMC-PF 40
HSV bins  color histogram bins 8x8 HS bin, 8 V bin
Bt passer-by appearance model update threshold 0.24
Bo threshold for conclusive similarity of a new 0.1
passer-by with existing color model
« passers-by dynamic color model update weight 0.9

To clearly highlight the advantage of using each sensor, the passers-by
tracker is evaluated based on the following different modes:

1. Passers-by tracking using LRF input only. Results are reported in table
2. In this case, a detector weight of 1.0 is used for the laser and zero
for the rest.
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2. Passers-by tracking using the wall mounted cameras only. Similarly,
results are reported in table 3. A detector weight of 0.5 is used for
each camera with equally influential HOG and foreground segmentation
detections and zero for the laser.

3. Cooperative passers-by tracking using a single camera and LRF. The
results pertaining to this evaluation mode are reported in table 4. The
corresponding detector weight used is a 0.4 for the laser and a 0.6 for
the camera.

4. Complete system, passers-by tracking using the two wall-mounted cam-
eras and LRF. Results are reported in 5. The detector weight param-
eters reported in table 1 are used.

Table 2: Laser-based only perception

TSR MR GR Mismatch MOTP MOTA
Sequence
o o m o n o m o m o w o
I 0.757 0.034 0.252 0.034 0.396 0.042 15.00 2618 1562 2.340 0.410 0.049
11 0.667 0.033 0.333 0.033 0527 0.104 21.62 5450 19.90 1664 0273 0.068
111 0.606 0.044 0.394 0.044 0541 0.103 46.75 4.921 21.94 1745 0202 0.068
Table 3: Wall-mounted cameras-based only perception
TSR MR GR Mismatch MOTP MOTA
Sequence
I o I o I o I o I o I o
I 0.897 0.006 0.103 0.006 0.087 0.034 7.60 1817 19.80 0.140 0.797  0.025
11 0.817 0.049 0.182 0.048 0.089 0.017 19.17 3.920 22.79 1.350 0.708  0.05
111 0.734  0.050 0.265 0.050 0.248 0.016 57.60 14.15 2844 1.601 0.4588 0.067

Table 4: Cooperative perception using a single wall-mounted camera

TSR MR GR Mismatch MOTP MOTA
Sequence
m o n o I o n o I o I o
I 0.932 0.023 0.068 0.023 0.110 0.014 1.333 1.633 17.52 1.80 0.825 0.030
11 0.859 0.032 0.140 0.032 0.147 0.030 10.50 4.680 17.63 1.643 0.713 0.055
111 0.725 0.037 0.274 0.037 0.339 0.069 47.40 6.986 22.83 1.00  0.402 0.051

The results presented from table 2 to table 6 clearly attest the improve-
ments in perception brought by the cooperative fusion of LRF and wall
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Table 5: Cooperative perception using the two wall-mounted cameras

TSR MR GR Mismatch MOTP MOTA
Sequence
n o o o I o “w o m o I o
I 0.935 0.029 0.065 0.022 0.099 0.020 0.667 0.816 17.01 1.886 0.841 0.033
II 0.885 0.029 0.115 0.029 0.099 0.020 11.40 3.782 17.73 0.005 0.793 0.030
IIT 0.755 0.018 0.245 0.018 0.211 0.027 35.60 5.941 21.30 1.358 0.538 0.040
Table 6: Id swap occurrences in each tracking mode.
LRF-only Wall-mounted cameras Cooperative Perception
Sequence .
Single Camera  Two Cameras
o o “w o I o “w o
I 250 0.76 0.60 0.55 0.00 0.00 0.00 0.00
II 462 0.74 1.33 0.52 0.83 0.41 0.40 0.55
IIT 488 1.35 240 0.55 1.60 0.89 1.20 1.09

Figure 8: Multi-person tracking illustrations taken from sequence I at a) frame 31, b)
frame 80, and c) frame 148. The top two images correspond to the camera streams and
the bottom one shows the ground floor with trajectories of tracked persons superimposed.
The particle swarm is also shown with the ID of each individual. The small blue dots are
the raw laser scan points.

mounted camera percepts. The cooperative system consisting of LRF and
two wall mounted cameras exhibit an MOTA of 0.841 when tracking two tar-
gets, 0.793 for three targets, and 0.538 for four targets with a 93.4%, 88.5%,
and 75.5% True Success Rates respectively. The worst average precision is
less than 22c¢ms. These results are clearly indicative of how well the system
does. Sample tracking sequences for two targets and three targets are shown
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Figure 9: Multi-person tracking illustrations taken from sequence II at a) frame 27, b)
frame 60, and ¢) frame 94. The top two images correspond to the camera streams and the
bottom one shows the ground floor with trajectories of tracked persons superimposed.

in figures 8 and 9 consecutively !. Another main observation to make is the
low accuracy of tracking based on LRF only. The mistakes made with leg
like structures in the environment, sensitivity to occlusion, and lack of dis-
criminating information amongst tracked passers-by corroborate to the poor
performance. The results obtained using the wall mounted cameras show ma-
jor improvements though their position tracking precision is relatively lower
compared to those which include LRF measurement. By comparing table 4
and 5, it is possible to observe that the addition of the second camera in the
cooperative scheme improves the tracking results further.

In table 6, id swap occurrences under each mode are reported. As speci-
fied earlier, this quantity is important to our system because identifier swaps
would lead to a false motion estimation which in turn would affect the navi-
gation of the mobile robot. Amongst the reported modes, LRF only tracking
does worst. This is again expected as no appearance information to iden-
tify one person from another. Hence, LRFs should be used in conjunction
with another sensor that has discriminating information where ever possible.
Again, the cooperative system with two cameras results in the best results,
with almost no id swaps when tracking two and three targets, and 1 to 2 id
swaps with four targets through out the sequence.

Two main conclusions can generally be drawn from the results reported

!The reader is referred to the URL homepages.laas.fr/aherbulo/videos/cviu/ for com-
plete runs.

27



in this section. First, classical video-surveillance approaches that rely on
fixed visual sensors improved the perception capability of a mobile sensor
unit (in our case a robot). The improvement clearly comes from the cameras
that provide rich global wide field of view feed to the robot. For the second
case, lets consider the evaluation that uses only deported cameras. This
system is basically the same as a typical video-surveillance system made
up of two networked cameras. The algorithms that we have proposed and
implemented are variants of currently considered state-of-the-art algorithms.
But, these results were further improved by the addition of a mobile sensor
unit. Hence, it can be claimed indoor video-surveillance systems can be
generally improved with a mobile sensor unit which on top of everything is
also a means for action.

In short, even though the actual reported results depend on the used
environment structure, it is clear that the fusion of heterogeneous sensors co-
operatively increases the performance consistently. On another note, the im-
plemented passers-by tracking has some pitfalls. Its first shortcoming comes
from a formulation inherent in the RJIMCMC-PF. The interaction model
in this tracker depends on the state-space of the particles and not on the
observations. It relies on the inference rather than the evidence. The sec-
ond shortcoming relates to the employed simple persons’ appearance model.
Whenever a track fails (loses its target), a new track is initialized after cross-
checking the appearance with past tracked targets. If this appearance is not
very discriminative, it could lead to a new track initialization rather than
assigning the lost track to the current target. Briefly, the simple histogram
based appearance model used could easily confuse persons with similar cloth-
ing and lead to erroneous interpretations.

7. Passers-by Avoidance and Live Robotic Demo

To realize the passers-by avoidance control law, we formulated the param-
eterized security zone shown in figure 10 around each passer-by, along his/her
travel direction inferred from the passers-by tracking system. This zone, pa-
rameterized by r, R, and w, ensures the robot crosses the person’s trajectory
behind rather than in front, avoiding interference. With this representation,
Rackham’s basic obstacle avoidance module based on the classical Nearness
Diagram (ND) Navigation [57] is used with the followed user’s position, ob-
tained from the user tracking module, defined as the goal.
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Figure 10: A person’s security zone defined
on the ground plane. It is parameterized by
r, R, and w, the conspicuous black dot rep-
resenting the person’s position. The arrow
depicts the travel direction of the individual
inferred from the tracking output.

The Nearness Diagram (ND) navigation is a navigation algorithm which
is based on identification of free space areas and obstacles proximity based
on some diagrams to define a set of situation which trigger specific motion
laws. A situation is identified by the pose of the robot, the obstacle distribu-
tion, and the goal location. All known situations are used to build a decision
tree beforehand. Then for any situation encountered, the tree is traversed
based on binary decision rules that evaluate the current situation resulting
(identifying) an associated action (control law) to use for this scenario. This
specific obstacle avoidance has been chosen owing to its simplicity, real-time
performance, and as it has been demonstrated to be an effective navigation
method capable of avoiding collision in troublesome scenarios [57]. In our
case, the only modification is: instead of seeing persons as just static obsta-
cles, the algorithm will treat them as obstacles with special zone needs that
depend on their motion direction.

All the discussed functionalities have been integrated in the presented
platform. All implementations are modularized in a GenoM framework. For
each block in figure 2, a dedicated GenoM module has been created. Each
module is an independent, interacting module corresponding to a single func-
tionality. This helps in standardizing all implementations in a solid software
engineering framework. In due time, the implementations will be integrated
in LAAS’s opensource robotic software collection.

Table 7 summarizes where the major implementations are executing. The
passers-by detection and tracking is made to run on the laptop so as to avoid
massive data transfers (pertaining to the images) across the wireless connec-
tion because of a network’s inherent delay. The complete system executes
at approzimately 1 fps. The HOG based person detection running on the
laptop, takes about 700 ms for two 640x480 images (camera 1 and 2) and is
a major bottleneck.

To verify the seamless integration between the passers-by tracking and
obstacle avoidance based on the presented security zone, the robot is simply
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Table 7: Implementation Deployment

Functionality Running-on

LRF leg detection Robot PC

User (target) tracking Robot PC
HOG person detection Laptop
Foreground segmentation Laptop
Multi-person Tracking Laptop

Servoing actions Robot PC

made to navigate from a starting point ‘A’ to an end point ‘B’, subject to
interference from two passers-by. In repeated experiments of this sort, the
robot successfully navigated from the start point to the end point adjusting
its path to avoid the passers-by as anticipated. Figure 11 shows snapshot
taken from the tracking module showing the position of the robot, the tra-
jectory of the passers-by, the start and end point of the robot motion. The
sequences clearly show how the robot rotated to go behind the passer-by
tracked in red color 2.

Finally, the complete system, i.e. user following with passers-by avoid-
ance, based on the passers-by tracking and defined security zone, is tested by
making the robot follow the user amongst a total crowd of five people. In the
experiment, Rackham was able to follow the person as anticipated without
interfering with the motion of the passers-by. Snapshots taken from the live
video captured during a run are shown in figure 122. These results are satis-
factory because the robot follows the user even in the event of disturbance by
passers-by. But, the reaction time of the robot is still a little slow. In the cur-
rent implementation this is mainly due to the computational cost incurred by
the HOG based person detection which has a low frame rate and network la-
tency. In its current form, this system could be extended for an area covered
by similar number of cameras without problem. But, the system will have a
problem if there be need to increase the number of cameras greatly for we
have adopted a centralized fusion approach. At each cycle, information has
to be sent to the central manager which will create a bottleneck when done
over a network connection for large number of cameras. Hence, in this case
a decentralize approach with decentralized processing at each camera could
be favored. In summary, the presented system is well adapted for moderate

2The reader is referred to the URL homepages.laas.fr/aherbulo/videos/cviu/ for com-
plete runs.
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Figure 11: A sequence showing how the robot adjusted its trajectory to go to the end
point without interfering with the passers-by. A security zone with » = 0.5m, R = 1.5m,
and w = 30" is used in these runs.

size areas but not large halls like an Airport.

8. Conclusion and Perspectives

Person tracking provides important capabilities for human assistance in
utilitarian populated areas. The work presented herewith makes its main
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(a) 4.7sec (b) 10.8sec (c) 39.7sec (d) 40.6sec

Figure 12: Snapshot taken from the person following whilst passers-by avoidance live
run. Each row corresponds to the feed from: external camera capturing the H/R situation
(for demonstration purposes), the on-board vision, the RFID detection, the two deported
(wall mounted) cameras, and ground plane showing tracking trajectories and laser scan,
respectively. The time the shots were taken is shown in the caption. In (a), the user
(target) person is seen entering the scene, with the RF detection indicating the direction
of the tag held by the user. Tracking of the user can be seen in (b) with the yellow particles
in the mobile camera feed, and a green bounding box in the wall mounted cameras feed.
The robot actually starts to follow the user in a straight path as there are no passers-
by in the vicinity. Passers-by start appearing in the workspace in (¢) and their tracked
trajectories can be seen on the ground plane showing the raw laser scan. (d) show tracking
and avoidance instances during the experiment.

32



contribution in this vein by proposing a cooperative scheme between overhead
cameras and sensors embedded on a mobile robot in order to track people
in crowds. Our Bayesian data fusion framework outperforms (1) typical
surveillance systems with only fixed cameras which can not handle dead spot,
and (2) complete embedded systems without wide FOV and straightforward
(re)-initialization ability. The presented off-line results are a clear indication
of the framework’s notable tracking performance. Our work extends the well-
known intruder pursuit by a mobile robot to the tracking of all the passers-by
in its vicinity and the disambiguation with its human user.

The proposed scheme has also been deployed on a development platform
to verify its coherency and seamless integration amongst the different modal-
ities. The live experiments demonstrate that the navigation task inherits the
advantages of the various perceptual functions, thereby being able to robustly
follow a given person whilst avoiding passers-by.

Near future investigations will focus on quantitative evaluation of the
on-line (live) experiments in crowds. The HOG person detector will be re-
placed by a less time consuming detector to decrease the time processing
and so further increase/improve the robot’s reactivity. Further investiga-
tions will also concern the simultaneous interaction with multiple RF-tagged
individuals. External PTZ cameras will also be added to (1) to increase the
coverage range, and (2) achieve optimal camera assignment with respect to
simultaneous and multiple observation goals during navigation.
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