
Vision and RFID Data Fusion for Tracking People in

Crowds by a Mobile Robot

T.Germaa,b, F.Leraslea,b, N.Ouadaha,c, V.Cadenata,b

{tgerma, lerasle, nouadah, cadenat}@laas.fr

aCNRS ; LAAS ; 7, avenue du Colonel Roche, F-31077 Toulouse
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Abstract

In this paper, we address the problem of realizing a human following task in
a crowded environment. We consider an active perception system, consisting
of a camera mounted on a pan-tilt unit and a 360◦ RFID detection system,
both embedded on a mobile robot. To perform such a task, it is necessary
to efficiently track humans in crowds. In a first step, we have dealt with this
problem using the particle filtering framework because it enables the fusion
of heterogeneous data, which improves the tracking robustness. In a second
step, we have considered the problem of controlling the robot motion to make
the robot follow the person of interest. To this aim, we have designed a multi-
sensor-based control strategy based on the tracker outputs and on the RFID
data. Finally, we have implemented the tracker and the control strategy
on our robot. The obtained experimental results highlight the relevance of
the developed perceptual functions. Possible extensions of this work are
discussed at the end of the article.

Key words: Radio frequency ID, multimodal data fusion, particle filtering,
person tracking, person following.

1. Introduction

Giving a mobile robot the ability of automatically following a person ap-
pears to be a key issue to make it efficiently interact with humans. Numerous
applications would benefit from such a capability. Service robotics is obvi-
ously one of these applications, as it requires interactive robots [? ] able to
follow a person to provide continual assistance in office buildings, museums,
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hospital environments, or even in shopping centers. Service robots clearly
need to move in ways that are socially suitable for people. Such a robot have
to localize its user, to discriminate him/her from others passers-by and to be
able to follow him/her accross complex human-centered environment. In this
context, tracking a given person in crowds from a mobile platform appears
to be fundamental. However, numerous difficulties arise: moving cameras
with limited view-field, cluttered background, illumination variations, hard
real-time constraints, and so on.

The literature offers many tools to go beyond these difficulties. Our paper
focuses on particle filtering framework as it easily enables to fuse heteroge-
neous data from embedded sensors. Despite their sporadicity, these dedicated
person detectors and their hardware counterpart are very discriminant when
present.

The paper is organized as follows. Section 2 depicts an overview of the
corresponding works done within our robotic context and introduces our con-
tributions. Section 3 describes our omnidirectional RFID prototype. This
sensor is very discriminant when present in order to detect the user wear-
ing an RFID tag. Section ?? recalls some PF basics and details our new
importance function for multimodal person tracking. The developed con-
trol strategy to achieve a person following task in a crowded environment
is detailed in section ??, while section ?? presents the mobile robot which
has been used for our tests and the obtained results. Finally, section ??
summarizes our contributions and discusses future extensions.

2. Overview and related work

Particle filters (PF) [? ] through different schemes are currently inves-
tigated for person tracking in both robotics and vision communities. Be-
sides the well-known CONDENSATION scheme, the fairly seldom exploited
ICONDENSATION [? ] variant steers sampling towards state space regions
of high likelihood by incorporating both the dynamics and the measurements
in the importance function. PF represent the posterior distribution by a set
of samples, or particles, with associated importance weights. This weighted
particles set is first drawn from an importance function and the state vector
initial probability distribution, and is then updated over time taking into
account the measurement models. Some approaches e.g. [? ] show that in-
termittent and discriminant cues based on person detection and recognition
functionalities must be considered in the importance function in order to: (i)
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automatically re-initialize the tracker on the targeted person when failures
occur, (ii) simplify the data association problem in populated settings [? ].

Primary, embedded detectors are generally restricted to stationary robots
in order to (only) segment moving people from the background [? ? ]. Some
works [? ? ? ] consider foreground segmentation based on disparity maps
given a stereoscopic head [? ], but they generally require significant CPU
resources. Other techniques assume that people coarsely face the robot. In
those cases, face detection [? ? ? ] can be applied to (re)-initialize suc-
cessfully the tracker after temporary occlusions, out of camera view-field,
or target losses. These multi-view face detectors have received an increas-
ing interest due to their computational efficiency. Such detectors have been
extended to the full or upper human body detection [? ? ? ]. Some com-
plementary approaches combine person detection and recognition [? ? ] in
order to distinguish the targeted person from others. Nevertheless, despite
many advances, a major problem - sensitivity to pose and illumination - still
exists and a complete and on-boarded reliable visual-based solution that can
be used in general conditions is not currently available. Clearly, using on-
boarded monocular system to sense humans is very challenging compared to
static and deported systems. Thus, face detection and skin color detection
are only available when the person faces towards the robot, and the robot can
hardly follow behind or even walk next to the person. Full or upper human
body detectors based on supervised learning are inappropriate to cover all
the person’s range (from to 0.5 to 5m) and orientation1 encountered when
sensing from a mobile robot. Consequently, recent trends lead to methods
based on multimodal sensor fusion. Their issue is generally to use the video
stream as the primary sensor and other sensor streams as secondary ones.

Beyond visible spectrum vision, thermal vision allows to overcome some
of the aforementioned limitations, since humans have a distinctive thermal
profile with respect to non-living objects. Moreover, their appearance does
not depend anymore on light conditions Yet, up to now, there are very few
published works on using both thermal and visible cameras on mobile robots
to detect/track humans (see a survey on thermal vision [? ]). We can here
mention the well-known PF proposed by Cielniak et al. in [? ] which
uses thermal vision for human detection and color images for capturing the
appearance. Unfortunately, in crowds, sensing with thermal cameras leads

1The person can walk towards, away from, or past the robot, side-by-side, etc.
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to an abundance of additional hot spots. It is then impossible to identify a
given person as all humans (and also all living objects...) stick out as white
regions on a black background.

Some other multimodal systems devoted to person tracking utilize audio
and visual sensors [? ? ? ? ]. In crowds, the data association problem can
be settled by speaker identification [? ? ]. Nevertheless, sensing people with
audio cues during the robot or the customers movement is questionable. In-
deed, the variability generated by the speaker, the recording conditions, the
background noise especially in crowded environments, the inherent intermit-
tence of the voice stream (as humans do not babble all the time) are the main
difficulties which have to be overcome. Therefore, the speaker identification
problem appears to be a challenging problem and still remains an open issue
for further research.

Using laser range finders for person tracking is also frequent in the
robotics community. In contrast to cameras, lasers provide accurate depth
information, require little processing and are insensitive to ambient lighting.
The classical strategy consists in extracting legs from a 2D laser scan at a
fixed height. To this end, two particular types of features are intensively
studied: motion [? ? ] and geometry [? ? ? ? ? ] features. Many multi-
sensor fusion systems integrate the data provided by a laser range finder and
a perspective [? ? ? ] or omnidirectional [? ? ] camera. Anyway, systems
involving laser scans suffer from several drawbacks. Leg detection in a 2D
scan does not provide robust features for discriminating the different persons
in the robot vicinity, while the detector fails when one leg occludes the other.

Recent person tracking approaches have focused on indoor positioning
systems based on wireless networking indoor infrastructure and ultrasound,
infrared [? ], or radio frequency badged humans’ clothes [? ? ? ? ? ]. Radio
frequency (RF) signals are widely used as they (i) can penetrate through most
of the building material, (ii) have an excellent range in indoor environments,
(iii) have less interferences with other frequency components. Moreover,
RFID tags are preferred to accelerometers for aesthetical and ergonomical
reasons [? ? ? ]. Common applications involving RFID technologies [?
? ? ? ? ] assume stationary readers distributed throughout the settings,
namely ubiquitous sensors. Solely Schutz et al. in [? ] considered the
multimodal people tracking from a network of RF sensors and laser range
finders placed throughout an environment. Our approach privileges on-board
perceptual resources (monocular color vision and RF reader) in order to limit
the hardware installation cost and therefore the indoor setting support. We
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can here mention the approach proposed in [? ] which considers an on-board
RF device for people detection. However, the detection range was limited to
180◦ and no multimodal data fusion was done.

RFID sensors enjoy the nice properties to provide explicit information
about the person identity, even if the location information is relatively coarse.
Our multimodal person tracker combines the accuracy and information rich-
ness advantages of active color vision with the identification certainty of
RFID. This tracker, which has not been addressed in the literature, is ex-
pected to be more resilient to occlusions than vision-based only systems, since
the former benefits from a coarse estimate of people location in addition to
the knowledge of his/her appearance. Furthermore, the ID-sensor can act as
reliable stimuli that triggers the vision system. Finally, when several people
lie in the camera view-field2, this multimodal sensor data fusion will help in
distinguishing the targeted person from the others.

The contributions of the paper is three-fold. The first contribution of
this paper is the customization of an off-the-shelf RFID system to make
it able to detect tags in 360◦ view field, by multiplexing 8 antennas. We
have embedded this system on our mobile robot Rackham to detect passive
RFID-tagged persons. This omnidirectional ID-sensor, unaffected by light-
ing conditions or humans’ appearance, appears as an ideal complement to
trigger a PTU-mounted perspective camera. The second contribution con-
cerns particle sampling within the ICONDENSATION scheme. We propose
a genuine importance function based on probabilistic saliency maps issued
from visual and RF person detector and ID as well as a rejection sampling
mechanism to (re)-positions samples on the desired person during tracking.
This particle sampling strategy, which is unique in the literature, should im-
prove our multi-sensor based tracker so that it becomes much more resilient
to occlusions, data association, and target losses than vision-based only sys-
tems. The last contribution concerns a multi-sensor based control making the
mobile robot reliably follow in real time a person in a more difficult setting
than other previous works [? ? ? ].

2In this case, there are multiple observations in the image plane.
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3. Person detection and identification based on RFID

3.1. Device description

The device consists of: (i) a CAENRFID3 A941 multiprotocol off-the-
shelf reader which works at 870MHz, with a programmable emitting RF
power from 100 to 1200mW, (ii) 8 directive antennas to detect the passive
tags worn on the customer’s clothes, (iii) a prototype circuit in order to se-
quentially initialize each antenna (figure 1). With a single antenna, only a tag
angle relative to the antenna plane can be estimated. With our 8 antennas,
the tag can be detected all around the robot at any distance between 0.5m
(i.e. approximately the robot’s radius) and 5m. Given the placement of the
antennas and their own field of view, the robot neighborhood is divided into
24 areas (figure ??), depending on the number of antennas simultaneously
detecting the RFID tag.

Figure 1: RF multiplexing pro-
totype to address 8 antennas.

To determine the observation model of the
whole antenna set, statistics are performed by
counting frequencies depending on the number
of antennas (three at a maximum, figure ??)
that detect the tag. The resulting normalized
histograms are shown in figure ?? where the x-
axis represents the azimuthal angle θtag. Simi-
lar histograms can be observed for the distance
dtag

4. The resulting sensor model makes the
simplifying assumption that both azimuth and
distance histograms can be approximated by
Gaussians respectively defined by (µθtag , σθtag)
and (µdtag , σdtag) where µ(.) and σ(.) are the
mean and standard deviation. Afterwards, we
project these probabilities for the current tag
position to a saliency map of the floor. The size
of the saliency map is 300×300 pixels; thus the
area of each pixel represents 7 cm2. Each pixel probability is calculated given
the 8-antenna set outputs to approximate the RFID tag position (figure ??).
The three rightmost plots in figure ?? respectively shows the saliency maps

3see http://www.caen.it/rfid/
4They are not presented here to save space, but they are available on request.
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for the detection by one, two or three antennas. Given this observation
model, evaluations allow to characterize the ID-sensor performances.

(a) (b) (c)
Figure 2: Occurrence frequencies of angle θtag given one (a), two (b) or three (c) detections.

(a) (b) (c) (d)
Figure 3: Azimuthal view field of 8 antennas (a) and saliency map for tag detection
respectively for 1 (b), 2 (c) and 3 (d) antennas.

3.2. Evaluations from feasibility study

The RF system has been mounted on our mobile robot Rackham (sec-
tion ??) and evaluated in the presence of people. We have proceeded in the
following way. We have generated statistics by counting frequencies on a
81m2 area around the robot. Obstacles have been added one by one during
the test runs. Their positions have been randomly chosen and uniformly
distributed in this area. The corresponding ground-truth is based on the ra-
tio between the occluding zones induced by obstacles (assuming an average
person-width of 40cm) and the total area.

Given such various “crowdedness” situations, the RFID tag has been
moved around the robot assuming no self-occlusion by the person wearing
the tag during this evaluation. We have repeated this sequence for different
distances and we have counted for every point in a discrete grid whether the
tag worn by a fixed person is detected or not, depending on the crowdedness.
Comparisons between experimental and theoretical detection rates are shown
in figure ?? (see the box-and-whisker plots).
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Figure 4: Detection rate versus crowdedness in the
robot surrounding.

The x-axis and y-axis re-
spectively denote the number
of occluding persons (that is
“crowdedness”) and the de-
tection rate. The box plots
and the thick stretches inside
indicate the degree of disper-
sion (for 50% of the trials)
and the median of the trials.
Our experimental curves are
shown to be rather close to the
theoretical ones. As the sys-
tem is disturbed by the occlu-
sions, the number of false-negative readings logically increases with the num-
ber of obstacles. Nevertheless, the detection rate remains satisfactory, even
for overcrowded scenes (e.g.70% in average for 7 persons standing around the
robot). Furthermore, very few false-positive readings (reflections, detections
with the wrong antennas...) are observed in practice5.

4. Person tracking using vision and RFID

4.1. Basics on particle filters and data fusion

Particle filters (PF) aim at recursively approximating the posterior prob-
ability density function (pdf) p(xk|z1:k) of the state vector xk at time k con-
ditioned on the set of measurements z1:k = z1, . . . , zk. A linear point-mass
combination

p(xk|z1:k) ≈
N∑

i=1

w
(i)
k δ(xk − x

(i)
k ),

N∑
i=1

w
(i)
k = 1, (1)

is determined where δ(.) is the Dirac distribution. It expresses the selec-

tion of a value – or “particle” – x
(i)
k with probability – or “weight” – w

(i)
k ,

i = 1, . . . , N . An approximation of the conditional expectation of any func-
tion of xk, such as the MMSE6 estimate Ep(xk|z1:k)[xk], then follows.

5Passive tags induce few signal reflections contrary to their active counterparts.
6for ”Medium Mean Square Estimate“
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Algorithm 1 Generic particle filtering algorithm (SIR).

Require: [{x(i)
k−1, w

(i)
k−1}]

N

i=1
, zk

1: if k = 0 then
2: Draw x

(1)
0 , . . . ,x

(i)
0 , . . . ,x

(N)
0 i.i.d. according to p(x0), and set w

(i)
0 = 1

N
3: end if

4: if k ≥ 1 then {—[{x(i)
k−1, w

(i)
k−1}]

N

i=1
being a particle description of p(xk−1|z1:k−1)—}

5: for i = 1, . . . , 10 do

6: “Propagate” the particle x
(i)
k−1 by independently sampling x

(i)
k ∼ q(xk|x

(i)
k−1, zk)

7: Update the weight w
(i)
k associated to x

(i)
k according to w

(i)
k ∝ w

(i)
k−1

p(zk|x
(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, zk)
,

8: Prior to a normalization step so that
P

i w
(i)
k = 1

9: end for
10: Compute the conditional mean of any function of xk, e.g. the MMSE estimate Ep(xk|z1:k)[xk],

from the approximation
PN

i=1 w
(i)
k δ(xk − x

(i)
k ) of the posterior p(xk|z1:k)

11: At any time or depending on an “efficiency” criterion, resample the description [{x(i)
k , w

(i)
k }]

N

i=1

of p(xk|z1:k) into the equivalent evenly weighted particles set [{x(s(i))
k , 1

N
}]

N

i=1
, by sampling in

{1, . . . , N} the indexes s(1), . . . , s(N) according to P (s(i) = j) = w
(j)
k ; set x

(i)
k and w

(i)
k to x

(s(i))
k

and 1
N

12: end if

The “Sampling Importance Resampling” (SIR), shown on Algorithm ??,
is fully described by the prior p(x0), the dynamics pdf p(xk|xk−1) and the
observation pdf p(zk|xk). After initialization of independent identically dis-
tributed (i.i.d.) sequence drawn from p(x0), the particles stochastically evolve,

being sampled from an importance function q(xk|x(i)
k−1, zk). They are then

suitably weighted to guarantee the consistency of the approximation (??). To

this end, step 7 assigns each particle x
(i)
k a weight w

(i)
k involving its likelihood

p(zk|x(i)
k ) w.r.t. the measurement zk as well as the values of the dynamics pdf

and importance function at x
(i)
k . In order to limit the well known degeneracy

phenomenon [? ], step 11 inserts a resampling stage introduced by Gordon et
al. in [? ] so that the particles associated with high weights are duplicated

while the others collapse and the resulting sequence x
(s(1))
k , . . . ,x

(s(N))
k is i.i.d.

according to (??).
The CONDENSATION – for “Conditional Density Propagation” [? ] – is

the instance of the SIR algorithm such that the particles are drawn according
to the system dynamics, viz. when q(xk|x(i)

k−1, zk) = p(xk|x(i)
k−1). Then, in

visual tracking, the original algorithm [? ] defines the particles likelihoods
from contour primitives, but other visual cues have also been exploited [?
]. On this point, resampling may lead to a loss of diversity in the state
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space exploration. The importance function must thus be carefully defined.
As CONDENSATION draws the particles x

(i)
k from the system dynamics

but “blindly” w.r.t. the measurement zk, many of them may be assigned a
low likelihood p(zk|x(i)

k ) and thus a low weight in step 7, which significantly
worsen the overall filter performance.

An alternative, henceforth labeled “Measurement-based SIR” (MSIR),
merely consists in sampling the particles – or just some of their entries – at
time k according to an importance function π(xk|zk) defined from the current
image. The first MSIR strategy was ICONDENSATION [? ], which guided
the state space exploration by a color blob detector. Other visual detection
functionalities can be used as well, e.g. face detection/recognition (see be-
low), or any other intermittent primitive which, despite its sporadicity, is
very discriminant when present [? ]. Thus, the classical importance function
π(.) based on a single detector can be extended to consider the outputs from
L detection modules, i.e.

π(x
(i)
k |z

1
k, . . . , z

L
k ) =

L∑
l=1

κlπ(x
(i)
k |z

l
k), with

∑
κl = 1. (2)

In an MSIR scheme, if a particle x
(i)
k drawn exclusively from the image

(namely π(.)) is inconsistent with its predecessor x
(i)
k−1 from the point of

view of the state dynamics, the update formula leads to a small weight w
(i)
k .

One solution to this problem, as proposed in the genuine ICONDENSATION
algorithm, consists in also sampling some particles from the dynamics and
some w.r.t. the prior so that:

q(x
(i)
k |x

(i)
k−1, zk) = απ(x

(i)
k |zk) + βp(xk|x(i)

k−1) + (1− α− β)p0(xk). (3)

with α, β ∈ [0; 1]. Besides the importance function, the measurement func-
tion involves visual cues which must be persistent but are more prone to
ambiguity for cluttered scenes. An alternative is to consider multi-cue fu-
sion in the weighting stage. Given L measurement sources (z1

k, . . . , z
L
k ) and

assuming the latter are mutually independent conditioned on the state, the
unified measurement function can then be factorized as follows:

p(z1
k, . . . , z

L
k |x

(i)
k ) ∝

L∏
l=1

p(zl
k|x

(i)
k ). (4)
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4.2. Tracking implementation

The aim is to fit the template relative to the RFID-tagged person all along
the video stream through the estimation of his/her image coordinates (u, v)
and its scale factor s of his/her head. All these parameters are accounted for
in the above state vector xk related to the k-th frame. With regard to the
dynamics p(xk|xk−1), the image motions of humans are difficult to character-
ize over time. This weak knowledge is modelled by defining the state vector
as xk = [uk, vk, sk]

′
and assuming that its entries evolve according to mutu-

ally independent random walk models, viz. p(xk|xk−1) = N (xk;xk−1, Σ)
where N (.; µ, Σ) is a Gaussian distribution with mean µ and covariance
Σ = diag(σ2

u, σ
2
v , σ

2
s).

In both importance sampling and weight update steps, fusing multiple
cues enables the tracker to better benefit from distinct information, and
decrease its sensitivity to temporary failures in some of the measurement
processes. The underlying unified likelihood in the weighting stage is more
or less conventional. It is computed thanks to (??) by means of several mea-
surement functions, according to persistent visual cues, namely: (i) edges to
model the silhouette [? ], (ii) multiple color distributions to represent the
person’s appearance (both head and torso) [? ]. Despite its simplicity, our
measurement function is inexpensive while still providing some level of per-
son discrimination from the clothes appearance. Otherwise, our importance
function is unique in the literature and is detailed below.

4.3. Importance function based on visual and RF cues

Given equation (??), three functions π(xk|zc
k), π(xk|zs

k) and π(xk|zr
k),

respectively based on skin probability image, face detector and RF identifi-
cation are considered.

The importance function π(xk|zc
k) at location xk = (u, v) is described by

π(x|zc) = h(cz(x)) where cz(x) is the color of the pixel located in x in the
input image zc. h is the 3D normalized histogram used for backprojection [?
] indexed by R, G, B channels and represents the color distribution of the
skin which is a priori learnt.

The function π(xk|zs
k) relies on a probabilistic image based on the well-

known face detector pioneered by Viola et al. in [? ], and improved in
[? ? ], which covers a range of ±45◦ out-of plane rotation. Let NB be the
number of detected faces {Fj}NB

j=1 and pi = (ui, vi), i = 1, . . . , NB the centroid
coordinate of each such region. The face recognition technique, detailed in [?
], involves two steps during the learning stage. The first one is composed
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of PCA-based computation and multi-class SVM7 learning, while the second
one uses a genetic algorithm free-parameters optimization based on NSGA-
II. Finally, our on-line decision rule defines a posterior probability P (Ct|F , z)
of labeling face Fj to Ct so that:{

∀t P (Ct|F , z) = 0 and P (C∅|F , z) = 1 when ∀t L t < τ

∀t P (Ct|F , z) = L tP
p L p and P (C∅|F , z) = 0 otherwise ,

where C∅ refers to the void class, τ is one of the free-parameters of the system
and Ct refers to the face basis of the RFID-tagged person. The function
π(.) at location x = (u, v) is deduced using a weighted Gaussian mixture
proposal8. Its expression is given hereafter:

π(x|zs) ∝
NB∑
j=1

P (C|Fj, z).N (x;pj, diag(σ2
uj

, σ2
vj

)),

where P (C|Fj, z) is the face ID probabilities for each detected face Fj given
beforehand learnt tracked person face. Given the RF outputs, the function
π(x

(i)
k |zr

k) expresses as follows:

π(x
(i)
k |z

r) = N (θ
x

(i)
k

; µθtag , σθtag),

where θ
x

(i)
k

is the azimuthal position of the particle x
(i)
k in the robot frame,

deduced from its horizontal position on the image and the camera pan angle.
µθtag and σθtag , described in section 3, are respectively the mean and the
covariance of the estimated position of the sole targeted tag associated to
the user in the robot frame depending on the antenna outputs.

The particle sampling is done using the importance function q(.) given in
equation (??) and requires a process of rejection sampling. This process con-
stitutes an alternative when q(.) is not analytically modelled. The principle
is described in algorithm ?? with g(.) an instrumental distribution to make
the sampling easier under the restriction that q(.) < Mg(.) where M > 1 is

an appropriate bound on q(.)
g(.)

.
Figure ?? shows an illustration of the rejection sampling algorithm for a

given image. Our importance function (??) combined with rejection sampling
ensures that the particles will be placed in the relevant areas of the state space
i.e. concentrated on the tracked person or potential candidate areas.

7for ”Support Vector Machine“
8Indexes k and i are omitted for the sake of clarity and space.

12



(a) (b) (c) (d) (e) (f)

Figure 5: (a) original image, (b) skin probability image π(xk|zc
k), (c) face detection

π(xk|zs
k), (d) azimuthal angle from RFID detection π(xk|zr

k), (e) unified importance func-
tion (??) (without dynamic), (f) accepted particles (yellow dots) after rejection sampling.

Algorithm 2 Rejection sampling algorithm.

1: draw x
(i)
k according to Mg(xk)

2: r ← q(xk|xk−1,zk)

Mg(x
(i)
k )

3: draw u according to U[0,1]

4: if u ≤ r then
5: accept x

(i)
k

6: else
7: reject it
8: end if

5. A sensor-based control law for person following task

Now, we address the problem of making the robot follow the tagged per-
son. To this aim, we use the data provided by both the tracker and the
RFID system. We first briefly present the considered robotic system and the
chosen control strategy, before detailing the different designed control laws.

5.1. Modelling the problem: the robot and the control strategy

Our robot Rackham depicted in section ?? consists of a nonholonomic
mobile base equipped with a RFID system and with a camera mounted on
a pan/tilt unit (PTU). Four control inputs can then be used to act on our
robot: the linear and angular mobile base velocities (vr, ωr) and the pan/tilt
unit angular velocities (ωp, ωt). Our goal is to compute these four velocities
so that the robot can efficiently and safely achieve the person following.
Different control strategies are available in the literature. In our case where
the camera and the RFID tag are used to detect and track the user, it appears
rather natural to consider visual servoing techniques [? ? ]. These techniques
allow to control a large panel of robotic systems using image data provided
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