3
&
)
§
f
i

16 m—

THESE

En vue de ’obtention du

DOCTORAT DE L’UNIVERSITE DE TOULOUSE

Universiteé
de Toulouse

Délivré par : ['Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 09/10/2023 par :
Julien Ferry

Addressing Interpretability Fairness & Privacy in Machine Learning
Through Combinatorial Optimization Methods

JURY
JOSEP DOMINGO-FERRER Full Professor Rapporteur
PIERRE SCHAUS Professeur Rapporteur
ELisA FROMONT Professeure des Universités Examinatrice
MATHIEU SERRURIER Maitre de Conférences Examinateur
SYLVIE THIEBAUX Professor Présidente du jury
THIBAUT VIDAL Associate Professor Examinateur
SEBASTIEN GAMBS Professeur Directeur de these
MARIE-JOSE HUGUET Professeure des Universités Directrice de these
MOHAMED SIALA Maitre de Conférences Co-encadrant de these
ULRICH AIvODJI Assistant Professor Invité

Ecole doctorale :
Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse
Spécialité :
Informatique et Télécommunications
Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systémes
Directeur(s) de Theése :
Marie-José Huguet, Sébastien Gambs et Mohamed Siala
Rapporteurs :
Josep Domingo-Ferrer et Pierre Schaus







Remerciements

Je tiens tout d’abord a remercier I'intégralité des membres de mon jury de these,
pour leurs questions, leurs retours constructifs et pour le temps qu’ils m’ont accordé:
Mme Sylvie Thiébaux, qui I’a présidé; Mr Pierre Schaus et Mr Josep Domingo-
Ferrer, rapporteurs de ma these; et enfin Mme Elisa Fromont, Mr Thibaut Vidal et
Mr Mathieu Serrurier, examinateurs.

Je remercie aussi grandement ceux qui m’ont accompagné depuis mes débuts
dans le monde de la recherche: Marie-Jo, Mohamed, Sébastien et Ulrich. Le 06
Décembre 2018, je contactais Mohamed pour réaliser un stage de M1 dans le milieu
de la recherche - et nous voici presque 5 ans (et un doctorat) plus tard! Merci de
m’avoir fait découvrir (et aimer) ce milieu, de m’avoir suivi pendant ces 4 mois
de stage et bien siir ces trois ans de these. Merci pour vos qualités scientifiques,
mais surtout pour votre confiance, votre aide, et votre présence pendant tous ces
moments importants: premieres soumissions, premiers papiers acceptés, premieres
conférences... Je pense aussi & tous nos moments de convivialité - en terrasse a
Toulouse, mais aussi autour d’une tarte praline a Lyon, d’une poutine a Mon-
tréal, d’un bon steack a Durham, d’une tarte flambée a Strasbourg, d’une galette
a Rennes, d’un burger a Los Angeles!

Mes pensées vont également a toute I’équipe ROC du LAAS-CNRS, au sein de
laquelle j’ai eu la chance d’évoluer pendant ces trois années. J’ai trouvé a vos cotés
un cadre de travail idéal, tant sur le plan professionnel que sur le plan personnel.
Pour tous les échanges scientifiques, toutes les pauses café, toutes les séances de
sport, et bien stir pour tous les moments de partage a des heures plus ou moins
tardives de la journée ou de la nuit, merci. J’ai une pensée particuliére pour Carla,
Alexandre, Alois, et Louis, camarades doctorants de la promotion 2020/21 - pour
tous les instants partagés au LAAS ou pendant nos premieres conférences. Je
pense aussi et non sans nostalgie a la salle Arbizon au sein de laquelle, & cause
des travaux dans nos bureaux, nous avons vécu ensemble la belle expérience de la
rédaction! Quelques mercis particuliers a Christian (et Mohamed) pour les sorties
nocturnes, a Cyrille pour sa présence et nos discussions, & Emmanuel, Hannes,
Camille, Matthieu, Théo pour le vélo, la course a pied, le rugby, a Valentin et Tom,
les anciens qui nous ont montré le chemin, a Théo (encore!) l'infatigable animateur
de I’équipe et & Julien - mon tout premier stagiaire! Merci aussi a ’équipe PrivSec
de TUQAM, et & tous ses membres que j’ai pu voir régulierement en visio - mais
également a Montréal lors de ma visite entre Mai et Juillet 2022.

Enfin, j’aimerais remercier ma famille, pour leur support indéfectible depuis que
j’ai quitté mon Aveyron natal, ses riviéres, ses prairies et ses foréts, pour mener mes
études dans la ville Rose - il y a déja 8 ans! Merci aussi & mes amis - les Avey-
ronnais bien siir, avec lesquel.les nous avons su rester proches malgré la distance,
mais également tous ceux qui ont croisé ma route depuis 2015, et notamment les
INSAien.nes et les médecin.es. Tous nos moments partagés sont précieux!

A toutes les personnes mentionnées ci-dessus: je vous remercie une nouvelle fois,
et je vous souhaite le meilleur pour I'avenir.



i
Abstract

Machine learning techniques are increasingly used for high-stakes decision making,
such as college admissions, loan attribution or recidivism prediction. It is thus
crucial to ensure that the trained models can be audited or understood by human
users, do not create or reproduce discrimination or bias, and do not leak sensitive
information regarding their training data. Indeed, interpretability, fairness and
privacy are key requirements for trustworthy machine learning, and all three have
been studied extensively during the last decade. However, they are often considered
in isolation.

The objective of this manuscript is precisely to investigate the interactions be-
tween the three different fields, using tools from combinatorial optimization and
operational research. For each pairwise intersection, we review the literature on
the previously observed compatibilities, tensions and synergies, and draw new in-
sights from our proposed contributions - either highlighting an identified tension
or proposing a conciliation mechanism. We first propose an Integer Linear Pro-
gramming (ILP) based pruning technique for a learning algorithm producing fair
and inherently interpretable models. By jointly leveraging accuracy, sparsity and
fairness, it enhances the exploration of the algorithm’s search space and helps con-
ciliating fairness and interpretability. Motivated by the empirical observation that
fairness often does not generalize well, we further introduce a novel framework to
improve fairness robustness with respect to the training set sampling.

We then show how information regarding a model’s fairness can be exploited to
reconstruct its training set sensitive attributes. To this end, we propose efficient
MILP and Constraint Programming (CP) models directly encoding the fairness
information to improve the reconstruction performed by any baseline adversary.
This highlights the intrinsic tension between enforcing fairness with respect to some
sensitive attributes, and ensuring such attributes’ privacy. Finally, we demonstrate
how the structure of a released interpretable model can be used to reconstruct a
probabilistic version of its training set. By precisely quantifying the amount of
information a model encodes regarding its training data, we illustrate an apparent
conflict between interpretability and privacy.

Keywords: Artificial Intelligence, Machine Learning, Combinatorial Optimiza-
tion, Interpretability, Fairness, Privacy.
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Résumé

Les approches d’apprentissage automatique sont de plus en plus utilisées pour des
problématiques de prise de décisions impactant nos vies, telles que ’admission a
I'université, Pattribution de préts ou la prédiction de récidive. Ainsi, il est crucial
de s’assurer que les modeles entrainés peuvent étre audités et compris par leurs
utilisateurs, ne reproduisent pas ni ne créent de biais discriminatoires et ne di-
vulguent pas d’informations sensibles sur leurs ensembles d’entrainement. Ainsi,
I'interprétabilité, I’équité et la protection de la vie privée sont des propriétés indis-
pensables pour le développement de techniques d’apprentissage dignes de confiance.
Toutes trois ont été largement étudiées durant la derniére décennie mais elle sont
le plus souvent considérées séparément les unes des autres.

L’objectif de cette these est précisément de caractériser les interactions entre ces
trois domaines, en utilisant des outils d’optimisation combinatoire et de recherche
opérationnelle. Considérant ces trois domaines deux a deux, nous passons tout
d’abord en revue la littérature sur leurs compatibilités, tensions et synergies. Nous
nous concentrons sur certaines de ces tensions et proposons soit un mécanisme de
conciliation, soit des techniques permettant de mettre en exergue ou de quantifier ce
conflit. Plus précisément, nous proposons d’abord une technique d’élagage basée sur
la programmation linéaire en nombres entiers pour un algorithme d’apprentissage
produisant des modeéles équitables et intrinséquement interprétables. En encodant
conjointement précision, taille du modele et équité, elle améliore I'exploration de
I’espace de recherche de I’algorithme et aide a concilier équité et interprétabilité.
Forts de la constatation expérimentale que ’équité généralise souvent mal une fois
les modeles appliqués sur de nouvelles données, nous proposons une nouvelle ap-
proche visant a améliorer la robustesse de I’équité vis-a-vis de ’échantillonnage du
jeu de données.

Par la suite, nous montrons par la suite comment l'information relative a 1’équité
d’un modele peut étre utilisée pour reconstruire les attributs sensibles de son en-
semble d’entrainement. A cet effet, nous proposons des modeéles de programmation
linéaire en nombres entiers et de programmation par contraintes encodant directe-
ment 'information de I’équité afin d’améliorer une reconstruction effectuée en amont
par un attaquant quelconque de la littérature. Ce travail illustre une tension in-
trinseque entre le fait d’assurer I’équité par rapport a certains attributs sensibles
et la nécessité de protéger 'information relative a ces attributs. Enfin, nous ex-
pliquons comment la structure d’un modele interprétable peut étre utilisée pour
reconstruire une version probabiliste de son ensemble d’entrainement. En quan-
tifiant précisément la quantité d’information qu’un modeéle encode sur ses données
d’entrainement, nous illustrons un conflit apparent entre 'interprétabilité et la pro-
tection de la vie privée.

Mots-clés : Intelligence artificielle, Apprentissage automatique, Optimisation
combinatoire, Interprétabilité, Equité, Protection de la vie privée.
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Introduction

Machine learning approaches were introduced more than half a century ago, with the
term machine learning being popularized in 1959 by Arthur Samuel [Samuel 1959],
an IBM employee and pioneer in self-learning programs. During the last decade,
the use of these techniques has increased dramatically, driven by several factors.
First, the amount of collected data has considerably grown during the past years,
led by the development of the Internet of Things and sensor networks, as well as a
tremendous monitoring of online behaviors. Each year, several tens of zettabytes
(102! bytes) are being collected and stored [Jverby & Audestad 2021], and this
number is expected to keep rising. Second, significant progress was done both in
hardware and software, allowing to gather and process these huge amounts of data
in a more efficient manner.

Machine learning methods have many useful and promising applications. For
instance, they can help analyzing medical data, which is becoming increasingly
complex due to the improvements in medical analysis tools. Thus, they can be
used for a faster and/or more accurate medical diagnosis. In addition, they have
a great business value in many fields such as advertisement targeting or recom-
mendation algorithms. However, their growing use for high-stakes decision-making
tasks - such as college admissions, recidivism prediction, credit scoring or even
kidney exchange [Aziz et al. 2021] - raises significant ethical, philosophical and so-
cietal challenges. Furthermore, their use is also directly regulated by several le-
gal texts, such as the recent European Union General Data Protection Regula-
tion! [Voigt & Von dem Bussche 2017] or forthcoming AT Act?.

Three main issues have been identified, each corresponding to a key concern
that should be addressed to both comply with these new legal frameworks and lay
the foundations towards an ethical and responsible Al. First, machine learning al-
gorithms require large amounts of data, which often contains personal information.
Thus, it is of paramount importance to ensure that the privacy of the involved indi-
viduals is not harmed while also being able to extract useful generic patterns from
this data. Second, it was shown that data-driven decision-making mechanisms can
create or reproduce biases that systematically disadvantage specific individuals or
groups. Measuring but also reducing or eliminating these biases to promote fair-
ness is hence an important challenge. Third, while common models such as deep
neural networks can reach high predictive performance, their underlying logics and
representation are often too complex or hidden, preventing users to fully under-
stand their decisions. This raises significant concerns, regarding their auditability,
certifiability and trust, thus calling for the need to explain their predictions.

These three topics, namely privacy, fairness, and interpretability, have been
extensively studied during the last decade [Cristofaro 2020, Barocas et al. 2019,

"https://gdpr-info.eu/
’https://artificialintelligenceact.eu/
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Guidotti et al. 2018] with an emphasis on how they trade-off with utility. How-
ever, while they are often considered in isolation, it is necessary to enforce them all
simultaneously. Characterizing their mutual interplays is hence an important re-
search avenue, which has attracted some attention in the last years. Indeed, these
concerns often conflict [Datta et al. 2023], and compromises between them, as well
as with utility, generally have to be done.

In this thesis, we investigate the pairwise interactions between fairness, privacy
and interpretability. They intuitively correspond to the three edges of the graph
represented in Figure 1. This graph will later be used at the beginning of each
chapter to visually position its content. More precisely, our contributions are two-
fold. First, we survey the literature on the different compatibilities, synergies and
tensions identified between each pair of desiderata. Second, for each such pair, we
focus on one of the observed tensions and either propose a mitigation mechanism
or a technique to highlight or quantify the conflicting relationship.

Fairness

[Interpretability} (Privacy

Figure 1: Graph representation of three identified dimensions of trustworthy ma-
chine learning. The objective of the thesis is to study their pairwise mutual inter-
plays, which correspond to the edges of this graph.

Outline of the Thesis

The manuscript includes four chapters, described in more details hereafter. The
first one provides the necessary background while the following three detail our
contributions. More precisely, each of the three contribution chapters focuses on
the interplays between two of the three identified areas of trustworthy machine
learning, namely fairness, interpretability and privacy. They are all organized in the
same way: first we survey the literature and summarize the different compatibilities,
synergies and tensions identified between the two concerned notions. Afterwards, we
focus on one of these identified aspects before presenting a novel contribution whose
objective is to highlight or address a tension. In the Appendix A, we further propose
a graphical summary of our literature review on the identified interplays between
fairness, interpretability and privacy, depicted in the first parts of Chapters 2, 3
and 4.



Chapter 1 introduces the necessary background regarding the considered ma-
chine learning setup, useful tools from combinatorial optimization as well as the
three identified issues for trustworthiness: fairness, interpretability and privacy. In
addition, we perform two focused literature reviews that will be useful later in our
three contribution chapters. More precisely, we survey the literature on improving
fairness generalization and on performing reconstruction attacks against machine
learning models. We also briefly describe two other contributions that will not be
discussed further in the manuscript. More precisely, the first contribution considers
the learning of optimal interpretable models under fairness constraints for multi-
class classification tasks [Rouzot et al. 2022]. The second contribution is about
hybrid interpretable models, which are machine learning models composed of both
an interpretable and a black-box components [Ferry et al. 2023d].

Chapter 2 studies the interactions between fairness and interpretability in ma-
chine learning. In this chapter, we investigate the inherent difficulty of learn-
ing optimal interpretable models under fairness constraints. More precisely, we
build on a learning algorithm we introduced in early works [Aivodji et al. 2019b,
Aivodji et al. 2021c] and propose an integer linear programming based pruning tech-
nique to enhance the learning of fair rule lists [Aivodji et al. 2022]. By jointly
considering fairness, accuracy and sparsity, this method enables the learning of
optimal fair rule lists, effectively solving a conflict between interpretability and
fairness desiderata. Motivated by our empirical findings that fairness often does
not generalize well, we propose a new framework to quantify or improve fairness
robustness [Ferry et al. 2023b]. This framework includes an exact approach based
on integer programming as well as a heuristic one that is more efficient and scalable.

Chapter 3 considers the interplays between fairness and privacy in machine learn-
ing. While most of the literature studies the connections between statistical fairness
notions and differential privacy, we take a different direction and illustrate an intrin-
sic conflict between enforcing fairness with respect to some sensitive attributes and
protecting such attributes’ privacy. More precisely, we show that information re-
garding a model’s fairness (either publicly known or easily inferred) can be leveraged
to improve any baseline adversary reconstruction of the model’s training set sensi-
tive attributes. The proposed reconstruction correction process [Ferry et al. 2023a]
is implemented with either an integer linear programming model or a constraint
programming one. It is empirically shown effective in exploiting the fairness infor-
mation to improve a baseline reconstruction.

Chapter 4 focuses on the connections between interpretability and privacy in
machine learning. While many works showed that post-hoc explainability frame-
works can be leveraged to infer private information regarding a model’s training
data, we rather focus on interpretability by design. More precisely, we illustrate
and theoretically quantify an intrinsic conflict between learning and releasing an
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interpretable model on the one side and protecting the privacy of its training set
on the other side [Ferry et al. 2023c]. We leverage tools from information theory
to precisely measure the amount of information an interpretable model inherently

encodes, via its structure, about its training data.

Publications

Our contributions on investigating the connections between interpretability, fair-

ness and privacy in machine learning led to several international publications, cor-

responding to the works depicted within Chapters 2, 3 and 4:

Ulrich Aivodji, Julien Ferry?, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - FairCORELS, an Open-Source Library for Learning Fair Rule
Lists - ACM International Conference on Information and Knowledge Man-
agement (CIKM 2021), November 1-5, 2021.

Ulrich Aivodji, Julien Ferry?, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - Leveraging Integer Linear Programming to Learn Optimal Fair
Rule Lists - International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research (CPAIOR 2022),
June 20-23, 2022.

Julien Ferry, Ulrich Aivodji, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - Improving fairness generalization through a sample-robust opti-
mization method. Machine Learning - Machine Learning journal, 2022.
Also presented at the AAAI Conference on Artificial Intelligence (AAAI
2023) within the Journal Track and the Bridge on Constraint Programming
and Machine Learning.

Julien Ferry, Ulrich Aivodji, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - Fxploiting Fairness to Enhance Sensitive Attributes Reconstruc-
tion - International Conference on Secure and Trustwor- thy Machine Learning
(SATML 2023), February 8-10, 2023.

Julien Ferry, Ulrich Aivodji, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - Probabilistic Dataset Reconstruction From Interpretable Models
- Preprint (submitted).

Julien Ferry, Ulrich Aivodji, Sébastien Gambs, Marie-José Huguet and Mo-
hamed Siala - SoK: Taming the Triangle - On the Interplays between Fairness,
Interpretability and Privacy in Machine Learning - Preprint (submitted).

3First author.



Related to the topics of the thesis, other international publications were also
realized, which are briefly summarized in Chapter 1, respectively in Sections 1.3.5
and 1.4.5:

o Julien Rouzot, Julien Ferry and Marie-José Huguet - Learning Optimal Fair
Scoring Systems for Multi-Class Classification - International Conference on
Tools with Artificial Intelligence (ICTAI 2022), October 31-November 2,
2022.

e Julien Ferry, Gabriel Laberge and Ulrich Aivodji - Learning Hybrid Inter-
pretable Models: Theory, Taxonomy, and Methods - Preprint (submitted).

National communications were also presented at the ROADEF (the annual
congress of the French society of operational research and decision support) and
RJCIA (Meeting of Young Researchers in Artificial Intelligence, within the French
Artificial Intelligence Platform, PFIA) conferences:

« ROADEF 2021 and RJCIA 2021: French versions of (part of) our Machine
Learning journal article.

« ROADEF 2022: French version of our CPAIOR 2022 article.

¢« ROADEF 2023 and RJCIA 2023: French versions of our SATML 2023
article.






CHAPTER 1

Background & Trustworthy
Machine Learning

Fairness

Interpretability Privacy

In this background chapter, we introduce key notions regarding three
pillars of trustworthy machine learning, namely fairness, interpretabil-

ity and privacy. While the objective of the thesis is to study their
interactions, we first discuss each of them in isolation. More precisely,
the objective of this chapter is not to perform an exhaustive review on

each of these topics, but rather to provide a brief overview of the exist-

ing techniques and challenges. Furthermore, we overview concepts and

tools

from combinatorial optimization and operational research that we

leverage in our works. We additionally perform some focuses on specific

aspects of the literature that are useful in the following chapters (Sec-

tions

1.3.6 and 1.5.3). We also briefly highlight some additional contri-

butions that are not detailed further in the remainder of the manuscript
(Sections 1.3.5 and 1.4.5).
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Outline of the Chapter. First, in Section 1.1, we describe the considered su-
pervised machine learning setup, along with the associated notations. We motivate
the need for trustworthy machine learning, and highlight three main ethical issues:
fairness, interpretability and privacy. Afterwards, we introduce in Section 1.2 tools
from combinatorial optimization, which we will later use in our contributions. We
then provide key notions regarding the three aforementioned ethical pillars in re-
spectively Sections 1.3, 1.4 and 1.5. We also briefly summarize other contributions
that are not detailed further in the manuscript in Sections 1.3.5 and 1.4.5. More pre-
cisely, we discuss fairness for multi-class classification and our proposed framework
for learning optimal scoring systems in this setting in Section 1.3.5 before present-
ing a method for learning (optimal) hybrid interpretable models in Section 1.4.5.
Finally, we conduct two focused literature reviews in Sections 1.3.6 and 1.5.3, re-
garding respectively, fairness generalization and reconstruction attacks.

1.1 Trustworthy Supervised Machine Learning
In this section, we first introduce the machine learning notions and notations that

will be used throughout the manuscript. We then motivate the need to ensure
trustworthiness in machine learning through historical use cases and applications.



1.1. TRUSTWORTHY SUPERVISED MACHINE LEARNING 9

1.1.1 Classification & Notations

Traditional taxonomies of machine learning methods usually distinguish three
paradigms: reinforcement learning, unsupervised learning and supervised learn-
ing [Russell & Norvig 2020]. In the former, an autonomous agent interacts with its
environment and takes actions for which it can get rewards. It ultimately learns a
desired behavior, characterized by its actions, which is called a policy. Unsupervised
learning approaches consist in learning patterns from unlabeled data, for instance
by clustering similar sets of elements or by reducing the dimensionality of the data.
Hereafter, we focus on supervised learning tasks that aim at learning to predict a
given value from a set of provided attributes. Throughout the manuscript, we will
consider the case in which the target value is discrete. In such case, the associated
task is coined classification.

Formally, let M be a number of non-sensitive attributes (i.e., attributes that can
legitimately be used for decision-making) characterizing an example (e.g., an indi-
vidual). For m € {1..M}, &,,, denotes the domain of possible values for attribute m,
which can be either categorical or numerical, and X = X x X x...xX)s. Similarly,
let S be the domain of a (categorical) sensitive attribute. Such sensitive attribute
corresponds to personal information such as age, gender or race [Ding et al. 2021],
which should not be used for a decision-making process due to legal, ethical, so-
cial or philosophical reasons [Barocas et al. 2019]. Finally, let ) be the domain of
a label. For instance, for the aforementioned recidivism prediction task, we could
have: Y = {yes, no}, with the two classes indicating whether the offender actually
committed a recidivism or not.

D = (X,S,Y) is a dataset drawn from the true (unknown) distribution over
XxSxY. Let N be the number of ezamples (i.e., datapoints) in D, with e;cq1. Ny =
(xj,85,95) € X xS x). The objective of a supervised machine learning algorithm is
to learn a classifier £L(D) = h mapping the attributes space to the label space. The
explicit use of a sensitive attribute is usually prohibited by law to avoid disparate
treatment [Barocas & Selbst 2016].

Thus, we assume that the sensitive attribute is not used for inference, which
means that h : X — Y, with ¥ = h(X) being the predictions of the machine
learning model. For the particular case of binary classification, we have: ) = {0, 1}.
The classifier A belongs to some hypothesis space H, which constitutes the range of
the learning algorithm £. More precisely, the hypothesis space corresponds to the
set of candidate models, which can be for instance, the set of possible decision trees
or rule lists.

For a specific training dataset D drawn from some distribution P, the desired
model h is the solution to the following problem, in which obj(h, P) is the expected
objective function under distribution P:

argmin obj(h,P) (1.1)
heH

In practice, the true underlying distribution P is often unknown, and we only
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get a limited number of observations from it that forms the dataset D. The optimal
solution to Problem (1.1) is commonly approximated via Empirical Risk Minimiza-
tion. More precisely, the objective of a supervised learning algorithm £ is to learn
a model h = L(D) solution to Problem (1.2).

argmin obj(h, D) (1.2)
heH
In this manuscript, as the examples in D will usually correspond to individuals
and the predictions ¥ = h(X) of the classifier may be used in high-stakes decision-
making (e.g., college admissions, credit attribution ...), it is crucial to ensure the
trustworthiness of machine learning techniques. This is discussed in more details in
the next subsection.

1.1.2 High-Stakes Applications and the Need for Trustworthy ML

The use of machine learning (ML) techniques for real-world high-stakes decision
making systems motivates the need to ensure trustworthiness of these approaches.
Hereafter, we illustrate these desiderata through some popular use cases.

A famous example concerns recidivism prediction. More precisely, it was demon-
strated that the Correctional Offender Management Profiling for Alternative Sanc-
tions (COMPAS) tool led to discriminating black people by consistently predicting
higher recidivism risk for them [Angwin et al. 2016]. In this particular use case, this
bias led to higher false positive rates for black people than for other demographic
groups. In other terms, black people were incarcerated unnecessarily more often,
which illustrates the need to define some form of fairness and to ensure that the
models’ decisions satisfy it.

Another popular situation is when a person applies for a bank loan. Then,
the bank may use credit scoring methods to accept or deny the credit. In case of a
denial, the applicant may ask for an explanation, to understand the decision but also
possibly to adapt its personal situation to modify the decision. This requirement for
an explanation is both legitimate and legally stated: explainability/interpretability
is another key requirement for trustworthiness in machine learning.

Finally, machine learning systems are increasingly used for medical data analy-
sis, thanks to their ability to handle large amounts of complex data. For instance, an
hospital could learn a machine learning model to detect several rare diseases. The
model, if deployed and accessible through a prediction API, could then help other
hospitals for their diagnosis. However, its prediction API could also be leveraged
by an adversary to perform inference attacks, for instance to infer whether a given
profile was part of the model’s training data. This could indicate that the person
is at a higher risk of having a rare disease, and health insurance companies could
leverage this information to increase their fees for this particular person. Thus, it
is crucial to preserve the privacy of the data used in machine learning.

These three main pillars, namely fairness, interpretability and privacy, have
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been identified and extensively studied in recent years [Datta et al. 2023]. Several
useful tools can be leveraged to address them, which are sometimes implemented
in the form of public libraries. For instance, Fairlearn!' [Bird et al. 2020] con-
tains fairness-enhancing methods intervening at the different stages of the learning
pipeline. It was later incorporated into AT Fairness 360° [Bellamy et al. 2019],
an open toolkit for analyzing and mitigating biases. Several methods were also
proposed to enforce explainability and interpretability in machine learning. For
instance, the iNNvestigate® library [Alber et al. 2019] gathers tools for comput-
ing post-hoc explanations of neural networks while the imodels* library proposes
several exact or approximate algorithms to learn different types of interpretable
models. In addition, several libraries provide insightful frameworks for privacy
protection. Among others, Google Differential Privacy® implements several
differential privacy mechanisms and Diffpriv1ib® provides useful building blocks
for differentially-private machine learning. Other works focus on attacks against
privacy, such as the PrivacyRaven’ repository, which aggregates many popular
inference attacks frameworks.

In the next section, we introduce key notions and frameworks from combinato-
rial optimization, which will be used as a toolbox in our contributions. We then
cover the three identified pillars of trustworthy machine learning in Sections 1.3, 1.4
and 1.5.

1.2 Combinatorial Optimization

Our objective is to leverage tools from the combinatorial optimization and opera-
tional research fields to study the interactions between interpretability, fairness and
privacy in machine learning. Consequently, the purpose of this section is to provide
a sufficient overview of such tools from a user perspective. First, we introduce the
key ideas underlying combinatorial optimization. We then describe the principle
of tree search, a popular way of representing and exploring a combinatorial search
space. Afterwards, we depict several declarative programming approaches before
defining key notions regarding multi-objective optimization.

1.2.1 General Principle

The aim of combinatorial optimization is to explore a finite space of elements and
find the one(s) optimizing a given criterion. This criterion can be quantified using

"https://fairlearn.org/
*https://ai-fairness-360.org/
Shttps://github.com/albermax/innvestigate
“https://github.com/csinva/imodels
*https://github.com/google/differential-privacy
Shttps://github.com/IBM/differential-privacy-library
"https://github.com/trailofbits/PrivacyRaven
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an objective function obj. The desired solution hence minimizes (or maximizes) obj
while also satisfying eventual constraints.

Combinatorial optimization problems can be solved using either exact or ap-
proximate approaches. The former have the ability to find the optimal solution
while also proving that no better solution can exist. In the remainder of this sec-
tion, we will focus on this category. The later can be used to find good solutions
within a predefined time frame, but cannot guarantee that the returned solution is
optimal. They include, for instance, greedy algorithms (which iteratively make local
choices) and local search techniques (which generate new solutions by perturbating
former ones).

Popular interpretable models, such as decision trees or rule lists, inherently have
a combinatorial structure, and training them corresponds to solving a combinato-
rial optimization problem (with accuracy often being the optimized objective). For
instance, greedy algorithms such as CART [Breiman et al. 1984] were originally pro-
posed to learn decision trees. However, they do not provide optimality guarantee
and usually produce sub-optimal trees. Optimal methods were later proposed. For
instance, GOSDT [Lin et al. 2020] is a branch-and-bound algorithm (using dynamic
programming) to build optimal sparse decision trees. The philosophy underlying
such tree search techniques is introduced in the next subsection. Declarative pro-
gramming approaches can also be leveraged to learn interpretable models. More
precisely, they encode a problem within a given syntax before letting a solver
find a solution. For instance, [Aghaei et al. 2019] and [Verhaeghe et al. 2020] re-
spectively use integer programming and constraint programming to learn optimal
decision trees. Such declarative programming approaches are further detailed in
Section 1.2.3.

1.2.2 Tree Search

A popular way of representing a combinatorial search space is to encode it using
a tree structure, in which each node corresponds to a decision (e.g., fixing the
value of a variable). Its children nodes then define different sub-problems with the
entire tree encoding the complete set of possible solutions. Because, it usually has
an exponential size with respect to the decision variables’ cardinalities, it is often
impossible to explore it explicitly. Rather, common tree search techniques (coined
branch-and-bound) compute lower and upper bounds to prune parts of the tree when
it is possible to certify that they do not contain any better solution. Symmetry-
breaking mechanisms can also be leveraged to reduce the size of the search space,
for example when different branches represent different permutations of the same
decisions, if order does not matter.

Furthermore, the order in which the tree is explored can highly influence the
duration of the process and several search heuristics exist. Such heuristics consist in
ordering the nodes belonging to the exploration frontier (i.e., the next nodes to be
expanded) following some criteria. Popular strategies include Breadth-First Search
(BFS), in which the shallowest nodes are explored first, Depth-First Search (DFS),
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in which the deepest nodes are explored first, and best-first search, which order the
nodes according to some objective function (or bounds on this value). However,
the search heuristic used does not affect the resulting objective function value if the
method is exact and the entire search space is explored (possibly implicitly through
pruning).

In Section 2.2.2, we introduce a branch-and-bound algorithm of the literature
for learning optimal sparse rule lists. We describe its fairness-aware adaptation that
we proposed in early work in Section 2.2.3, before later showing how to improve its
exploration of the search space. The search space of this algorithm is represented
using a prefix tree, as illustrated in Figure 2.1.

1.2.3 Declarative Programming

While ad-hoc algorithms can be designed for particular combinatorial optimization
problems, declarative programming approaches aim at separating the expression
of the problem and its resolution. More precisely, a given problem must first be
encoded within a given syntax. The resulting problem can then be solved using
off-the-shelf general purpose solvers.

Mixed-Integer Linear Programming. A Mixed-Integer Linear Program (MILP)
is defined by a number of variables, some of them taking values within a finite (dis-
crete) domain and some of them being continuous (i.e., taking values in R). The
goal is to find an assignment of the variables that minimizes a given objective
function obj defined on these variables while also satisfying constraints stated as
inequalities. Importantly, the objective needs to be a linear combination of the
decision variables, as well as the left and right terms of the inequalities.

In practice, MILPs can be solved using off-the-shelf solvers, such as CPLEX®.
While this task is NP-hard in general, state-of-the-art solvers leverage several com-
putational tricks and are able to handle large problems. In a nutshell, these solvers
often use branch-and-bound techniques to deal with discrete variables. Further-
more, they iteratively solve (easier) linear relaxations of the MILP (i.e., allowing
some discrete variables to take a continuous value) to efficiently get objective bounds
and prune the search tree.

We refer to Integer Linear Programming (ILP) when all variables are integer. In
Section 2.3.1, we introduce an ILP that we later use to prune the search space of an
interpretable and fair machine learning algorithm. Furthermore, we also propose
a general ILP technique to perform sensitive attributes reconstruction correction
in Section 3.2.2. Finally, when some of the constraints are not linear, we will
simply refer to the resulting problem as Integer Programming (IP). For instance,
this is the case of our IP used to quantify fairness sample-robustness, introduced in
Section 2.5.3 and provided in details in Appendix C.

S8https://www.ibm.com/products/ilog-cplex-optimization-studio
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Constraint Programming. A constraint programming (CP) model is defined
by a set of variables each taking value within a given (discrete) domain, a set of
constraints on these variables, and (eventually) an objective function obj. The ob-
jective is to find an assignment of the variables which satisfies all the constraints
while minimizing obj. Contrary to MILP formulations, the constraints (and the ob-
jective) need not be linear, and advanced expressions can be encoded. Furthermore,
some of them are called global constraints. They correspond to a union of simple
constraints that facilitate modeling while speeding up the resolution.

In practice, CP models can be solved using off-the-shelf solvers, such as the
OR-Tools CP-SAT solver?[Perron & Furnon 2019]. These solvers also leverage tree
search to explore the space of solutions. In a nutshell at each node, a decision is
made to reduce the domain of a variable. This decision is propagated to the other
variables involved in the constraints, to filter their domains. A feasible solution
is reached when the domain of each variable contains exactly one single value.
If previously made decisions make the problem infeasible (i.e., the domain of a
variable becomes empty), then the algorithm backtracks and goes up in the tree.
Again, while this task is theoretically NP-hard, state-of-the-art solvers are able in
practice to handle large scale problems.

As aforementioned, CP allows the encoding of arbitrary expressions. For in-
stance in Section 3.2.3, we leverage the element constraint to formulate a CP
model equivalent to the aforementioned ILP for reconstruction correction, but with
polynomial (vs. exponential) search space (w.r.t. the number of examples). Such
constraints are used to access a data array T at index given by the value of a vari-
able z: T'[z] = element (T, z). Linearizing such constraint (i.e., using a set of linear
constraints and/or variables that produce equivalent behavior) is possible but would
introduce a prohibitive number of linear constraints.

While we restrict our attention to MILP and CP which are both later used in
this manuscript, one can note that other declarative programming approaches exist.
For instance, maximum satisfiability (MaxSAT) aims at finding an assignment of
given Boolean variables maximizing a number of satisfied clauses. In the literature,
MaxSAT was used to learn different types of interpretable models, including optimal
binary decision diagrams [Hu et al. 2022a] or decision trees [Hu et al. 2020].

Finally, several dedicated or general-purpose exact methods can be used to solve
combinatorial optimization problems. When several objectives are considered, one
should find a way to optimize them jointly and compute trade-offs between them
as detailed in the next subsection.

1.2.4 Multi-objective Optimization

In many optimization problems, several criteria can be used to evaluate the quality
of the solution. For instance, in the context of machine learning, one can evaluate
the produced models in terms of accuracy, sparsity (i.e., size), fairness, privacy, ...
In such multi-objective problems, one can leverage the notion of Pareto dominance

https://github.com/google/or-tools
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to build sets of non-dominated solutions, called Pareto frontiers. More precisely,
a solution is non-dominated (and belongs to the Pareto frontier) if there does not
exist a solution at least as good as it on all considered objectives, and strictly better
in at least one.

Several methods can be used to build sets of trade-offs between the different
objectives. A trivial solution consists in optimizing a weighted sum of the different
criteria. One can then vary the values of the coefficients of the different objectives to
obtain different trade-offs. Furthermore, if the decision-maker can rank the different
objectives in terms of priority (i.e., any improvement on one objective is preferred
to any improvement on another one), then the different objectives can be opti-
mized sequentially, which is coined as lexicographic optimization. Finally, another
possibility is to optimize a single objective, and integrate the other ones through
constraints. In such e-constrained [Haimes 1971] strategies, varying the values of
the coefficients within the different constraints allows the building of approxima-
tions of the Pareto frontier. For instance, we use this method in the formulation
of our fair learning problem (1.3). In this context, the two optimized values are
the learning objective obj(h, D) (for instance, accuracy) and the unfairness viola-
tion unf(h, D). We directly optimize the former and integrate the later through a
constraint. Varying the value of the unfairness tolerance € then allows to build the
sets of trade-offs between accuracy and fairness, as described in Section 2.2.3 and
shown in Figure 2.2.

1.3 Fairness

The objective of this section is to provide a brief overview of the fairness literature.
More precisely, in Section 1.3.1, we first review the possible causes of bias in ma-
chine learning and their origins. In Section 1.3.2, we then present the most popular
notions of fairness as well as their associated metrics. Afterwards in Section 1.3.3,
we provide a taxonomy of the methods that can be used to enforce fairness. We
also discuss some challenges regarding the compatibility and the applicability of ex-
isting fairness notions in Section 1.3.4. Motivated by the observation that fairness
has almost only been studied in the context of binary classification, we discuss its
application to the more general multi-class classification setup in Section 1.3.5. We
briefly introduce our contribution on learning optimal interpretable fair models for
multi-class classification leveraging Mixed Integer Linear Programming techniques.
Finally in Section 1.3.6, we survey the literature on the methods proposed to im-
prove fairness generalization. Indeed, it was identified as a major challenge in fair
learning [Cotter et al. 2019], which motivated the formulation of our new fairness
robustness framework, introduced at the end of Chapter 2.

1.3.1 Bias in Machine Learning

To learn a classifier h € H, a learning algorithm £ identifies correlations in the
training data D that allow to predict the target label y from the provided fea-
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tures. However, datasets are finite and incomplete representations of the real-world
and commonly contain incorrect correlations. Such correlations can correspond to
discrimination(s), and are often referred to as biases. Many sources of bias have
been identified in the literature [Mehrabi et al. 2022] and we discuss some of them
hereafter.

On the one side, dataset bias [Tommasi et al. 2017, Torralba & Efros 2011] has
been studied extensively, and can emerge for several reasons. An example is capture
bias, which refers to the data acquisition process. For instance, two images could
be distinguished based on the type of camera used to take them rather than on
their actual content (due to a difference in resolution, in exposition...). Sampling
bias and representation bias occur when the dataset distribution does not match
the real-world distribution due to a non-representative sampling. The process of
choosing which features to report and how to measure them can lead to omitted
variable bias or measurement bias. Even if the data collection was totally unbiased,
there can still be biases in the real-world that would be reflected in the data. Such
historical bias corresponds to historical discrimination and is the main source of
data bias targeted in our work.

On the other side, the learning algorithm can further introduce biases, for exam-
ple by focusing on the majority group and neglecting minorities for average accuracy
purposes. Such algorithm bias is attributed to the design of the algorithm itself.
The model may also be optimized using the wrong metrics or benchmarks, which
is deemed as an evaluation bias.

Several legal texts are relevant to the concerns of fairness for decision making.
For instance, one can refer to the U.S. Equal Employment Opportunity Commission
and Title VII of the Civil Rights Act of 196410 [Barocas & Selbst 2016] or the Euro-
pean Union General Data Protection Regulation!! [Voigt & Von dem Bussche 2017,
Malgieri 2020] or AI Act'?2. Then, two main types of discrimination can be identi-
fied with respect to the predictions of a machine learning model [Zafar et al. 2017,
Kilbertus et al. 2018, Aghaei et al. 2019, Hajian & Domingo-Ferrer 2013].
Disparate treatment (also called direct discrimination) consists in treating individu-
als differently based (explicitly) on sensitive characteristics'®. Such discrimination
can be avoided by preventing the use of sensitive attributes for inference. How-
ever, because sensitive attributes can often be accurately predicted based on the
non-sensitive ones, avoiding disparate treatment is necessary but often not suffi-
cient [Ekstrand et al. 2018]. Disparate impact (also called indirect discrimination)
refers to practices that do not explicitly use sensitive features for decision making
but result in disproportionately advantaging or disadvantaging groups with partic-
ular sensitive attribute settings. As observed in [Kilbertus et al. 2018], there is an

Ohttps://www.eeoc.gov/statutes/title-vii-civil-rights-act-1964

"https://gdpr-info.eu/

2https://artificialintelligenceact.eu/

13This definition is broadly used in the ML community. Nevertheless, in law, it was originally
proposed for human decision-makers (and not machine learning models’ predictions), and the
notion of intent to discriminate is key - but hard to define for an algorithm [Xiang & Raji 2019].
This legal aspect is however out of the scope of this manuscript.
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intrinsic conflict between the goals of avoiding disparate treatment (e.g., not explic-
itly using sensitive attributes for decision making) and avoiding disparate impact
(which often requires the use of the sensitive attributes for training a fair classifier).

As we have seen, there are multiple sources of bias in machine learning systems.
Because such bias can harm particular individuals or subgroups of the population,
ensuring a fair decision making is legally and ethically required. Several approaches
pursuing this goal have been proposed, as summarized in the next subsection.

Finally, while we focus on fairness for learning machine learning models, it
is worth noting that a line of works targeting anti-discrimination in data min-
ing preceded the literature in this area, considering very close notions and met-
rics [Pedreschi et al. 2008, Hajian & Domingo-Ferrer 2013]. More precisely, we re-
strict our attention to supervised learning tasks as defined in Section 1.1, even
though fairness was considered in different machine learning setups, such as clus-
tering [Chierichetti et al. 2017, Chhabra et al. 2021].

1.3.2 Notions of Fairness

Different approaches to fairness have been proposed in the literature, which can be
grouped into three main categories [Verma & Rubin 2018]. We detail each of them
hereafter, with a particular focus on statistical fairness notions, which are used in
our contributions of Chapters 2 and 3.

Statistical Fairness. The rationale of statistical fairness, also coined group fair-
ness, is to ensure that a given statistical measure has similar values between several
protected groups, defined by the value(s) of some sensitive feature(s) in S. The
underlying principle is that such sensitive features (e.g., race, gender, ...) should
not influence predictions. The exact formulation of such metrics ensures that the
probabilistic difference for the given measure over the protected groups on the en-
tire data distribution is no greater than a given unfairness tolerance €. A common
relaxation consists in bounding the empirical difference measured on the train-
ing set. Depending on the particular value being equalized across groups, several
metrics have been proposed in the literature. Hereafter, we consider four com-
monly used metrics: Statistical Parity [Dwork et al. 2012] (SP), Predictive Equal-
ity [Chouldechova 2017] (PE), Equal Opportunity [Hardt et al. 2016] (EOpp) and
Equalized Odds [Hardt et al. 2016] (EO). We summarize them in Table 1.1, while
indicating for each metric which values of the confusion matrix of the learnt clas-
sifier they try to match across the different protected groups. For instance, the
Equal Opportunity metric ensures that the true positive rate of each protected
group (Vs € S) is no further than some tolerance ¢ from that of the other groups.
On the one hand, predictive equality, equal opportunity and equalized odds are
aligned with accuracy. In particular, a perfectly accurate model will also be per-
fectly fair for such bias preserving [Wachter et al. 2020] metrics. They indeed target
algorithm bias, but if the dataset is biased, this bias can still be reflected in the
model’s predictions. On the other hand, statistical parity is a bias transforming
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metric. It does not look at the true labels and addresses dataset bias. Thus, the
more the data is biased, the more this metric conflicts with accuracy.

Table 1.1: Summary of the considered statistical fairness metrics, along with the
related statistical measures to be equalized across protected groups.

Metric Equalized statistical measure
Statistical parity (SP) Probability of being assigned the positive class
Predictive equality (PE) False Positive rate
Equal opportunity (EOpp) True Positive rate
Equalized odds (EO) False Positive rate and True Positive rate

Two main implementations of these fairness metrics coexist in the literature.
We report in Table 1.2 their associated expressions. The first one, that we coin the
one-vs-one formulation, bounds the difference of the statistical measure (e.g., true
positive rates) between each pair of protected groups. While being convenient when
dealing with two protected groups, this approach requires a number of constraints
quadratic with respect to the number of protected groups. In Chapter 2, we restrict
our attention to the binary protected group case and focus on such notions. The
second one, that we call the one-vs-all formulation, bounds the difference between
each group and the overall dataset. This notion is more convenient when dealing
with more than two protected groups. We use it in Chapter 3. Finally, one can
observe that the two notions imply each other, with carefully chosen values of the
unfairness tolerance ¢.

Table 1.2: Summary of the considered statistical fairness metrics, along with the
associated constraints expressions, using either the one-vs-one (pairwise) or the
one-vs-all formulations.

Metric | Constraint Expression - one-vs-one (pairwise) formulation
SP Vs, V', IP(g=1|s)—P(g=1]¢)<e
PE Vs, Vs, [P(f=1]s, y=0)—P(=1]5, y=0)|<e
EOpp Vs, Vo', IP(g=11s, y=1)—Pg=1]¢, y=1)<e
EO Conjunction of PE and EOpp
Metric Constraint Expression - one-vs-all formulation
SP Vs, P(=1)-P@H=1]s)|<e
PE Vs, P=1]y=0)—P(G=1]s y=0]<c
EOpp Vs, P(g=1]y=1) P(=1]s, y=1)|<c
EO Conjunction of PE and EOpp

We let unf(h, D) be the empirical unfairness violation of classifier A on dataset
D, measured using one of the aforementioned metrics. This value is precisely the
one that we want to be no greater than the unfairness tolerance €. The fair learning
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problem can then be formulated as a constrained optimization problem:

arg min obj(h, D) (1.3)
heH

s.t.  unf(h,D) <e.

Individual Fairness. Individual fairness notions build on the idea that similar in-
dividuals should be treated similarly. It was first introduced in [Dwork et al. 2012],
as the authors observe that statistical fairness may be desirable but can lead to
decisions appearing unfair at the level of single individuals (for example majority
group applicants being rejected while less qualified applicants from minority group
are accepted). Furthermore, fairness through unawareness, which simply consists
in not using the sensitive attributes for decision making, was shown ineffective due
to the presence of proxy features (i.e., non-sensitive attributes that are correlated
with the sensitive one). Authors then define fairness through awareness as a Lips-
chitz condition on the classifier, given a distance metric that defines the similarity
between the individuals with respect to a particular task. The main difficulty
lies in the definition of the distance function, which is related to the context and
should be designed carefully by experts and policymakers, depending on the task
at hand. Some approaches relax the need to explicitly define such metric. For
instance, [Zemel et al. 2013] learn a mapping from individuals to a set of clusters,
each represented by “prototypes”. Such prototypes are then used in the decision-
making process, which ensures that all individuals belonging to the same cluster
are treated similarly. [Lahoti et al. 2019] also propose to build an individually fair
representation of the data by performing a clustering-based mapping from individ-
uals to prototypes. However, they use a different objective function, emphasizing
that the resulting representation is task-agnostic. Considering that the distance
metric can not be defined manually not learnt automatically without annotations,
[Jung et al. 2021] first ask a panel of stakeholders to indicate for a given set of pairs
of individuals whether their outcomes should be similar, ordered or unconstrained.
The resulting pairwise constraints are then added to the learning problem. In a pre-
vious work, [Ilvento 2020] propose to learn a distance metric leveraging a reduced
number of answers from a domain expert. The approach of [Joseph et al. 2016]
takes a different direction as it does not rely explicitly nor implicitly on a similar-
ity metric. It rather enforces that a better applicant is never disadvantaged over a
worse one. More precisely, the method ensures that the probability of an individual
being assigned to a positive outcome reflects the true probability of this event.

Causal Fairness. Causal fairness approaches analyze the causal relationships be-
tween the sensitive features, the non-sensitive ones and the target decision, leverag-
ing causal graphs [Kilbertus et al. 2017]. In particular, they often look for a (direct
or indirect) path from a sensitive attribute to the prediction, which indicates unfair
decision making. For instance, [Nabi & Shpitser 2018] distinguish between legiti-
mate and illegitimate paths in a causal graph, highlighting that the later should
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not be found in the causal graph built from a fair model. A framework using causal
Bayesian networks to model correlations contained in a given dataset is proposed
in [Chiappa & Isaac 2018]. This network can then be leveraged to detect unfair-
ness, defined as the presence of an unfair causal path. [Zhang et al. 2018b] use two
causal graphs. A first one is human-defined, and identifies the correct semantic
relationships that should exist between the different non-sensitive attributes, the
sensitive ones and the label. The second one is built using for each class the av-
eraged activation matrices of a learnt neural network. Comparing the two graphs
allows for the discovery of unwanted and discriminatory correlations.

Finally, fairness can be defined using several notions and quantified using many
metrics. There are also different ways of integrating such notions and metrics into
the machine learning pipeline, as discussed in the next subsection.

1.3.3 Fairness-Enhancing Methods

Depending on which step of the machine learning pipeline they intervene, fairness-
enhancing methods can be divided into three main categories [Bellamy et al. 2019,
Friedler et al. 2019]. For each of them, many methods were proposed in the litera-
ture and recent surveys provide more complete overviews (for instance, Figures 3,
4 and 5 of [Caton & Haas 2023]). Hereafter, we introduce the key principles of the
three identified categories, summarize their intrinsic advantages and drawbacks and
briefly describe example methods.

Pre-processing methods aim at removing undesired correlations from the
training data before applying standard learning techniques on the sanitized data.
The key advantage of such approaches is that they are agnostic to the hypothesis
class and learning algorithm, and one sanitized dataset can be used for multi-
ple downstream tasks. However, these techniques usually come with no guaran-
tee regarding the final model’s fairness as they only aim at removing bias con-
tained in the data (but not the bias which may be added by the learning proce-
dure). Because of the modifications they perform on the training data to sanitize
it, pre-processing techniques may also incur significant utility losses. Example of
approaches include [Feldman et al. 2015], which modifies the training data non-
sensitive attributes so that each attribute’s marginal distribution is identical over
subsets of examples with different sensitive attributes. [Kamiran & Calders 2012]
also introduce several strategies to remove discrimination from the training data.
They propose to use different techniques, including modifying class labels, re-
weighting the examples, suppressing some of the attributes or re-sampling the data.

[Jiang & Nachum 2020] observe that approaches modifying the examples’ at-
tributes or labels might face a legal issue as such practice can be interpreted as train-
ing on falsified data. To address this, they propose a re-weighting approach, mod-
ifying the examples’ distribution to satisfy fairness constraints. [Zemel et al. 2013]
introduce a framework to Learn intermediate Fair Representations (LFR) with two
competing goals: obfuscating knowledge regarding the sensitive attributes while
preserving as much information as possible. The learnt representations jointly ad-
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dress individual and statistical fairness notions. [Calmon et al. 2017] also aim at
building a transformation of the data that simultaneously removes discrimination,
preserves utility and limits individual examples’ distortion. They formulate this task
as an optimization problem and show that it is convex under some assumptions.
Finally, other approaches [Aivodji et al. 2021b] use local adversarial debiasing, with
a discriminator trying to infer the sensitive attribute information from the learnt
representation and a sanitizer trying to hide it. One can then apply the built sani-
tizer before releasing new data. Such methods consider a fairness notion targeting
the inability to infer the sensitive attribute from the non-sensitive ones.
Post-processing techniques modify the outputs of a trained classifier to achieve
fairness. An example method is the ThresholdOptimizer [Hardt et al. 2016], which
uses Linear Programming to compute per-protected-group probabilities of modi-
fying the original model’s predictions. The resulting randomized classifier then
satisfies statistical fairness criteria (equalized odds) in expectation. In a follow-up
work, [Pleiss et al. 2017] apply similar techniques but considers calibrated classi-
fier outputs. [Kamiran et al. 2012] re-establish fairness by attributing unfavorable
outcomes to members of privileged groups and favorable outcomes to members of
unprivileged groups, focusing on the examples with low confidence (i.e., lying close
to the decision boundary). [Lohia et al. 2019] modify the predictions of some exam-
ples of the protected group(s) to improve some given statistical fairness criterion.
While doing so, the method selects the examples susceptible to yield a bad individ-
ual fairness score, and so both individual and statistical fairness values are improved
jointly. Model-specific methods were also proposed, such as [Kamiran et al. 2010],
which modifies the labels within the leaves of a trained decision tree to satisfy
fairness criteria. Still, most of the post-processing approaches are model-agnostic,
and they are particularly well suited in contexts were an unfair model is already
trained. One common drawback is that they often require access to the sensitive
attributes at inference time, which can be seen as a form of disparate treatment and
is prohibited in many applications [Barocas & Selbst 2016, Zafar et al. 2017]. Fur-
thermore, because the fairness corrections are performed after the model training,
the resulting trade-offs can be highly sub-optimal [Woodworth et al. 2017].
In-processing (also called algorithmic modification) techniques directly
adapt the learning procedure to produce inherently fair models. For instance,
[Kamishima et al. 2012] add a fairness-aware regularizer to the objective of a learn-
ing algorithm and integrate it into logistic regression models. [Raff et al. 2018] build
fair decision trees and random forests by modifying the computation of the informa-
tion gain used by greedy tree induction mechanisms. The modified splitting criterion
penalizes the splits correlated with the sensitive attributes values. The Exponen-
tiatedGradient method [Agarwal et al. 2018] approximates the fairness-constrained
learning problem (1.3) through its Lagrangian relaxation and solves it by finding
the equilibrium of a two-player min-max game. More precisely, a learner min-
imizes the objective function while an auditor (owning the sensitive attributes)
maximizes it by spotting the largest fairness violations. The learner iteratively
updates the model’s parameters by solving a cost-sensitive classification problem,
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in which costs are set according to the unfairness violation coefficients set by the
auditor. [Zafar et al. 2017] introduce a convex relaxation of traditional fairness
constraints, coined decision boundary unfairness and expressed as the covariance
between the examples’ sensitive attributes and their signed distance to the decision
boundary. They integrate it into the learning of convex margin-based classifiers,
namely logistic regression and support vector machines.

Adversarial training techniques can also be leveraged to ensure that the sen-
sitive attribute cannot be inferred. Indeed, in [Beutel et al. 2017], an additional
adversarial classifier is connected to a deep learning model’s latent representa-
tion. It aims at retrieving the sensitive attribute, while the learnt network tries
to hide such information. [Zhang et al. 2018a] propose a similar approach, but try
to prevent correlations directly between the outcome and the sensitive attributes.
Thus, the adversarial component is rather connected to the learnt model’s output
layer. In-processing methods constitute the most studied category in the litera-
ture [Friedler et al. 2019], and many methods were proposed in this category. In
particular, they generally lead to the best fairness/utility trade-offs, because all the
available information is provided to the learning procedure, which can search for the
best trade-offs between fairness and utility all at once [Barocas et al. 2019]. Their
main drawback is that they require the design of specific algorithms, increase the
problem complexity and lead to more difficult training [Jiang & Nachum 2020].

The last two subsections provided an overview of the plurality of the existing
fairness notions, of the metrics within each type of notion and of the types of
approaches to enforce them. Hereafter, we also discuss some associated challenges,
in particular related to the compatibility between the different proposed notions.

1.3.4 Compatibility & Applicability of Fairness Notions

Several challenges towards applying the aforementioned fairness metrics have been
pointed out in the literature. For instance, recent works suggest that some of
the proposed notions are jointly incompatible. Furthermore, their formulations
were designed mainly by the computer science community, with the purpose of
operationalizing and quantifying fairness. Thus, there is some doubt on whether
they actually capture some meaningful form of fairness or not. Finally, using them
in practice also raises several questions. In the following paragraphs, we further
discuss these aspects.

(In)compatibility of individual and statistical fairness. [Friedler et al. 2016]
suggest that statistical and individual fairness often cannot be achieved simulta-
neously, and provide impossibility results. Indeed, both notions were shown to
empirically conflict. However, some works address them jointly.

Both notions can be jointly enforced. Several frameworks were designed
to jointly tackle individual and statistical notions of fairness. For instance,
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[Zemel et al. 2013] include statistical fairness constraints into their process of learn-
ing fair representations (ensuring that an individual’s chance of being part of a
prototype’s cluster is not influenced by their membership in a protected group).
[Lohia et al. 2019] propose a post-processing approach modifying the predictions
of some examples of the protected group(s) to improve statistical fairness. As it
focuses on the examples yielding a bad individual fairness score, the method is able
to optimize both individual and statistical fairness simultaneously.

Both notions can be aligned or not. [Dwork et al. 2012] show that indi-
vidual fairness (formulated as a Lipschitz condition) implies statistical parity, if
members of the different protected groups are close enough. More precisely, with
carefully chosen distance metric between individuals, they demonstrate that the
statistical parity violation can be upper-bounded using both the original distance
between the protected groups’ distributions and the enforced Lipschitz condition for
individual fairness. When the protected groups’ distributions are very different, the
theoretical upper-bound is loose and it is necessary to achieve fair affirmative action
( i.e., preferential treatment). In such cases, statistical and individual fairness can
strongly conflict and even lead to trivial classifiers. Indeed, the later forces close ex-
amples to have close outcomes, while the former might force more distant examples
to have similar outcomes, overall forcing all examples to have similar outcomes. A
proposed alternative method is to enforce individual fairness only internally within
the protected groups (and not between them) and enforce statistical fairness. An-
other related approach to addressing preferential treatment is to adjust the metric
so that the Lipschitz condition will imply statistical parity. [Lahoti et al. 2019]
have observed that their individual fairness technique also improves group fairness
metrics. However, they note, in line with [Dwork et al. 2012], that unless the dis-
tribution of features and labels is the same across different protected groups, jointly
enforcing individual and group fairness implies some trade-off.

Both notions are conceptually compatible. [Binns 2020] suggests that the
observed conflict between individual and group fairness notions may be attributed
to the used technical notions but is not inherent to the underlying concepts. On the
one side, individual fairness corresponds to the norm of consistency as a concep-
tion of justice, defined by Aristotle and stating that when presented with identical
cases, judges ought usually to come to the same answer. On the other side, statis-
tical fairness implements the luck egalitarianism principle, whose key idea is that
inequalities between people can not be justified by attributes or circumstances they
are not responsible for. The principles of consistency and egalitarianism do not con-
flict and “can even be seen as mutually implied”. Furthermore, the author suggests
that individual and statistical fairness notions can be applied interchangeably, by
selecting appropriate metrics.
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On the alignment with non-technical fairness notions. Another interest-
ing result of [Binns 2020] is that both individual and statistical fairness notions
fail to implement the notion of individualized justice as defined by Aristotle. In
fact, as any machine learning systems, fair models rely on previously seen exam-
ples and generalization to make new predictions, which conflicts with the idea of
a fully individualized treatment. [Selbst et al. 2019] emphasize that existing fair-
ness notions are not adapted to the societal context inherent to fairness applica-
tions. Indeed, fairness is often problem-specific, which conflicts with the proposed
mathematical formulations. Furthermore, a deployed fair model should be seen
as one component within a more complex system. Taking into account the en-
tire system when optimizing the model and anticipating the effect of the model
on its environment are aspects that are largely ignored by the actual formulations.
These works illustrate intrinsic limitations of existing fairness notions: they may
not align with nontechnical conceptions of fairness [Datta et al. 2023], and may
additionally fail to implement legal requirements, which are usually not limited
to a single statistical measure [Watkins et al. 2022]. Finally, fairness-enhancing
methods are known for having potential waterfall effects: mitigating unfairness
at one stage of the machine learning pipeline may induce other biases in further
stages [Krco et al. 2023], and static fairness interventions may have undesired ef-
fects on the long run [Liu et al. 2019]. This emphasizes the need for a thorough
characterization of the effects of fairness interventions over time, in the entire de-
velopment and deployment pipelines.

On the applicability of existing fairness metrics. As mentioned previously,
several fairness notions exist, and many metrics were proposed for each of these no-
tions. [Ignatiev et al. 2020] identify a list of desired properties for a fairness metric
and prove that only fairness through unawareness can satisfy them. However, this
approach was shown ineffective in the presence of proxy features (i.e., non-sensitive
attributes that are correlated with the sensitive one(s)) [Dwork et al. 2012]. For
instance, it was shown that racial membership can accurately be inferred from
geographic location [Fiscella & Fremont 2006, Long & Albert 2021]. This demon-
strates that no fairness metric is perfect. Furthermore, several works theoretically
prove impossibility results, suggesting that many popular group fairness metrics
are incompatible and applying more than two or three of them together is not
feasible [Defrance & Bie 2023]. Nevertheless, some may be more adapted to a par-
ticular situation than others. Therefore, when facing a decision making problem,
one can wonder which particular fairness metric should be used for a given sce-
nario. [Makhlouf et al. 2021] precisely study this question. They first identify the
key characteristics of the problem at hand, among which the existence of explain-
ing variables (i.e., proxy features that can legitimately explain an unfair outcome),
likelihood of intersectionality and the importance of false/true positives/negatives
on the application. They ultimately propose a decision diagram to determine which
fairness notion should be used based on these characteristics.
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An additional limitation is that most of the fairness literature considers the
particular task of binary classification. Defining and enforcing fairness for other
tasks, such as multi-class classification or regression, or even other paradigms, such
as reinforcement learning, is still in its infancy. In the next subsection, we discuss
the definition and use of fairness notions for multi-class classification problems.

1.3.5 Contribution: Fairness Beyond Binary Classification

A wide majority of works on fairness for machine learning consider the particular
case of binary classification [Barocas et al. 2019, Caton & Haas 2023]. Indeed, in
this setting, the notions of true/false positives/negatives are easily defined with
respect to the model’s predictions. In the more general multi-class classification
setting, these numbers can be computed for each class, and generalizing statistical
fairness metrics may be non-trivial. More precisely, most metrics can easily be
extended by applying the binary formulation to each label [Alghamdi et al. 2022].
For instance, the statistical parity metric enforces, for each label, that the rate
of prediction of this label does not differ by more than the unfairness tolerance
€ between the different protected groups. The equal opportunity metric ensures
that, for each label, the true positive rates of the different protected groups are
no further than e. Interestingly, the equalized odds metric can have two distinct
multi-class formulations [Putzel & Lee 2022]. Term-by-term equality of odds aims
at equalizing the probabilities of being predicted § € Y given true label y € ), for
all pairs (,y) € ), which requires |)V|? fairness constraints. In contrast, classwise
equality of odds handles all false positive classifications altogether, only considering
the probabilities of being predicted § € ) given true label either y = ¢ (true
positives for class ) or y # § (false positives for class §) which only requires 2 - |Y)|
constraints.

In recent work [Rouzot et al. 2022], we survey the literature on fairness in the
context of multi-class classification, synthesizing existing metrics in a unified nota-
tion. We introduce the flexible notion of sensitive labels, which allows the fair-
ness constraints to apply only on a subset of the possible outcomes. We also
propose a method to learn optimal fair and interpretable models for multi-class
classification. More precisely, we build on SLIM (Supersparse Linear Integer Mod-
els) [Ustun & Rudin 2016, Rudin & Ustun 2018], a Mixed Integer Linear Program-
ming (MILP) model for learning optimal sparse scoring systems for binary classi-
fication. We propose FAIRScoringSystems, a MILP generalizing SLIM to multi-
class classification and integrating multi-class fairness constraints. The resulting
method, named FAIRScoringSystems, is available online'*, and generates optimal
sparse and fair scoring systems for multi-class classification. We empirically evalu-
ate its effectiveness to learn interpretable sparse models achieving good trade-offs
between accuracy and fairness in multi-class classification problems. We report and
explain an example scoring system learnt using FATIRScoringSystems in Figure 1.1.

Y“https://gitlab.laas.fr/roc/julien-rouzot /fairscoringsystemsv0
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Score for A Score for B
starts with 9 pts starts with -9 pts
Graduated 9 pts Ever_Married -9 pts
Work experience <= 1 -9 pts Graduated 9 pts
Cat == Cat_6 -9 pts Work experience <= 1 6 pts
Score for C Score for D
starts with 2 pts starts with 1 pts
Graduated 9 pts Spending_Score == Low 9 pts
Cat == Cat_6 9 pts Work experience <= 1 -4 pts
Cat == Cat_6 9 pts

Figure 1.1: Example multi-class scoring system [Rouzot et al. 2022] generated by
FAIRScoringSystems for customer segmentation with sparsity and fairness con-
straints. More precisely, the number of lines in each scoring system must be less or
equal to 4 and the multi-class equal opportunity violation is restricted to be lesser
than 0.01. The considered task consists in attributing customers’ profiles to one
of four categories: Y = {A, B,C, D}. Each class has an associated scoring system
through which each example goes. For each line of the scoring system, if the exam-
ple satisfies the stated condition then the corresponding number of points is added
to the local score. The final prediction for an example is the class whose scoring
system has the highest score. Note that “starts with” is a constant bias determined
for each scoring system.

Finally, while most fairness approaches consider binary classification, some meth-
ods also handle multi-class one, including our proposed FAIRScoringSystems, whose
produced models are also interpretable. In any case, the learnt classifiers may not
always produce fair decisions when applied on unseen data, and the fairness con-
straints that were satisfied at training time can be violated on a separate test set. In
the next subsection, we review the literature on the proposed methods to enhance
fairness generalization in machine learning.

1.3.6 Focus on Fairness Generalization: a Literature Review

As aforementioned, many methods were proposed in the literature to enhance
the fairness of machine learning models [Caton & Haas 2023, Barocas et al. 2019].
However, models that are fair with respect to their training data may still exhibit
unfairness when applied to previously unseen data. Indeed, fairness constraint
overfitting [Cotter et al. 2018, Cotter et al. 2019] can occur, and fairness general-
ization has been identified as an open challenge for trustworthy machine learn-
ing [Chuang & Mroueh 2021, Huang & Vishnoi 2019, Mandal et al. 2020].

To improve the generalization of statistical fairness, several approaches have
been designed based on the method proposed by [Agarwal et al. 2018], who formu-
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lated the problem of learning an accurate classifier under fairness constraints as
a two-player zero-sum game. Considering the Lagrangian relaxation of this con-
strained optimization problem, the first player (f-player) optimizes the model’s pa-
rameters for the objective function with current Lagrange multipliers, while the sec-
ond player (A-player) approximates the strongest Lagrangian relaxation by updat-
ing the Lagrangian multipliers. In their original contribution, [Agarwal et al. 2018]
analyzed the fairness generalization error of the models trained using this frame-
work. In order to avoid the fairness constraints overfitting, in [Cotter et al. 2018,
Cotter et al. 2019] the A-player updates the Lagrangian multipliers based on fair-
ness violations measured on a separate validation set (instead of the training set
itself). In [Mandal et al. 2020], the A-player uses linear programming to compute
the worst-case fairness violation among a set of re-weightings of the training set.
This approach falls into the category of Distributionally Robust Optimization (DRO)
techniques. We briefly introduce our DRO-inspired robustness fairness framework
in Section 2.5 within Chapter 2.

Other methods also leverage DRO approaches. In [Sagawa et al. 2020], a model
is learnt while minimizing the maximum error over a set of protected groups de-
fined by the value of some biased attributes. This is motivated by the observation
that when training to minimize average error, decision boundaries are often learned
for majority groups, and average loss can hide disparities across subgroups in the
training set. In a same line of work, [Slowik & Bottou 2021] study the use of DRO
with calibration to mitigate such disparities. The approach first computes, for each
protected group, the best achievable performance. Then, DRO equalizes the gaps
between the actual model’s accuracy and this value (rather than the absolute ac-
curacy) across protected groups. Several approaches have been proposed to tackle
the worst-group error minimization problem. In particular, different methods do
not require the full training set protected groups knowledge. Indeed, annotating
protected groups membership for each training point can be costly in real-world set-
tings [Duchi et al. 2020, Nam et al. 2020, Liu et al. 2021a]. Such methods do not
reach the performances levels of the standard DRO approach with groups knowl-
edge but constitute interesting alternatives. For example, [Nam et al. 2020] and
[Liu et al. 2021a] use two-stage approaches, in which they first train a model before
leveraging its errors to train another more robust one. [Duchi et al. 2020] applies a
DRO technique to approximate and optimize for a worst-case subpopulation above
a certain size, without any group annotations.

In [Taskesen et al. 2020], distributionally robust and fair logistic regression mod-
els are trained by optimizing the fairness-regularized objective function for a worst-
case distribution. This most adversarial distribution is considered within an am-
biguity set characterized as a Wasserstein distance-based ball around the origi-
nal training distribution. [Rezaei et al. 2020] also leverage the principles of DRO
to optimize a robust logarithmic loss under fairness constraints. Their approach
uses a minimax formulation, in which a fair predictor minimizes the training loss
while a worst-case approximator of the population distribution (subject to statistic-
matching constraints) maximizes it. In a similar line of work, [Wang et al. 2021]
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propose a distributionally robust measure of unfairness for the Equality of Oppor-
tunity metric. Robustness is achieved by computing the worst-case unfairness over
a set of neighbouring distributions, within a type-oc Wasserstein ambiguity set.
Taking into account this measure enables the training of distributionally robust fair
Support Vector Machines (SVM).

[Du & Wu 2021] propose two algorithms for fair and robust learning under sam-
ple selection bias. These two methods aim at estimating the sample selection prob-
abilities, by leveraging (or not) the availability of unlabeled unbiased data. The key
point is that knowledge of these biased sample selection probabilities can be used to
re-weight the training dataset to make it representative of the true distribution. As
an approximation error exists, a minimax approach is used to optimize the objective
function for the worst-case sample selection probabilities in a given radius around
the estimated ones. The proposed method can only handle the statistical parity
metric, which is approximated using decision boundary fairness and included as a
regularization term to the objective function. One consequence is that robustness
is enforced jointly for error and fairness. Nonetheless, the fairness constraints may
not be strictly satisfied.

Measuring prediction stability on the training set, [Huang & Vishnoi 2019] pro-
pose the addition of a regularization term to the objective function of a fair learning
algorithm. This regularization term aims at ensuring that the predictions of the
built model do not vary too much when the training dataset is perturbed. In addi-
tion, this method theoretically bounds the generalization error.

In a different line of work, [Slack et al. 2020a] study the scenario in which
a model trained to be fair may behave unfairly on related but slightly different
tasks. This paper introduces two contributions, namely Fairness Warnings and
Fair-MAML. On the one side, Fairness Warnings aims at predicting whether shifts
in the features’ distributions may result in violating fairness. This is achieved by
generating perturbed versions of the training set (they only consider mean-shifting
of the features), measuring the resulting fairness violation and training an inter-
pretable model to predict such violation given the features’ shifts. On the other side,
Fair-MAML has for objective to learn a fair model that can be adapted to particular
new tasks using minimal (and possibly biased) task-specific data. This is done by
adding a fairness regularizer (for either the Statistical Parity or Equal Opportunity
metrics) to the loss of the Model Agnostic Meta Learning (MAML) framework.

More recently, [Chuang & Mroueh 2021] proposed a data augmentation strat-
egy improving the generalization of fair classifiers. This method leverages existing
data augmentation strategies to generate interpolated distributions between two
given sensitive groups. During training, a regularisation term penalizes changes in
the model’s predictions between the interpolated distributions. The goal here is to
ensure that the model has a smooth behavior along the “path” formed by the inter-
polated distributions between the two sensitive groups. This approach theoretically
and empirically improves the fairness generalization of the built models.

Furthermore, fairness robustness has also been studied in other settings, such
as multi-source learning [lofinova et al. 2021] or for other notions of fairness such
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as individual fairness [Yurochkin et al. 2020].

1.4 Interpretability

The objective of this section is to introduce the key notions regarding the different
approaches for enhancing the understanding of machine learning models. First, we
motivate the need for such approaches in Section 1.4.1. We then try, in Section 1.4.2,
to formalize the different dimensions of explainable Al before highlighting some
intrinsic challenges. In Section 1.4.3, we introduce a taxonomy of the methods
designed to help understanding machine learning models, and distinguish between
two types of approaches, namely crafting post-hoc explanations for a black-box
model or learning inherently interpretable ones. Afterwards, in Section 1.4.4, we
summarize the limitations of the two identified paradigms. Finally in Section 1.4.5,
we introduce our contribution on learning optimal hybrid interpretable models, a
particular type of model composed of both an interpretable component and a black-
box one.

1.4.1 Understanding Machine Learning Models

Machine learning models make decisions that increasingly impact our everyday
lives. However, their decisions are often opaque. Indeed, the model used to make
predictions is usually hidden to the end-user. Furthermore, this model may be too
complex anyway to be understood by a human even if entirely revealed. Finally,
we may not even be conscious that a machine learning model was used.

To face this situation and protect users from potential harms, legal frameworks
have been proposed in recent years, such as the European Union’s General Data
Protection Regulation (GDPR)' [Voigt & Von dem Bussche 2017]. These frame-
works define a “right to an explanation”: when a decision taken by a ML system
produces legal effects concerning a person, or significantly affects her, explanations
must be provided. One main limitation of these texts is that there is no clear require-
ment on the explanations’ properties, such as faithfulness (to the explained system),
accuracy or completeness. Furthermore, for several applications (e.g., credit scor-
ing, medical applications ... ), legal texts can constrain human decision-makers to
explain their decisions. Then, if an automated system was used to produce rec-
ommendations for the decision-maker, the later must be able to understand and
explain the system’s predictions [Freitas 2014].

Understanding a model’s internal logic facilitates its audit and is important to
confirm many desiderata introduced previously [Doshi-Velez & Kim 2017] such as
fairness, privacy or causality. As emphasized in [Guidotti et al. 2018], it can also be
required for ethics, safety and industrial liability. In particular, trained models may
learn spurious correlations in the training data and behave unexpectedly in some

Bhttps://gdpr-info.eu/
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situations. Understanding the model’s reasoning can help ensuring that it targets
correct patterns.

Comprehensibility of computer-induced models is also a crucial property for the
end users to trust and use such models [Guidotti et al. 2018]. This is particularly
true for critical applications. In such cases, the ability to understand the model
can increase its impact, while on the contrary, users are often not prone to use and
trust models they do not understand [Freitas 2014].

Finally, [Doshi-Velez & Kim 2017] argue that interpretability can help face an
incompleteness in the problem formulation. For instance, it can be used for scientific
knowledge discovery, systems’ safety assessment (in particular, when an end-to-end
system is not completely testable), or ethics (when notions of discrimination /fair-
ness are too abstract to be encoded into the system). When optimizing jointly
several (possibly incompletely defined) objectives, it can also help understanding
the “dynamics of the trade-off”.

Overall, many aspects motivate the need to understand machine learning models
and their predictions. In the next subsection, we try to formalize the notion of
explainability /interpretability, and explain why such task is inherently difficult.

1.4.2 Formalizing Explainable Al

[Doshi-Velez & Kim 2017] define interpretability as “the ability to explain or to
present in understandable terms to a human”. This definition is large enough to in-
clude a variety of techniques, and may correspond to different requirements depend-
ing on the task at hand and on the audience receiving the explanation. Indeed, inter-
pretability is domain-specific and can be assimilated to a set of application-related
constraints [Rudin 2019]. Hence, [Dziugaite et al. 2020] formulate interpretability
as an abstract notion (whose instantiation depends on the precise context) corre-
sponding to a set of constraints over the learning process, restricting the space of
possible classifiers. [Aghaei et al. 2019] further argue that interpretability is sub-
jective, and motivate the interest of letting the end-user customize the obtained
model or explanation, to increase his adherence and trust to the explained concepts
by maximizing its own comprehension.

Overall, the notion of interpretability is difficult to define in the general case,
and therefore [Doshi-Velez & Kim 2017] and [Guidotti et al. 2018] propose to de-
compose it into several latent dimensions to ease its characterization. In particular,
time limitations encode the idea that in some applications, a shorter (but possibly
incomplete) explanation can be preferable, while in others a longer but exhaustive
explanation may be required. The nature of user expertise relates to the fact that
the content, granularity and form of explanations should be adapted to the user
that will be given such explanations. Furthermore, global interpretability refers to
methods explaining an entire model’s logic, while local interpretability only aims at
explaining specific decisions.

[Doshi-Velez & Kim 2017] also propose several task-related dimensions, which
characterize the problem being considered rather than any specific explanation or
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model. On the opposite, method-related latent dimensions of interpretability aim
at assessing an explanation’s quality based on its particular form. These basic
units of explanations are called cognitive chunks. Beyond their number, the form
of the cognitive chunks and the way they are connected also matter. In particular,
monotonicity facilitates the models’ understanding and enhances their acceptance.

Finally, [Doshi-Velez & Kim 2017] identify several approaches to evaluate and
quantify interpretability. First, application-grounded evaluation (“real humans, real
tasks”) requires domain experts to evaluate the quality of an explanation in the
context of its end-task. It is the more thorough evaluation process, but also the most
expensive one, hence other approaches may be preferred. Second, human-grounded
metrics (“real humans, simplified tasks”) evaluate the quality of an explanation
without a specific end-goal. They are easier and cheaper. Finally, functionally-
grounded evaluation (“no human, proxy tasks”) use some mathematical definition
of interpretability as a proxy for explanation quality.

While defining interpretability is a difficult task, we introduce in the next sub-
section a taxonomy of the methods designed to improve human understanding of
machine learning models.

1.4.3 Taxonomy of Explainable AI Methods

Two main approaches to explainable Al can be distinguished: computing post-hoc
explanations that are either global or local approximations of a trained black-box
model, or learning an inherently interpretable one [Lipton 2018]. We detail these
two main families of approaches in the next paragraphs. One can note that different
taxonomies of explainable Al methods were proposed in the literature, distinguish-
ing them using different criteria [Molnar 2020]. A more complete overview can be
found in a recent survey [Speith 2022] synthesizing the different existing taxonomies,
and proposing a general framework, encompassing all the previous ones.

Post-hoc explanations of black-box models. There are two main reasons
for which a model can be considered as a black-box: it is either too complicated
to be understood, even with full knowledge of its parameters, or it is proprietary
and its internals are not publicly accessible (for privacy, security or economical
reasons) [Rudin 2019]. In these situations, to provide some understanding to such
model, one has to craft post-hoc explanations. These explanations can target dif-
ferent problems [Guidotti et al. 2018]:

e Black-box model explanations, also called global explanations, aim at providing
an interpretable surrogate of the black-box model. The objective is to explain
the behaviour of the entire black-box. Interpretable surrogates of the black-
box can be trained simply by fitting the black-box predictions (as if they were
labels), hence optimizing the surrogates’ fidelity. Other more sophisticated
techniques exist, relying on a deeper analysis of the black-box internals. For
instance, [Vidal & Schiffer 2020] transform a random forest into a single yet
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functionally equivalent decision tree. Intuitively, the key idea is to determine
the different decision regions (within the feature space) and to compute a tree
whose splits define the same regions.

Black-boz inspection intends to provide a (visual or textual) representation
for understanding either how the black-box model works or why it returns
some predictions more likely than others. Several techniques can be leveraged
to realize this. For instance, sensitivity analysis gives insights about the fea-
tures importance within the black-box logic. Partial dependence plots aim at
visualizing the functional relationship between a small number of input vari-
ables and the black-box predictions. While these methods are model-agnostic,
other approaches rely on the black-box internals. For example, the activation
patterns of a neural network can be analyzed to understand its computations
or identify the features influencing the most the probability of predicting a
given class.

Black-box outcome explanations, also called local explanations, can be used
to explain particular predictions of the black-box model.

Depending on their form, different types of such explanations can be defined, among
which:

o FEzample-based explanations are simply datapoints, belonging to the same

space as the model’s training set examples. For instance, they can be highly
influential training examples [Koh & Liang 2017], nearest neighbours or pro-
totypes. Counterfactual explanations also fall into this category, as they are
datapoints close to the explained example but exhibiting a different predic-
tion from the considered black-box. For instance, [Parmentier & Vidal 2021]
formulate the problem of finding optimal counterfactual explanations of a
random forest using a Mixed Integer Linear Programming model.

Feature-based explanations take the form of a vector in the feature space, in
which each coordinate is the degree to which the associated feature influences
a model’s prediction. Feature-based explanations can be computed using sev-
eral mechanisms, including gradient-based or perturbation-based methods.
The former compute the gradients of a model (e.g., a deep neural network)
with respect to the input features, either for a given class or for some inter-
mediate component(s) of the network. This enables to determine which fea-
tures contribute the most to a particular prediction. For instance, Grad-CAM
outputs a localization map highlighting the regions of an image that most ex-
plain a chosen prediction [Selvaraju et al. 2017]. The later perturb the input
provided to the black-box and observe the resulting changes in the model’s
outputs. An example technique is LIME (Local Interpretable Model-agnostic
Explanations) [Ribeiro et al. 2016], which first samples a set of datapoints by
perturbating the explained example. LIME uses these examples to train an
interpretable model locally approximating the black-box decision boundary.
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As mentioned in the previous subsection, identifying which properties of an
explanation are important (e.g., compactness, comprehensibility, completeness ... )
is not a well-defined problem, because it highly depends on the application context.
Furthermore, characterizing these properties is also challenging. For instance, the
degree of comprehensibility of an explanation depends on the user receiving the
explanation and must be assessed in a context-dependent, interdisciplinary manner.

Transparent-box design. The key idea underlying transparent-box design is
to provide a model which is locally or globally interpretable on its own.

Although the notion of interpretability does not admit a general, simple def-
inition, rule sets, rule lists, decision trees, scoring systems and linear models are
commonly considered as interpretable if they have a reasonable size [Lipton 2018,
Guidotti et al. 2018]. While the meaning of a reasonable size is ill-defined and
context-specific, it indicates that sparsity (or model simplicity) is an important
property to consider while building these models.

For instance, one can consider the number of rules within a rule list, as in done
in the CORELS algorithm described in Section 2.2.2. Furthermore, shorter rules
are preferable because they are easier to interpret [Chikalov et al. 2013]. Other
model-specific measures can be used, such as the number of non-zero weights
for linear models or the depth of a decision tree. To generalize sparsity to a
model-agnostic metric of interpretability, the notion of decision complexity was
proposed [Jo et al. 2023]. It is measured as the minimum number of parameters
needed for the model to make a prediction given a new example, and allows for
comparisons across different types of models (including non-interpretable ones such
as neural networks). More elaborated metrics exist, for example counting the num-
ber of decision regions to quantify a model’s complexity [Agarwal 2021a]. Com-
plexity can also be evaluated with respect to the model’s representation: models
with similar behavior should be as simple as possible, which meets the Occam’s
razor principle. While such complexity or sparsity measures can be used as proxies
for interpretability, one should keep in mind that they are just syntactical aspects,
while comprehensibility should be related to semantics.

An other important design choice concerns the type of interpretable model con-
sidered. Indeed, depending on the chosen representation, some of them may be
more comprehensible than others [Freitas 2014, Guidotti et al. 2018]. For instance,
the graphical structure of decision trees, along with the fact that they usually use
only a subset of attributes, eases their understanding. Rule lists can produce more
compact representations, but the resulting models are also more difficult to inter-
pret, as a rule makes sense only in the context of all the previously unmatched
ones. This was also observed in a user study [Lakkaraju et al. 2016] in which hu-
man users interpret more easily rule sets than rule list models, because the rules
ordering affects the users’ understanding.

Prototype selection methods can also be considered as interpretable. A pro-
totype is defined as an object that is representative of a set of similar instances



34 CHAPTER 1. BACKGROUND

(observed data point or built artifact). Methods linking each instance to its best
prototype and assigning its prototype’s label work in an interpretable manner, with
the prototype acting like an explanation.

While these terms have sometimes been used interchangeably in the literature,
from now on, we will refer to any techniques aimed at providing some understanding
of a machine learning model as explainable AI. On the one hand, post-hoc explain-
ability encompasses all methods designed to craft explanations of a trained machine
learning model. On the other hand, interpretability will specifically designate the
use of inherently understandable models.

In the next subsection, we discuss intrinsic limitations of the two previously iden-
tified paradigms, namely post-hoc explainability and interpretable models learning
and highlight key challenges.

1.4.4 Some Limitations of Existing Paradigms

As aforementioned, defining and quantifying explainability are important chal-
lenges. In addition, the two paradigms introduced in Section 1.4.3, namely post-hoc
explainability and interpretability, also exhibit inherent drawbacks. We detail them
hereafter.

Post-Hoc Explanation Methods are not Trustworthy. One commonly
mentioned drawback of black-box explainability methods is their lack of reliabil-
ity [Rudin 2019]. Indeed, while post-hoc explanations aim at enhancing the com-
prehension of a black-box model’s internals, there is usually no guarantee that the
crafted explanation really reflects the underlying black-box reasoning. In particular,
post-hoc explanations can have a high fidelity to the black-box while using totally
different features [Lakkaraju & Bastani 2020]. Furthermore, post-hoc explainabil-
ity methods were shown to be unstable with respect to small perturbations of the
input and not robust to distribution shifts [Ghorbani et al. 2019]. Methods were
proposed to compute robust explanations [Lakkaraju et al. 2020], but they do not
solve the key limitation of these approaches: optimizing (even well-generalizing)
fidelity does not guarantee faithfulness to the actual black-box reasoning. These
limitations were exploited in the literature and it was shown that several types
of explanations and popular frameworks to compute them can be manipulated by
a malicious entity to hide unfair decision-making [Aivodji et al. 2021a]. This as-
pect if further discussed in Section 2.1.2, in which we review the tensions between
explainability and fairness.

Finally, post-hoc explainability frameworks, although model-agnostic, are not
suitable for every scenario. For instance, many popular methods rely on build-
ing a local linear surrogate to explain an example’s classification. However, in
situations in which the black-box’s decision boundary is not linear around the
specific examples, such techniques are not suitable anymore. This is illustrated
in [Delaunay et al. 2022], in which the authors propose to first sample example
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points belonging to the different classes around the explained example. Afterwards,
they consider that local linear explanations are suitable only if the different sam-
pled examples are linearly separable. Otherwise, they use a different explainability
mechanism based on rules. This brings an improvement in the resulting explana-
tions’ fidelity, but the approach sometimes fails to identify unsuitable scenarios or
to compute appropriate explanations for the identified ones.

Interpretability Inherent Trade-Offs. [Dziugaite et al. 2020] propose a the-
oretical analysis of the trade-offs resulting from enforcing interpretability - i.e.,
restricting the range of a learning algorithm to the set of interpretable models,
whatever definition of interpretability is considered. A first effect is a reduction of
the space of possible hypothesis, directly impacting the number of different trade-
offs (between utility and any other desiderata), which may possibly penalize ac-
curacy. Indeed, many papers assume that interpretability necessarily has to be
traded-off with accuracy [Pan et al. 2020]. However, this is not theoretically true,
as shown in [Dziugaite et al. 2020], neither empirically verified in many practical
situations [Rudin 2019, Bell et al. 2022]. On the contrary, the ability to interpret a
model’s results and internal logic can be leveraged to improve the learning pipeline,
overall benefiting to the model’s utility. It is however important to inform the end
users about a possible accuracy loss if it is empirically observed, and in such case
to let them choose between the interpretable model and a more accurate black-box.

Enforcing interpretability can additionally increase a problem’s complexity, or
even render it unfeasible. Indeed, building interpretable models often necessitates
more efforts, both computationally due to the intrinsic combinatorial nature of com-
mon interpretable models, but also in terms of expertise for the human designer.
On the same line, [Rudin 2019] states that building interpretable models can bring
an additional effort “in terms of both computation and domain expertise”. Never-
theless, recent algorithmic and hardware progress mitigate this trend. [Weller 2019]
further suggest that interpretability is often a means to an end (i.e., safety, certi-
fication, reliability, trust ...) rather than a goal itself - and the effort put into
enforcing it should not come at the expense of the final target.

It is also important to note that interpretable models are only as interpretable
as their features [Guidotti et al. 2018, Zytek et al. 2022], and all the challenges as-
sociated to interpretability, including domain- and user-specificness, apply to the
features composing an interpretable model. This is one of the greatest challenges
towards the development of interpretability for applications in which examples’ fea-
tures are not interpretable. For instance in computer vision, input examples are
images whose attributes are pixel values [Rudin et al. 2022]. In such cases, inter-
pretability notions have to be reconsidered. For example in [Chen et al. 2019], a
neural network matches parts of an image that explain its prediction with parts of
prototypes images that are provided to the user.

Finally, we saw in this section that while complex black-boxes may reach high
predictive accuracy, post-hoc explainability frameworks used to understand them
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are not trustworthy. On the other hand, learning inherently interpretable models
does not suffer from this drawback, but can be more challenging and may conflict
with utility. To take the best of both worlds, hybrid interpretable models were
proposed as discussed in the next subsection.

1.4.5 Contribution: Learning Hybrid Interpretable Models

As aforementioned, two distinct paradigms consist in either explaining black-box
models or learning inherently interpretable ones. However, rather than treat-
ing them as dichotomies, some approaches rather explore the continuum between
the two philosophies. More precisely, Hybrid Interpretable Models [Wang 2019,
Pan et al. 2020, Wang & Lin 2021] are systems that involve the cooperation of an
interpretable model and a complex black-box one. At inference time, any input of
the hybrid model is assigned to either its interpretable or complex component based
on a gating mechanism, as illustrated in Figure 1.2a. The intuition behind this type
of modeling is that not all examples in a dataset are hard to classify, and that a
potentially large part of them can be accurately classified by a simple model. Trans-
parency is then defined as the ratio of samples that are sent to the interpretable part.
The higher the transparency, the more model predictions one can actually under-
stand and possibly certify. However, it is possible that the interpretable component
makes more errors on average meaning that the overall system suffers a performance
loss. Therefore, an integral part of hybrid modeling is to empirically explore the
accuracy-transparency trade-off and find the best compromises, as reported for sev-
eral state-of-the-art approaches in Figure 1.2b. Despite their high potential, hybrid
models remain under-studied and under-used in the interpretability /explainability
literature. One of the reasons for this under-exploration could be that learning in-
terpretable models is hard in general (often NP-Hard), and fitting a Hybrid Model
on top can only make the task harder. To address this issue, past studies have
optimized such models using local search heuristics [Wang 2019, Pan et al. 2020].
Nevertheless, the inherent stochasticity of these local search algorithms hinders the
ability of practitioners to consistently attain a target level of transparency.

In a recent work [Ferry et al. 2023d], we conducted a fundamental investigation
of such models from three perspectives: Theory, Taxonomy and Methods. From
the theory point of view, we explore Probably-Approximately-Correct (PAC) gen-
eralization guarantees of hybrid models. A consequence of our PAC guarantee is
the existence of a sweet spot for the optimal transparency of the system. When
such a sweet spot is attained, a hybrid model can potentially perform better than
a standalone black-box. Secondly, we provide a general taxonomy for the different
ways of training hybrid models: the Post-Black-Box and Pre-Black-Box paradigms.
These approaches differ in the order in which the interpretable and complex compo-
nents are trained. We show where state-of-the-art hybrid models fall in this taxon-
omy. Thirdly, we implement the two paradigms in a single method: HybridCORELS,
which extends the CORELS algorithm to hybrid modeling. By leveraging CORELS,
HybridCORELS provides a certificate of optimality of its interpretable component and
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Figure 1.2: Overview of Hybrid Interpretable Modeling. (a) General schematic
of a Hybrid Model in which, at inference time, a gating mechanism determines
whether to send the instance to the interpretable component hg or to the complex
one h.. (b) Letting transparency be the ratio of samples sent to the interpretable
component hg, the trade-off between accuracy and transparency can be measured
and compared across different Hybrid Models of the literature [Ferry et al. 2023d],
on an experiment using the ACS Employment dataset [Ding et al. 2021].

precise control over transparency. We finally show empirically that HybridCORELS is
competitive with existing hybrid models, and performs just as well as a standalone
black-box (or even better) while being partly transparent. An example evalua-
tion result for experiments on the ACS Employment dataset [Ding et al. 2021] is
provided in Figure 1.2b. It shows that our proposed methods HybridCORELSpy
and HybridCORELSp.st (respectively based on the Pre-Black-Box and Post-Black-
Bozx paradigms) provide interesting trade-offs between transparency and accuracy,
compared to the state-of-the-art methods HyRS and CRL.

1.5 Privacy

In this section, we introduce key notions regarding the protection of privacy in ma-
chine learning. We first discuss, in Section 1.5.1, different methods that can be used
to protect the privacy of data. In Section 1.5.2, we then review popular inference
attacks against machine learning models. Afterwards in Section 1.5.3, we survey
the literature on a particular type of attacks, coined reconstruction attacks, that we
later consider in our contributions of Chapters 3 and 4. These attacks motivate the
need for privacy-preserving mechanisms. Indeed, in Section 1.5.4, we present a pop-
ular framework to protect against inference attacks, namely differential privacy. We
discuss some of its applications to machine learning tasks in Section 1.5.5. Finally,
in Section 1.5.6, we highlight some limitations and challenges regarding differential
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privacy and the current approaches to privacy protection.

1.5.1 Achieving Data Privacy

The meaning of privacy has changed over time [Ekstrand et al. 2018]. Nowadays,
key aspects of this concept include the limitation theory, calling for a “limited and
contextually bounded” access to individuals’ data, and the control theory, stat-
ing that individuals should be able to choose which information they want to
share and which they want to keep private. These concepts relate to the prin-
ciples of data minimisation (personal data collection should be limited to what
is necessary and relevant for the considered task) and data sovereignty (the data
generated within a country is subject to its laws and regulations). New technolo-
gies, and in particular the collection and use of huge amounts of data, exacerbate
the need to consider these desiderata. Legal texts, such as Title 13 for the Cen-
sus data in the U.S.!6 or the European Union General Data Protection Regula-
tion'” [Voigt & Von dem Bussche 2017] in the EU, constrain the use and release of
data related to individuals, making privacy a legal requirement. Indeed, several
types of techniques targeting data protection exist, addressing different concerns.
Hereafter, we discuss two complementary approaches, before focusing on privacy-
enhancing notions that aim at protecting the output of a computation against
inference attacks.

Protecting input through cryptography. Cryptography and privacy tar-
get the same high-level objective: protecting the data D used to perform some
computation. More precisely, cryptography ensures that no information about D
is leaked during the computation process [Dinur & Nissim 2003]. Common tech-
niques include Multi-Party Computation (MPC) and Homomorphic Encryption
(HE) [Cristofaro 2020]. In a nutshell, MPC allows a set of entities to jointly perform
some computation (such as training a machine learning model) while keeping their
input data private. HE can also be used to perform computations using encrypted
data, without having to first decrypt it. For example, it can be used to compute the
predictions of an online machine learning model by only providing it the encrypted
data. In both cases, the data used to perform the computation (either training or
inference) is kept private. Indeed, the intrinsic goal of such tools is to make sure
that no information other than what could be learnt from the output of the compu-
tation is leaked. However, the result of the computation itself is usually expected
to be the same as if it was performed with the original (decrypted) data and it may
leak information about it.

Several privacy-enhancing tools precisely address this issue and ensure that the
(possibly publicly available) output of the computation cannot be used to retrieve
private information about D. Both approaches are complementary, and frameworks

https://www. census.gov/history/www/reference/privacy_confidentiality/title_13_
us_code.html
"https://gdpr-info.eu/
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exist to address them jointly [Kairouz et al. 2015], hence ensuring that the input
of a computation is not leaked during the computation itself and cannot be re-
trieved from its outputs neither. Hereafter, we focus on privacy attacks that are
possible even in the setup in which an entity owns some data and trains a machine
learning model by itself. In such setting, the entity usually does not need to use
cryptographic tools. However, if its model is released or queried by external users,
appropriate protection methods need to be apply to protect against inference that
can be done on the training data from the model itself.

Privacy-enhancing notions to prevent inference attacks. A first approach
to protect the privacy of individuals whose data is released is de-identification.
This method simply consists in removing directly identifying attributes, such as
the names or addresses. However, this approach was shown ineffective and highly
vulnerable to re-identification attacks, which consist in matching publicly available
information to the released data in order to determine the identity of the involved
individuals. For instance, this is possible by using quasi-identifiers, which are a
combination of attributes that are each not directly identifying but can be unique
in a population when consider together (e.g., such as the combination of ZIP code,
age and gender). A well-known empirical demonstration of such linkage attack was
the discovery of the Massachusetts governor’s personal health information, in a (so-
called) anonymized public database, made possible by merging overlapping records
with a voter registry [Sweeney 2002].

To counter this risk, several syntactic models of anonymity were proposed, which
rely on the key idea of generalizing a profile to hide him within a group of similar
ones [Clifton & Tassa 2013]. More precisely, these approaches consist in group-
ing examples within blocks so that the profile of a user is indistinguishable among
those belonging to the same block. The first introduced notion to realize this is
k-anonymity [Sweeney 2002, Samarati 2001, which requires that each block con-
tains at least k examples. The examples’ quasi-identifier (private) features are
then replaced with their closure. More precisely, rather than their original, sin-
gle value, they are defined as sets of possible values, computed as the union of
the values for the examples of the block. A remaining issue is that if all individ-
uals within one block have the same value(s) for their private attribute(s), then
the value can be determined with certainty, which makes the protection ineffec-
tive. p-sensitivity [Truta et al. 2007] addresses this issue by requiring that at least
p different values of the private attribute are represented within each block. /-
diversity [Machanavajjhala et al. 2007] is a stronger notion enforcing that within
each block, at least ¢ different values of the private feature are well represented.
t-closeness [Li et al. 2007] additionally ensures that the distribution of these val-
ues within each block is sufficiently close to that of the entire dataset. Over-
all, many frameworks were proposed to improve the original k-anonymity notion.
However, they were proved to be still vulnerable against several background at-
tacks [Clifton & Tassa 2013].
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Another approach, coined differential privacy, was proposed to precisely bound
the amount of information the output of a computation leaks regarding its in-
puts [Dwork et al. 2006]. Due to the strong theoretical guarantees it provides, to
the interesting properties it exhibits, and to the availability of several mechanisms to
enforce it, it has now been widely adopted. Example of recent applications of DP in-
clude the 2020 release of the U.S. Census Bureau'® [Abowd 2018], but also its use by
companies such as Google [Aktay et al. 2020], Facebook [Herdagdelen et al. 2020]
and Apple [Team 2017].

The design and use of privacy-preserving mechanisms for machine learning is
widely motivated by the flourishing literature on inference attacks against trained
models, which are introduced briefly in the next subsection.

1.5.2 Inference Attacks against Machine Learning Models

One fundamental objective in privacy protection is to ensure that the output of a
computation over a dataset D cannot be used to retrieve private information about
this dataset [Dinur & Nissim 2003]. Inference attacks [Dwork et al. 2017] precisely
aim at retrieving information regarding the dataset D by only observing the outputs
of the computation. In the machine learning field, the computation being performed
is usually a learning algorithm whose output is a trained model.

Inference attacks against machine learning often consider two distinct adversar-
ial settings [Cristofaro 2020, Rigaki & Garcia 2023]. In the black-box setting, the
adversary does not know the actual trained model’s parameters and can only query
it through an API. In contrast, in the white-box setting, the adversary has full
knowledge of the model parameters. Between these two scenarios, different gray-
bor settings are possible. Depending on their objective, different types of infer-
ence attacks have been proposed against machine learning models [Cristofaro 2020,
Rigaki & Garcia 2023], among which:

e Membership inference attacks try to infer whether given individuals were
used to train a model or not. [Kulynych et al. 2022] attribute the success
of these attacks to a bad distributional generalization (i.e., when a model’s
outputs are distributed differently on sets of examples inside and outside
its training set) but such attacks are sometimes possible even under well-
generalized models. Such attacks constitute an elementary building-block for
detecting privacy leaks and possibly build more elaborated privacy attacks.
They were proposed in [Shokri et al. 2017], and have been studied in various
settings. A review of this literature can be found in [Hu et al. 2022b]. A recent
work [Carlini et al. 2022] summarizes the key mechanisms that were proposed
in the literature and builds on them to propose new evaluation mechanisms
and a more effective attack. One can note that differential privacy (introduced
hereafter in Section 1.5.4) precisely upper-bounds the success of membership

https://wuw.census.gov/programs-surveys/decennial-census/decade/2020/
planning-management/process/disclosure-avoidance/differential-privacy.html
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inference attacks, by theoretically bounding the contribution of each individ-
ual example to the result of the computation [Kulynych et al. 2022].

e Reconstruction attacks aim at reconstructing part of a model’s training
data. Various settings can be considered [Dwork et al. 2017] and Chapters 3
and 4 propose different types of reconstruction attacks. For this reason, we
survey the literature with more details in the next subsection.

e Model extraction attacks aim at stealing a black-box model’s internal func-
tionalities or parameters. [Tramer et al. 2016] introduced these attacks, which
often consider the black-box setting as the model is proprietary and accessed
only through a dedicated prediction API.

e Property inference attacks often involve building a meta-classifier, which,
given a trained model, predicts whether its training data exhibited some prop-
erty of interest or not [Ateniese et al. 2015].

e Model inversion attacks try to retrieve a model’s inputs by only observing
the associated outputs [Fredrikson et al. 2015]. Such attacks hence do not
necessarily target the training data, but rather data provided at inference
time!?.

Recent surveys [Rigaki & Garcia 2023, Cristofaro 2020] provide more complete
summaries of existing attacks. In the next subsection, we review the literature
on a particular type of inference attack against machine learning models, namely
reconstruction attacks. Indeed, we will be interested in this type of attacks within
Chapters 3 and 4.

1.5.3 Focus on Reconstruction Attacks: a Literature Review

Reconstruction attacks have been studied in the context of database access mech-
anisms since the early 2000s. In the considered setup, a database contains records
about individuals, with each record being composed of non-private information
along with a private bit (one per individual) [Dwork et al. 2017]. The adversary
performs queries to a database access mechanism, whose outputs are aggregate
and noisy statistics about private bits of individuals in the database. Such recon-
struction attacks were introduced and formalized in [Dinur & Nissim 2003], along
with some fundamental reconstruction results based on the adversary’s capabilities.
An efficient linear program for reconstructing private bits of a database leveraging
counting queries was also proposed. This linear program was later improved and
extended to handle different query types [Dwork et al. 2007]. The practical effec-
tiveness of the proposed attacks was demonstrated by a large-scale study carried

9The term model inversion has nonetheless been used to designate attacks with different ob-
jectives. Here, we refer to the taxonomy introduced in [Cristofaro 2020], in which model inversion
attacks do not specifically target members of the training set. This is in line with the particular
model inversion attacks we later mention in the manuscript.
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out by the US Census Bureau in 2018 [Garfinkel et al. 2018] and was part of its mo-
tivation to adopt differential privacy for future data releases. The linear reconstruc-
tion program was also used successfully to break the Diffix commercial database
access mechanism [Cohen & Nissim 2020]. Pursuing the same goal, another at-
tack [Gadotti et al. 2019] exploited Diffix’s data-dependent noise (i.e., sticky noise
as well as the addition of static and dynamic noise) to infer private attributes of
individuals in a dataset.

One fundamental difference between this line of work and the machine learning
privacy literature lies is the nature of the mechanism accessing the private data.
In the machine learning (respectively, database access) setup, such mechanism is
the learning algorithm (respectively, database access mechanism), and its output
is the trained model (respectively, answers to queries). Indeed, database access
mechanisms use the private information to compute the answer to each query. On
the contrary, in our setup, the training set sensitive attributes are not accessed
anymore at inference time, and all the information regarding them is released at
once (with the model itself or its predictions). However, our objective is similar to
these works: we aim at retrieving a column of the dataset by leveraging the output of
some computation involving this column (query answers in the previously depicted
works, trained fair model in ours).

Other previous works have also tackled reconstruction problems in various set-
tings. For example in the context of online learning, a reconstruction attack was pro-
posed to infer the updating set (newly-collected data used to re-train the deployed
model) information using a generative adversarial network leveraging the difference
between the model before and after its update [Salem et al. 2020]. In collaborative
deep learning, it was also shown that an adversarial server can exploit the collected
gradient updates to recover parts of the participants’ data [Phong et al. 2017]. In
the pharmacogenetics field, machine learning models are learnt to propose medi-
cal treatments specific to a patient’s genotype and background. In this sensitive
context, a reconstruction attack was proposed, taking advantage of the correlation
between the sensitive attributes, the non-sensitive ones, and the output of a trained
model. More precisely, the attack takes as input a trained model and some de-
mographic (non-private) information about a patient whose records were used for
training and predicts the patient’s sensitive attributes [Fredrikson et al. 2014]. Sub-
sequent work proposed attacks leveraging confidence values output by several ML
models to infer private information about training examples given some informa-
tion about them [Fredrikson et al. 2015]. The attack has been shown to be effective
against several models and applications, namely decision trees for lifestyle surveys
and neural networks for facial recognition. While being different both in terms of
techniques and objectives, such inference attack still lies in the category of recon-
struction attacks. Finally, other works have studied the intended [Song et al. 2017]
and unintended [Carlini et al. 2019] training data memorization of machine learning
models, along with different ways to exploit it in a white-box or black-box setting.

Recent works have considered the special case of training set sensitive attributes
reconstruction [Aalmoes et al. 2022, Hu & Lan 2020, Hamman et al. 2022]. The
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key challenge here is that while sensitive attributes are usually known at training
time to ensure the resulting model’s fairness, they cannot be used explicitly for infer-
ence to avoid disparate treatment [Barocas & Selbst 2016, Zafar et al. 2017]. More
precisely, [Aalmoes et al. 2022] propose a machine learning based attack leveraging
an auxiliary dataset whose sensitive attributes are known. [Duddu & Boutet 2022]
propose a similar approach, but also leverages feature-based model explanations
computed with different types of methods. They show that these explanations
can be exploited to increase the attack success. Other works [Hamman et al. 2022,
Hu & Lan 2020] consider a particular setup, in which a fair training process is done
in a distributed manner, with a learner wanting to build a fair model on some train-
ing dataset for which it does not know the sensitive attributes, and a third-party
which owns them. The learner iteratively sends models parameters to the third-
party, which then tells him whether the current model is fair. The learner then
knows, for an entire set of models, whether they satisfy the fairness constraint or
not. [Hamman et al. 2022] show that the learner can adversarially query the auditor
to retrieve individual sensitive attributes within the training data. [Hu & Lan 2020]
propose to use Integer Programming techniques to encode this information and per-
form the reconstruction of the training set sensitive attributes. This line of works
is closely related to the attack we introduce in Chapter 3.

Finally, in the white-box setting, an attack was introduced that exploits the
structure of an interpretable machine learning model to reconstruct a probabilistic
(uncertain) version of a database [Gambs et al. 2012]. We extend this work in
Chapter 4.

Overall, reconstruction attacks, as well as the other inference attacks introduced
in Section 1.5.2, motivate the need for privacy-preserving mechanisms in machine
learning. In the next subsection, we introduce a popular approach to protect the
output of a computation from inference attacks: differential privacy.

1.5.4 Differential Privacy

Differential privacy (DP) [Dwork et al. 2006, Dwork & Roth 2014] is a formal pri-
vacy model, ensuring that the output of a computation £ over a database (i.e.,
dataset) does not depend too much on any single datapoint (i.e., example). More
precisely, DP enforces that for any two neighboring datasets D and D’ (i.e., differing
by at most one single example), the probability of observing any particular output
to the algorithm must not differ by more than a given factor. This factor is exponen-
tial in a epp privacy parameter and intuitively bounds each example’s individual
contribution to the result of the computation. Another parameter, §pp, quantifies
a risk of failure, which happens if the probability of observing some output to the
algorithm differs by more than the aforementioned factor between two neighboring
datasets. This is mathematically stated in Definition 1. When dpp = 0, the algo-
rithm yields pure DP guarantees. Otherwise, if dpp > 0, it satisfies approzimate
DP. Crucially, if dpp << ﬁ, the probability of failure is negligible and the privacy
protection is meaningful.
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Definition 1. (Differential Privacy) [Dwork & Roth 2014] A randomized algo-
rithm £ : NI¥l— H s (epp,dpp )-differentially private if for any two neighbouring
datasets D and D' such that |D —D'||y <1 and for all H C H:

]P(/:,(D) € H) < GEDP]P’(ﬁ('D/) € H) +dpp

In addition of providing formal privacy guarantees, differential privacy also ex-
hibits several strong and appealing theoretical properties. Of particular importance
is the resilience to post-processing: the output of a differentially-private algorithm
remains differentially private, whatever computation (not depending on the orig-
inal private data) is performed. Furthermore when several differentially-private
algorithms are applied sequentially or in parallel, simple and advanced composition
theorems exist that can be used to compute the privacy cost of the entire process.
DP is also suitable to protect groups of examples as any (epp,dpp)-differentially
private algorithm is (Nepp,NeNePP§pp)-differentially private for groups of size N.

Several mechanisms have been introduced to enforce pure or approximate DP
guarantees. We briefly describe some of the most popular ones hereafter. The
key idea underlying them is to perturb the output of the computation with noise
calibrated to the function’s sensitivity. This ensures that the contribution of any
single example is hidden by the perturbation.

One of the simplest mechanisms one can design to satisfy differential privacy is
called randomized response [Warner 1965] and was proposed decades before DP
was invented. This technique simply consists in returning a random answer with
some probability (otherwise, the true answer is returned). It was proposed to tackle
evasive answer bias. For instance, when asking individuals whether they already
did some illegal activity, they may not want to answer positively even if it is the
case.

The Laplace mechanism [Dwork et al. 2006] consists in adding noise directly
to the computed quantity. Such noise is randomly drawn from a Laplace distri-
bution whose magnitude is scaled to the computation’s ¢i-sensitivity. This ap-
proach has been proven to satisfy pure DP guarantees. The Gaussian mecha-
nism [Dwork & Roth 2014] consists in adding noise drawn from a Gaussian (nor-
mal) distribution whose magnitude is scaled to the computation’s ¢3-sensitivity. The
Gaussian distribution has lighter tails then the Laplace distribution, hence exhibit-
ing a stronger concentration around the true (un-noised) output. This can result
in a better utility, but the Gaussian mechanism only satisfies approximate-DP.

The functional mechanism [Zhang et al. 2012] first approximates an arbi-
trary function using its polynomial Taylor expansion. Indeed, analyzing and bound-
ing the sensitivity of arbitrary functions can be challenging and/or result in large
overestimates. The coeflicients of the resulting polynomial form can then be per-
turbed with noise drawn from a Laplace distribution to satisfy pure DP.

Unlike the aforementioned noise addition techniques, the exponential mecha-
nism [McSherry & Talwar 2007] consists in drawing an output from a probability
distribution. More precisely, it tackles scenarios in which one wants to output an
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element with highest utility among a finite set of candidates. Using the afore-
mentioned noise addition mechanisms to perturb the utility function is possible,
it could result in some scenarios in significantly harming the utilities comparisons
and outputting an element with a low utility. Instead, the exponential mechanism
maintains a probability distribution over the set of elements, with the probability of
an element to be output by the procedure being related to its utility score. Indeed,
the noise here is integrated through the randomness of the probability distribution
rather than in the objective function computation.

While it was first proposed in the context of database access mechanisms, differ-
ential privacy has also been integrated into machine learning algorithms to ensure
privacy of a model’s training data, which we discuss in the next subsection.

1.5.5 Differentially-Private Machine Learning

Several frameworks leverage the building blocks introduced in the previous subsec-
tion to ensure differential privacy during a learning process. Hereafter, we describe
some popular methods that are later referred to in this manuscript. Recent sur-
veys [Ji et al. 2014, Gong et al. 2020] propose a more complete overview of exist-
ing differentially-private methods for building privacy-preserving machine learning
models.

A first approach is to directly perturb the learning objective through the ad-
dition of noise, for example using the functional mechanism. As stated in the
previous subsection, it consists in computing the Taylor expansion of the objec-
tive, and perturbating its coefficients with random noise. For example, this is done
in [Zhang et al. 2012] for both linear regression and logistic regression. Even be-
fore, [Friedman & Schuster 2010] have proposed a procedure to learn differentially-
private decision trees in a greedy manner. This method consists in using the
exponential mechanism to determine which attribute to split on at each itera-
tion. They also introduce an error based pruning strategy using noisy counts.
DP-SGD [Abadi et al. 2016] was proposed to train deep learning models with differ-
ential privacy. More precisely, the authors modify the traditional Stochastic Gradi-
ent Descent (SGD) by clipping the norm of the computed individual gradients (to
bound each example’s contribution to the computation), and perturbating them
with Gaussian noise. The resulting deep neural network parameters then satisfy
differential privacy with parameters computed using an “accountant” procedure,
which calculates and sums (using composition theorems) the privacy cost at each
iteration of the gradient descent.

Ensemble methods can also be leveraged to achieve differential privacy. For
example, PATE ensures differential privacy in a particular setup, with a private
training set and a public unlabeled one [Papernot et al. 2017, Papernot et al. 2018].
First, the (private) training set is partitioned into a number of non-overlapping
subsets used to train a set of teacher models. The predictions of the teachers
(i.e., vote histograms) are then made differentially private by adding Laplace noise.
The public data is labeled using these noisy predictions, and used to train a
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differentially-private student model. The Bootstrap aggregating (Bagging) ensem-
ble method was also shown to intrinsically yield (weak) differential privacy guar-
antees [Liu et al. 2021b]. This is explained by the performed bootstrap sampling:
the method builds a number of base learners, each trained on a dataset generated
using random sampling with replacement from the original training set.

Finally, two paradigms can be considered. On the one side, Global Differential
Privacy consists in using a differentially-private training procedure directly on the
original data. However, it requires to trust the entity training the model with the
complete dataset. This approach may not be applicable, for instance if the central
aggregator (which gathers all the data) is not trusted. Then, another possibility
for the different entities producing the data is to release differentially-private ver-
sions of their own subsets and to provide them to the aggregator. The resulting
dataset can then be processed using traditional learning algorithms. By resilience to
post-processing property, the trained models also satisfy differential privacy. This
approach is coined Local Differential Privacy [Duchi et al. 2013], and usually re-
quires the addition of more noise, resulting in more harms in terms of utility.

Differential privacy constitutes a strong theoretical privacy-preserving property
for the trained models. However, it also has limitations and is sometimes misused,
as discussed hereafter.

1.5.6 Differential Privacy: Limitations

As discussed in Section 1.5.1, differential privacy has been widely adopted as a gold
standard in machine learning, replacing the former syntactic models of anonymity.
However, it was shown [Clifton & Tassa 2013] that these approaches can still be
useful. More precisely, the authors explain that syntactic approaches (such as k-
anonymity or its later extensions) are designed for privacy-preserving data pub-
lishing (PPDP) while differential privacy is best suited for privacy-preserving data
mining (PPDM). Indeed, while PPDP is possible using differential privacy, the
added amount of noise is likely to harm utility significantly. A key difference is
that in PPDM, the query whose answer has to be computed on the private data is
known in advance, while in PPDP, the released dataset can be used for any purpose
(although its privatization may be optimized for some task). While such general-
purpose PPDP may constitute a higher danger in terms of privacy, implementation
of a specific, interactive query-based mechanism for each particular application is
not realistic.

Likewise, differential privacy was originally proposed in the context of database
access mechanisms, to answer interactive queries. However, data collection, data
release and machine learning tasks correspond to a different setting. While differ-
ential privacy still provides privacy protection in these applications thanks to its
resilience to post-processing property, its use is such different setups should be care-
fully analyzed [Domingo-Ferrer et al. 2021]. More precisely, the authors point out
that differential privacy is currently used by large companies with meaningless pri-
vacy parameters. This is largely due to the inherent nature of the performed tasks:
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record-level data release or collection requires unreasonable levels of noise to be
added to ensure privacy protection, which could harm utility significantly. Further-
more, they often do not respect some key properties such as composition (as respect-
ing it while collecting data sequentially many times is not reasonable), which com-
pletely destroys the promised privacy protection. Indeed, the release of individual-
level data records intrinsically conflicts with the principles of DP, and significantly
harms to utility of the downstream tasks - which in the case of the US Census can
have important societal impacts [Pujol et al. 2020]. Finally, training differentially-
private models (and in particular, deep learning models) is very costly in terms of
privacy budget. To maintain utility, common approaches [Abadi et al. 2016] enforce
the approximate version of differential privacy. However, it comes with a significant
price: in particular if dpp is in the order of ﬁ, then it is possible to output the
complete records of a few number of participants.

Furthermore, differentially-private mechanisms scale the magnitude of the noise
added to the computation (directly or indirectly) to the query sensitivity. How-
ever, calculating or upper-bounding such sensitivity can be challenging for com-
plex expressions or algorithms, and large upper-bounds result in adding a signif-
icant amount of noise, hence harming utility. In addition, such sensitivity has
to be worst-case and can reach very high values due to a few number of out-
liers [Clifton & Tassa 2013]. In such case, large scale noise usually has to be added
for all data samples. This is illustrated in [Sarathy & Muralidhar 2011], for com-
puting mean revenue: hiding the contribution of a limited number of examples with
very high income leads to the addition of noise whose magnitude is on the order
of the actual answer, which affects utility. Determining the values of the chosen
privacy parameter epp is also non trivial. This is exacerbated by the fact that
in practice, the records within a dataset may not be independent. While group
differential privacy still applies to this setup, the resulting privacy loss is affected.

Finally, while differential privacy can be useful and has been widely adopted
as a standard in the machine learning community, it may not match the societal
and legal expectations regarding privacy protection [Datta et al. 2023]. Yet, these
expectations are at the crux of the notions of privacy, through the control theory
mentioned in Section 1.5.1. Pursuing research on other privacy frameworks, improv-
ing differentially-private mechanisms, as well as monitoring their impacts on utility,
are important research avenues for the development of useful and privacy-preserving
learning techniques.
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In this chapter, we first provide a large literature review on the intersec-

tion between fairness and interpretability in machine learning. We then

focus on one specific computational challenge: learning optimal inter-

pretable models under fairness constraints. More precisely, we propose

to learn optimal fair rule lists using an Integer Linear Programming

based pruning technique. By leveraging jointly fairness and accuracy,
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Programming to improve fairness generalization.
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As mentioned in Chapter 1, learning machine learning models whose decisions
can be understood by human users is a key requirement for trustworthy machine
learning. To avoid the drawbacks of post-hoc explainability techniques as depicted
in Section 1.4.4, one can learn inherently interpretable models’ [Rudin 2019]. While
many heuristic approaches for learning have been proposed, exact approaches of-
fer a considerable advantage as a lack of optimality can have societal implica-
tions [Angelino et al. 2018], for example if incorrect classifications result in wrongly
disadvantaging people. For instance, CORELS is an exact method producing rule lists
that are certifiably optimal in terms of accuracy and sparsity [Angelino et al. 2017,
Angelino et al. 2018]. It relies on a branch-and-bound algorithm leveraging sev-
eral dedicated bounds to prune the search space efficiently. In an early work, we
proposed FairCORELS, a bi-objective extension of CORELS handling both statisti-
cal fairness and accuracy [Aivodji et al. 2019b, Aivodji et al. 2021¢c]. FairCORELS
consists in an e-constraint method that leverages CORELS’ original search tree and
bounds for the accuracy objective and considers the fairness objective as a con-
straint. However, handling such constraints modifies the set of feasible solutions,
which makes the exploration considerably harder. Indeed, learning optimal inter-
pretable machine learning models under constraints (e.g., fairness constraints) has
been identified as one of the main technical challenges towards interpretable ma-
chine learning [Rudin et al. 2022].

We leverage combinatorial optimization to address this issue and propose a
method that harnesses the fairness constraints to efficiently prune the search space
and optionally guide exploration. More precisely, we argue that CORELS’ original
bounds are not sufficient to efficiently explore the search space in this bi-objective
setup. To address this, we design Integer Linear Programming (ILP) models com-
bining both accuracy and fairness requirements for well-known statistical fairness
metrics. These models are incorporated into FairCORELS through effective pruning
mechanisms and can also be used to guide the exploration towards fair and accu-
rate rule lists. They can also be combined with a new symmetry-breaking data
structure to enhance the scalability of the method while maintaining the optimality
guarantee. Our large experimental study, using three datasets with various fairness

! As discussed in Section 1.4.2, interpretability is not simply a property of a given hypothesis
class, and it should be assessed based on the considered context (and in particular, on the user
at hand). However, rule lists of reasonable size are commonly considered as interpretable mod-
els [Lipton 2018, Guidotti et al. 2018] and we adopt this simplification throughout this chapter.



51

measures and requirements, demonstrates clear benefits of the proposed approaches
in terms of search exploration, memory consumption and learning quality.

However, as discussed in Section 1.3.6, models that are fair with respect to their
training data may still exhibit unfairness when applied to previously unseen data.
Indeed, fairness constraint overfitting [Cotter et al. 2018, Cotter et al. 2019] can oc-
cur, and fairness generalization has been identified as an open challenge for trustwor-
thy machine learning [Cotter et al. 2018, Cotter et al. 2019, Huang & Vishnoi 2019,
Mandal et al. 2020, Chuang & Mroueh 2021]. Recent work on fairness generaliza-
tion targets integrating different techniques for improving robustness into exist-
ing fair learning algorithms. While such methods have been shown (theoretically
and empirically) to improve fairness generalization, they often induce a consider-
able computational overhead (e.g., solving an additional problem to determine a
worst-case unfairness [Mandal et al. 2020]), and thus have limited scalability. Some
methods do not suffer from this drawback but instead require additional splitting of
the data [Cotter et al. 2018, Cotter et al. 2019], hence possibly penalizing utility, as
the amount of data used to update the model is reduced. Finally, other approaches
have limited applicability, as they are designed for a particular learning algorithm
or hypothesis class [Taskesen et al. 2020, Wang et al. 2021], or require some special
property of the underlying algorithm (e.g., access to a cost-sensitive classification
oracle [Mandal et al. 2020]). To tackle these issues, we propose a new framework
for statistical fairness robustness. Intuitively, our approach consists in ensuring
fairness over a variety of samplings of the training set. We show that this notion
can be quantified precisely, and leveraged to audit or train fair and robust machine
learning models in practice. We additionally design a flexible and efficient heuristic
method for learning robust and fair models, which can easily be integrated into
existing fair classification methods, formulated as constrained optimization prob-
lems. We summarize the key notions of our fairness robustness framework within
this chapter.

Outline of the chapter. In Section 2.1, we survey the literature on the connec-
tions between fairness and interpretability in machine learning. We then focus on
one of the identified tensions: the computational difficulty of learning optimal in-
terpretable models under fairness constraints. Indeed, we present our contribution
on using an Integer Linear Programming pruning approach to learn optimal fair
rule lists (that are inherently interpretable models). More precisely, we introduce
rule lists and the baseline algorithms to learn them in the context of fairness in
Section 2.2. We focus on FairCORELS, a method for learning fair rule lists that
we proposed in an early work. We then describe our proposed pruning approach
in Section 2.3, before providing an experimental evaluation in Section 2.4. While
performing all these experiments, we noticed that, as already mentioned in the lit-
erature, fairness generalization is a fundamental issue. To address this challenge,
we proposed a sample-based robustness framework for fairness, which we briefly
summarize in Section 2.5.
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2.1 Connections between Fairness and Interpretability

In this bibliography section, we review the literature at the intersection between
fairness and interpretability in machine learning. We first highlight some synergies,
before discussing the identified tensions between the two notions.

2.1.1 Synergies

Interpretability eases model audit. As mentioned in [Rudin 2019], it is eas-
ier to detect and debate possible biases or unfairness with an interpretable model
than with a black-box. This is a benefit in terms of fairness but sometimes also
for accuracy, as it makes it possible to detect and correct possible incorrect prepro-
cessings or problems in the training data - which is more difficult with black boxes.
Following the same line of research, [Doshi-Velez & Kim 2017] claims that inter-
pretability can be used to qualitatively ascertain whether other desiderata - such
as fairness - are met. Post-hoc explainability tools can also facilitate fairness audit:
to gain insight regarding the causes of a model’s unfairness, [Begley et al. 2020]
propose fairness explanations. Such explanations are based on Shapley values and
aim at attributing a model’s overall unfairness to individual input features. In a
recent work, [Mougan et al. 2023] show that post-hoc explanations can be leveraged
to audit fairness properties of a black-box. They propose a “Demographic Parity
Inspector" which detects and quantifies existing fairness violations, but can also
provide insights regarding the features causing such disparities.

Fairness may act as a regularizer. It was observed in the literature that
enforcing fairness constraints can have a regularizing effect and reduce overfit-
ting [Kilbertus et al. 2018]. More precisely by preventing over-complex models,
this can lead to sparser and more interpretable models.

2.1.2 Tensions

We first elaborate on the theoretical and empirical tensions between fairness and
simplicity, which is often considered as a proxy for interpretability (as mentioned
in Section 1.4.3). We then discuss challenges in the joint pursuit of interpretability
and fairness desiderata. Finally, we enumerate different unfair effects of providing
post-hoc explanations.

2.1.2.1 Tensions between Fairness and Simplicity

Simplicity and fairness intrinsically conflict. [Agarwal 2021a] proposes a
framework, adapted from the one proposed in [Kleinberg & Mullainathan 2019],
to theoretically study the implications of enforcing interpretability. In these works,
simplicity is considered as a proxy for interpretability. More precisely, a machine
learning model is represented as a set of cells partitioning the input space. Simpli-
fying a model consists in merging some of its cells (hence diminishing their num-
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ber and the model’s complexity). The authors prove that, for every non-trivial
group-agnostic simplification, there exists a more complex classifier that simul-
taneously strictly improves both accuracy and statistical fairness notions. This
classifier can be constructed by carefully selecting some examples from chosen pro-
tected groups and splitting their associated cells. Overall, these results suggest
that interpretability /simplicity comes at some cost in terms of accuracy/fairness.
[Kleinberg & Mullainathan 2019] present similar results, further analyzing that sim-
plicity is fundamentally inconsistent with statistical fairness notions. As described
in Section 1.4.4, [Dziugaite et al. 2020] model interpretability as an abstract notion
while noting that enforcing it can only reduce the set of admissible machine learning
models. A consequence is that interpretability can only harm (training) accuracy.
This result can be extended to fairness: by limiting the space of classifiers, the
enforcement of interpretability reduces the number of possible trade-offs, which can
be an obstacle to fair and accurate learning.

Empirical trade-offs are complex. [Jabbari et al. 2020] propose an empirical
study of the trade-offs between interpretability and fairness. The number of fea-
tures available to a classifier is used as a measure of its complexity and acts as a
proxy for interpretability. Varying this number, the authors report the variations
of statistical fairness notions (namely, Statistical Parity and Equal Opportunity
(¢f. Section 1.3.2)). Experiments on synthetic and real-world datasets show sev-
eral trends, that mainly depend on the correlation between protected attributes,
non-protected ones and class labels. Unsurprisingly, when the sensitive attribute is
correlated (even moderately) to the labels, using it explicitly for decision making
greatly increases the model’s unfairness. These results rely strongly on the chosen
notion of interpretability and as such cannot be considered generic. However, they
demonstrate that the trade-off between fairness and interpretability is, in practice,
complex and data-dependent.

2.1.2.2 Combining Fairness and Interpretability is Challenging

Learning optimal interpretable models under fairness constraints is com-
putationally challenging. Due to their combinatorial nature, learning optimal
interpretable machine learning models under constraints (e.g., fairness constraints)
has been identified as one of the main technical challenges towards interpretable
machine learning [Rudin et al. 2022]. One can note that there exist approaches
producing optimal interpretable and fair machine learning models in the literature.
For instance, [Aghaei et al. 2019] propose an Integer Programming formulation for
learning optimal fair decision trees. The approach is however computationally ex-
pensive, and the reported empirical run-times are quite large. Our pruning method
leveraging jointly accuracy and fairness to learn optimal fair rule lists (as described
in Section 2.3) provides an example technique to mitigate such tension.
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Explanations may not preserve fairness properties of a model. It was
observed [Dai et al. 2021] that popular explainability frameworks do not reliably
reflect the fairness properties of the explained models. For example, it is possible
to compute fair explanations of an unfair model [Aivodji et al. 2019a], and the
explanations of a fair model’s decisions may (wrongly) rely on sensitive features
and exhibit discrimination [Manerba & Guidotti 2022]. In addition, the specific
explanation method chosen as well as the type of explanation it produces both
impact the users’ perceived fairness [Dodge et al. 2019]. [Dai et al. 2021] investigate
the fairness of post-hoc explanations generated from a fair model’s decisions. Using
group fairness notions, they formulate the fairness of an explanation similarly to that
of a classifier (an explanation being seen as a local surrogate model). Then, fairness
is computed on a neighbourhood of the explained example. For such artificial
points, no label is known and so only the statistical parity metric can be used.
These researchers show that the fairness property of the explained model may not
be reflected in the generated explanations and propose a framework for producing
fairness-preserving explanations.

Fairness-enhancing methods may require non-interpretable transforma-
tions, hence harming interpretability. In a study on interpretable, fair and
accurate ML for criminal recidivism prediction, [Wang et al. 2022a] observe that
fairness-enhancing methods often require non-interpretable transformations, which
are not compatible with interpretability desiderata. Indeed, pre-processing meth-
ods usually perform complex transformations of the input features, which harm
their original semantic [Kamiran & Calders 2012, Zemel et al. 2013]. The result-
ing representation hence can not be used to produce an understandable model.
Furthermore, the corrections performed to a model’s outputs by post-processing
techniques [Pleiss et al. 2017] can also lead to non-interpretable processes.

2.1.2.3 Other Unfair Effects of Explainability Methods

Post-hoc explanations affect individuals’ privacy in a disparate man-
ner. As discussed further in Section 3.1, minority groups often suffer from in-
creased privacy risks. Interpretability can also exhibit this trend, as noted by
[Shokri et al. 2020, Shokri et al. 2021]. For instance, when investigating whether
membership information (i.e., whether an example was part of a model’s training
set) can be inferred from post-hoc explanations, they observed that outliers and
certain “hard to generalize minorities” are at a higher risk of being revealed than
majority groups. This is partly due to the fact that they are more susceptible to
being part of the generated explanations. In such case, interpretability tools can
penalize minorities by leaking more information about disadvantaged groups.

Post-hoc explanation frameworks can introduce unfairness by providing
lower-quality explanations to minority groups. [Dai et al. 2022] investigate
group-based disparities in explanation quality. More precisely, they first identify
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key characteristics that define the quality of an explanation (e.g., fidelity, stability,
consistency and sparsity). They then conduct a large experimental study demon-
strating that there is often a disparity in the quality of the produced explanations,
disproportionately affecting minority groups. Such quantitative disparity is iden-
tified to depend on the type of model being explained and on the particular post-
hoc explanation framework considered. Using several real-world applications (e.g.,
finance, healthcare, college admissions and the US justice system) and post-hoc
explanation frameworks, [Balagopalan et al. 2022] also show that the fidelity of the
produced explanations varies significantly across the different identified subgroups
of the population. Finally, they suggest that robustness techniques can help reduce
the observed disparity - but emphasize that communicating details regarding such
disparity to end-users is critical.

Counterfactual explanation frameworks can harm subgroups of the pop-
ulation by consistently providing higher-cost recourse. In the specific case
of counterfactual explanations, the cost of recourse is defined as the amount of ef-
fort a user has to do to implement the provided recourse and change the model’s
decisions. It was then shown that counterfactual explanation frameworks may pro-
vide lower-cost recourse for some subgroups of the population and harm some oth-
ers [Ustun et al. 2019, Sharma et al. 2020]. For instance, this means that some
protected groups may consistently have to make more effort to implement the pro-
vided recourse after a loan refusal. To face this issue, recourse fairness was stud-
ied [Gupta et al. 2019, Karimi et al. 2023] and frameworks equalizing the cost of
recourse across protected groups were proposed.

Post-hoc explanations can be manipulated. FExplainability tools are de-
signed to facilitate model audit and enhance the users’ understanding. However,
because the explanation generation process can be opaque, post-hoc explanations
can also be leveraged by some black-box model holder to hide unfair decision-making
processes by providing manipulated fair explanations. Indeed, it was shown that
black-box explanations can be misleading, in particular because they can achieve
high fidelity with respect to the explained model while using entirely different
features, leveraging correlations in the feature space [Lakkaraju & Bastani 2020].
The authors demonstrate that this can be exploited and extend the MUSE frame-
work [Lakkaraju et al. 2019] to generate explanations favoring some given features
while avoiding others. They finally conduct a user study and find out that mislead-
ing explanations can increase the user trust in black-box models illegitimately.

In fact, several works show that malicious entities can manipulate explainabil-
ity techniques to hide the true reasoning of the underlying model. For example,
they can directly craft manipulated explanations, such as local surrogate mod-
els [Aivodji et al. 2019a, Aivodji et al. 2021a] that appear fair but actually explain
the output of a globally unfair black-box, with such practice being coined as “fair-
washing”. They can also manipulate explanation frameworks, for instance by detect-
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ing artificial examples generated by input-perturbation based methods and giving
them a chosen output value [Slack et al. 2020b]. This can be leveraged to hide a
black-box model’s unfairness by crafting and providing fair explanations to a fairness
auditor [Slack et al. 2021b]. Furthermore, [Heo et al. 2019, Dimanov et al. 2020]
show that it is possible to fine-tune (i.e., slightly modify) a pre-trained model
to manipulate the output of feature importance explanation methods while hav-
ing little impact on the model’s accuracy. Considering sequence classification and
sequence-to-sequence tasks (7.e., in which the input of the model is a sequence of
words), [Pruthi et al. 2020] propose a method to train a model with significantly
reduced attention mass over some chosen words (e.g., gender-related prefixes) while
still using them for prediction. A user study shows that the proposed method is
effectively able to mislead users into thinking that the underlying model is fair,
while it is actually biased against gender minority.

It was also shown to be possible to learn a model so that the counterfactual
explanations generated by some off-the-shelf algorithm look recourse fair across
subgroups of the population (i.e., the cost of the recourse associated to the coun-
terfactual explanations does not vary too much between individuals from the dif-
ferent subgroups), while also being able to generate lower-cost recourse explana-
tions for some privileged subgroup(s) by simply adding a small adversarial per-
turbation [Slack et al. 2021b, Slack et al. 2021a]. [Zhang et al. 2020] show how an
adversary can generate adversarial examples with chosen prediction by the black-
box model that also fool popular interpretability tools. This illustrates the fact that
post-hoc explainability techniques are not a reliable way to detect adversarial inputs
manipulation. Finally, [gabriel laberge et al. 2023] consider the setup of a fairness
audit in which the data is private and owned solely by the malicious model holder,
which provides subsamples to the external auditor. They show that the former
can manipulate the auditor’s explainability methods to hide unfair decision-making
(such as the influence of a protected attribute) by providing adversarially-selected
data samples. Such malicious practices are in addition particularly difficult to de-
tect in a remote setting, in which the explanation is provided by a third-party
API [Merrer & Tredan 2019].

We identified some synergies and several tensions between interpretability and
fairness, among which a technical conflict: learning optimal interpretable models
under fairness constraints is computationally challenging. In the next subsections,
we show how Integer Linear Programming-based pruning techniques can be used
to mitigate this tension for learning optimal fair rule lists.

2.2 Learning Fair Rule Lists
In this section, we first introduce a particular type of interpretable models, namely

rule lists. We then present a state-of-the-art algorithm for learning certifiably op-
timal rule lists called CORELS. Finally, we describe FairCORELS, an extension of
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CORELS that we proposed in an early work to learn optimal fair rule lists. CORELS
will serve as a baseline for our pruning algorithm.

Notation. As mentioned in Section 1.1.1, D denotes a training set and h a clas-
sifier. Throughout this chapter, we assume that D is partitioned into two groups:
a protected group DP and an unprotected group D*. This partition depends on the
value of the sensitive feature(s) and so we can write S = {p, u}. Thus for s € {p, u},
we have D° = {e; | s; = s}. Furthermore, we restrict our attention to the binary
classification case (i.e., Y = {0,1}) as the baseline algorithms we consider and in-
troduce in this subsection handle this particular problem. The examples in D are
partitioned into D+ and D, which correspond respectively to positive examples
and negative ones. Precisely, we have DT = {e; | y; = 1} and D~ = {¢; | y; = 0}.

2.2.1 Rule Lists

We consider classifiers that are expressed as rule lists [Rivest 1987], which are
formed by an ordered list of if-then rules, followed by a default prediction. More
precisely, a rule list can be represented as a tuple RL = (dgr,qo) in which dry =
(ri,72,...,7K) is RL’s prefir, and qo € {0,1} is a default prediction. A prefix is an
ordered list of K distinct association rules r; = a; — ¢;. Each rule r; is composed
of an antecedent a; and a consequent g; € {0,1}. Each antecedent a; is a Boolean
assertion over X evaluating either to true or false for each possible input z;. If a;
evaluates to true for example e;, that rule r; is said to capture e;. Similarly, if at
least one of the rules in drz, captures e;, that prefix oy, is said to capture example
ej. For example, rule list 2.1 predicts whether a given individual has a [low] or
[high] salary. Its prefix is composed of five rules, and its default decision is [low].
Using a rule list RL = (0rr, qo) to classify an example e is straightforward as rules
in dgy, are applied sequentially. If e is not captured by prefix dry, then the default
prediction qg is returned. Finally, remark that rule list ((), qo) is well defined, and
simply consists of a default prediction (hence representing a constant classifier).

Rule list 2.1: Example rule list found by FairCORELS on the Adult Income dataset.

if [occupation:Blue—Collar] then [low]

else if [occupation:Service] then [low]

else if [capital gain: > 0] then [high]

else if [not(workclass:Government)] then [low]
else if [education:Masters/Doctorate]| then [high]
else [low]

2.2.2 CORELS

CORELS [Angelino et al. 2017, Angelino et al. 2018] is a state-of-the-art supervised
learning algorithm that outputs a certifiably optimal rule list minimizing the fol-
lowing objective function on a given training dataset D:

objcorers (RL, D) = misc(RL,D) + A - Kgy, (2.1)
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in which misc(RL,D) € [0, 1] denotes the training classification error rate of the
rule list RL, Kpy, is the length of RL (i.e., number of association rules in RL) and
A is a regularization hyper-parameter for sparsity. CORELS is a branch-and-bound
algorithm, representing the search space of rule lists R as a prefix tree. Each node
is a prefix in this tree, and each child node is an extension of its parent, obtained
by adding exactly one rule at the end of the parent’s prefix. Finally, the root node
corresponds to the empty prefix. Each node is a possible solution (i.e., rule list),
obtained by adding a default decision (based on majority prediction) to the prefix
associated with this node. While this search space corresponds to an exhaustive
enumeration of the candidate solutions, CORELS leverages several bounds to prune
it efficiently. Thanks to these bounds, along with several smart data structures,
CORELS is able to find optimal solutions with a reasonable amount of time and
memory. The set of antecedents A is pre-mined and given as input to the algorithm?.
While CORELS is agnostic to the rule mining procedure used as preprocessing, an
overview of existing techniques can be found in [Chikalov et al. 2013]. For the sake
of illustration, we provide an example prefix tree for a toy dataset with a set of
three pre-mined antecedents within Figure 2.1.

Figure 2.1: Example of prefix tree for a dataset with set of pre-mined antecedents
A = {ay,az2,a3}. The highlighted red path corresponds to prefix § = ((aa —
q2), (a1 — q1)), where consequents g2 and ¢; are set using majority prediction.
Associating a default prediction gy to ¢ (using majority prediction), we obtain the
associated rule list (0,¢qp). Clearly, each node within this tree defines a unique
prefix, which can be associated to a default prediction to form a rule list.

2This means that CORELS produces optimal rule lists for the given pre-mined antecedents. Some
approaches that do not use rules pre-mining exist but usually they do not scale well. For instance,
[Dash et al. 2018] propose a MILP model for learning optimal rule sets. Instead of pre-mining the
rules, they dynamically produce new rules using column generation. This process is able to generate
certifiably optimal rule sets (with respect to the original features) for small datasets. However,
it requires the use of heuristics to solve the pricing problem (which generates candidate rules for
improving the current solution) at scale. [Yu et al. 2020] do not require rules pre-mining neither,
as they leverage declarative programming (Maximum Boolean Satisfiability) to build optimal rule
lists, with the rules’ making being part of the search. Again, as noted by the authors, the approach
does not scale well compared to CORELS.
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2.2.3 FairCORELS

FairCORELS is a bi-objective extension of CORELS jointly addressing accuracy and
statistical fairness, integrating several metrics from the literature. Formally, given
a statistical fairness notion, whose violation by a rule list RL on dataset D is quan-
tified by an unfairness function unf(RL, D) and a maximum acceptable unfairness
violation €, FairCORELS solves the following optimization problem (which instanti-
ates the generic constrained optimization problem 1.3):

arg min ObjchELs(RL, D) (22)
RLER

such that  unf(RL,D) <e

FairCORELS is presented in Algorithm 1. In this algorithm, RL¢ denotes the
current best solution and z¢ is its objective value. Moreover, a priority queue @ of
prefixes is used to store its exploration frontier. The priority queue ordering defines
the exploration heuristic. The function Ib(d, D) (coming from the CORELS algorithm)
gives an objective lower bound for any rule list built upon prefix § on the dataset
D. At each iteration of the main loop, a prefix ¢ is removed from the priority queue
(Line 4). When the lower bound of ¢ is less than the current best objective value
(Line 5), two operations are considered. First, the rule list RL formed by prefix
¢ along with a default prediction is accepted as a new best solution if it improves
the current best objective value while respecting the unfairness tolerance (Line 9).
Second, extensions of ¢ using the antecedents not involved in §’s rules are added to
the queue (Line 12).

Fairness metrics considered. Let ¢ € [0, 1] denote an unfairness tolerance value
(i.e., the maximum acceptable value for the unfairness measure). Thus, the fairness
requirement gets harder as e gets smaller. For a classifier h, among a group D?, with
s € {p,u}, we denote by TP{is the number of true positives, TN%,S the number
of true negatives, F Pgs the number of false positives and F N%’S the number of
false negatives. Table 2.1 gives the definition of the four metrics considered within
FairCORELS. One can observe that the provided formulations bound the pairwise
difference of the statistical measure across protected groups, following the one-vs-
one formulation (c¢f. Table 1.2). Indeed, because we restrict our attention to the
binary sensitive attribute case (as mentioned at the beginning of this section), such
formulations result in a single linear constraint, as explained in Section 1.3.2.

Building sets of trade-offs between accuracy and fairness. The constrained
optimization formulation of the fair learning problem used in FairCORELS (Prob-
lem 2.2) allows for the construction of different trade-offs between accuracy and
fairness using a simple e-constraint method [Haimes 1971]. More precisely, it is
possible to build a set of non-dominated solutions, also called Pareto frontier, by
varying the value of the unfairness tolerance €. We provide an example of such
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Algorithm 1 FairCORELS

Input: Training data D with set of pre-mined antecedents A; unfairness tolerance
g; initial best known rule list RLY such that unf(RLY, D) < e

Output: (RL*, z*) in which RL* is a rule list with the minimum objective function
value z* such that unf(RL*,D) < ¢

1: (RL¢, 2°) + (RLY, 0bj(RL?, D))

2: @ <+ queue(()) > Initially the queue contains the empty prefix ()

3: while @ not empty do > Stop when the queue is empty

4: 0 + Q.pop()

5: if 1b(0,D) < 2¢ then

6: RL + (4, qo) > Set default prediction gy to minimize training error

7 24— ObjCORELS(RL, D)

8: if 2 < 2¢ and unf(RL,D) <e then

9: (RL®, 2°) + (RL, 2) > Update best rule list and objective

10: for a in A\ {a; | Ir; € 0,7 = a; — ¢;} do > Antecedent a not involved
in 0

11: r <+ (a —q) > Set a’s consequent ¢ to minimize training error

12: Q.push(d Ur) > Enqueue extension of § with r

13: (RL*,2*) « (RLS, 2°)

Table 2.1: Summary of four statistical fairness metrics widely used in the literature,
using a one-vs-one (pairwise) formulation as implemented within FairCORELS.

Metric Constraint Expression
Statistical Parity (SP) TP%’p;prg’p — Tpg’ugufp{%’u <e
Predictive Equality (PE) | D};iggﬂ ] D]ziggﬂ <e
Equal Opportunity (EOpp) |D€i{§2’§+| — |D71:]:1£g+| <e
Equalized Odds (EO) Conjunction of PE and EOpp

frontier in Figure 2.2. For the four considered datasets, we highlight three specific
points within the entire Pareto frontier. Those correspond respectively to the most
accurate or most fair models as well as the one minimizing the sum of classification
error and unfairness (best delta). Depending on the task at hand, the end user
can then select his favorite model within the frontier, considering its accuracy and
unfairness, but also the models themselves as they are interpretable.

One important challenge within FairCORELS is that the fairness constraints
modify the set of feasible solutions and the resulting search space is considerably
more difficult to explore. First, because of the fairness requirement, the objective
function value is updated less often as many potential solutions may not satisfy
the fairness constraint. In addition, a fairness-accuracy trade-off is often observed,
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Figure 2.2: Example test set Pareto frontiers (unfairness/classification error trade-
offs) built with FairCORELS for the statistical parity fairness metric on four different
datasets. Bottom-left (low unfairness, low error) is preferable.

which results in achieving lower objective function values. Indeed, CORELS’ original
bounds are less efficient as the fairness constraint gets stronger. Furthermore, some
data structures used by CORELS to speed up the exploration are no longer usable. For
instance, the prefix permutation map, which reduces considerably the running time
and the memory consumption [Angelino et al. 2017, Angelino et al. 2018], does not
apply anymore. This symmetry-aware map ensures that only the best permutation
of each set of rules containing the same antecedents is kept. However, it cannot be
used within FairCORELS without sacrificing optimality. Indeed, a given permuta-
tion may allow for better objective function values than others but may not lead
to solutions meeting the fairness requirement. In this situation, one could miss
solutions that exhibit lower objective function values and meet the fairness require-
ment. Since we are interested in preserving the guarantee of optimality, we cannot
use such a data structure. However, we note that a weaker permutation map can be
designed and used by implementing a more restrictive symmetry criterion (addition-
ally enforcing that two prefixes implying the same antecedents are not equivalent if
they do not have the same confusion matrix). Although performing a less effective
reduction of the search space, this approach (which we present in Section 2.4.3)
preserves the guarantee of optimality. Overall, both observations motivate the need
for a new pruning approach, leveraging both the objective function value and the
fairness constraint to efficiently explore FairCORELS’ search space.
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2.3 Proposed Pruning Approach

This section presents our proposition to prune the search space of FairCORELS by
reasoning jointly about the number of well-classified examples and fairness. The
main idea is to discard prefixes that cannot improve the current objective while
satisfying the fairness requirement before being treated. To realize this, one has to
guarantee that for any prefix discarded, none of its extensions can satisfy both re-
quirements, which is the purpose of Section 2.3.1. Afterwards, Section 2.3.2 exploits
this property in the presentation of our proposition.

2.3.1 A Sufficient Condition to Reject Prefixes

Let D be a training set and RL be a rule list. We use WAL to denote the number
of examples of dataset D well classified by RL:

WhLt = TPfE + TPEL + TNEE + TNEL (2.3)
=TPFL + TPEL + |DP N D~ |- FPEL +1D“nD~ |- FPEL  (24)

We slightly extend the notation introduced in Section 2.2.3. For a prefix §, among
a group D° with s € {p,u}, we denote by TPZ‘;S (respectively TN%}S, FP{;S and
FN%’ ) the number of true positives (respectively true negatives, false positives and
false negatives) among the examples of D captured by 6. Similarly, we define Wg
as the number of examples well classified by ¢, among the examples of D that §
captures. Clearly, Wg = Tngp + TP%,U + Tng + TN%}U.

We define o(d) to be the set of all rule lists whose prefixes start with d: o(d) =
{(0rL,q0) | Orr starts with ¢}. Formally, we say that dry, starts with 0 (a prefix of
length K) if and only if the K first rules of dgy are precisely those of §, appearing
in the same order.

Consider RL = (drr, qo) such that RL € o(4). On the one hand, some examples
of D cannot be captured by . On the other hand, all examples of D captured by
¢ are captured by dgz and have the same prediction as with 6.

Proposition 1. Given a prefiz §, a rule list RL € o(6) and s € {p,u}, we have:

TP}, <TPF: < |D°NDT| - FN
FP) < FPFL<|D°ND|-TNp,

Proof. The lower bounds are an immediate consequence of the fact that all examples
captured by ¢ are captured by RL’s prefix and have the same predictions that in
0. Concerning the upper bounds, we show the proof for the first inequality as the
second can be proven using a similar argument. Define T" as the set of examples in
D*NDT that are not determined by 6. When constructing RL from ¢, the maximum
possible augmentation of true positives within protected group s is to predict all
the examples in T' correctly. The size of the set containing true positives of § and
T is equal to |D* N DF| — FN%,5~ Hence the upper bound. O
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As a consequence of Proposition 1, WgL > Wg. We now define four integer
decision variables that are used in our Integer Linear Programming (ILP) models.
These variables are used to model the confusion matrix of any rule list whose pre-
fix starts with 0 as well as to define constraints modeling accuracy and fairness
requirements over such matrix.

x'Pr € [TP) ,[DPNDT| = FN}, ], 2" "pu € TP}, [D"NDY| - FN}, |,
2o € [FP) . |DPND™| - TN}, |, "o € [FP) . |D"ND™| - TN} ]

Let L and U be two integers such that 0 < L < U < |D|. L (respectively, U)
is a lower bound (respectively, upper bound) on the number of examples correctly
classified by the rule list, as stated by the following constraint:

L<a™o 42w 4 | DP D | — 2t Pow 4 D ND| — 2o <U. (25)

We define ILP(§,D, L,U) to be the ILP model defined by the four variables
:cTPD,P,:EFPDaP,xTPD»u,xFPDvu and Constraint (2.5). Intuitively, if ILP(3,D, L,U)
has no feasible solution, then one can guarantee that no rule list extending prefix
0 can satisfy the provided lower and upper bounds on the number of well classified

examples. This is demonstrated in Proposition 2.

Proposition 2. Given a prefix 6 and 0 < L < U < |D|, if ILP(6,D,L,U) 1is
unsatisfiable then we have:

PRLco(0) | L<WEE<U

Proof. Assume that there exists some RL € o(§) such that L < WAL < U. Then,
o'y = TPEL o"ru = TPEL o"re = FPEL and o™rv = FPEL is a
solution to ILP(§,D,L,U). Indeed, Constraint (2.5) is satisfied by hypothesis,
and the bounds of the four variables are respected due to Proposition 1 and the
fact that RL is an extension of . Finally, if 3RL € o(3) | L < WAL < U, then
ILP(6,D,L,U) is satisfiable, which completes the proof by contrapositive. O

In the following paragraph, we show how the ILP(J,D,L,U) model can be
extended to include the different considered statistical fairness metrics (defined in
Table 2.1). We detail the procedure for the Statistical Parity metric and provide the
key elements for the three other metrics, as the reasoning is identical. In particular,
propositions similar to Proposition 3 can be adapted and proved for the three other
metrics, following the same methodology.

2.3.1.1 Integrating Statistical Parity

The constraint associated to the statistical parity fairness metric is provided within
Table 2.1. To get rid of the denominators, we simply multiply both sides of the
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inequality by a constant Cy = ¢ x |DP| x |D"| to obtain the following constraint:
—C1 < DY x (a7 o 4 2FTow) — |DP| x (27T 4 2 Po) < (. (2.6)

Let ILPsp(5,D, L,U,¢€) be the Integer Linear Programming model defined by
the four variables z' 2w 250w 27 P 2Ppu and Constraints (2.5) and (2.6). If
ILPsp(9,D, L,U,¢) has no feasible solution, then one can guarantee that no rule list
extending prefix § can simultaneously satisfy the provided bounds on the number
of well classified examples and the statistical parity fairness constraint. This is
formalized in Proposition 3.

Proposition 3. Given a prefiz 6, an unfairness tolerance € € [0,1], and 0 < L <
U < |D|, if ILPsp(6,D, L,U,¢) is unsatisfiable then we have:

BRL € 0(8) | L < WHE < U and unfsp(RL,D) < e

Proof. Assume that there exists some RL € o(J) such that L < WAF < U and
unfsp(RL,D) < e. First, observe that Constraint (2.6) is equivalent to the math-
ematical formulation of the Statistical Parity condition defined in Table 2.1. In-
deed, unfsp(RL,D) < ¢ if and only if —C; < [D%| x (TPSL + FPEL) — |DP| x
(TPEL + FPEL) < C1. Then, o' P2 = TPEL 2" = TPEL 2Py = FPEL
and 2f P = FPfgﬁ is a solution to ILPsp(6,D,L,U,¢). Finally, if 3RL € o(9) |
L < WHL < U and unfsp(RL,D) < ¢, then ILPsp(5,D, L,U,¢) is satisfiable,
which completes the proof by contrapositive. ]

2.3.1.2 Integrating Other Statistical Fairness Metrics

Consider a prefix ¢, an unfairness tolerance € € [0,1] and bounds on the number
of well classified examples 0 < L < U < |D|. As for the statistical parity metric,
we define the following constants that will be useful to get rid of the constraints’
denominators: Cy = e x |D*ND~ | x |DPND~|, and C5 = ¢ x |[DPNDT| x | D*NDH].

Predictive Equality. Consider the following constraint:
—Cy < |D*ND | x aF e — | DPND7| x 25 P < 5. (2.7)

Let ILPpg(0,D, L,U,¢) be the ILP model defined by the four variables xTPDvP,
" Pow gTPpu 2o and Constraints (2.5) and (2.7). If ILPpg(8,D, L,U,¢) is
unsatisfiable, then: 3RL € o() | L < WEL < U and unfpg(RL,D) < ¢.

Equal Opportunity. Consider the following constraint:
—C3 < |DPNDF| x "o — DU N DT x 2" PP < C5. (2.8)

Let ILPgoy,(0,D, L, U, ) be the ILP model defined by the four variables xTPDvP,
o, "o "Ppu and Constraints (2.5) and (2.8). If ILPropy(6,D,L,U,¢) is
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unsatisfiable, then: RL € 0(0) | L < WEE < U and unfgop,(RL, D) < ¢.

Equalized Odds. Since the Equalized Odds metric is the conjunction of Equal
Opportunity and Predictive Equality, we simply use the conjunction of both Con-
straints (2.7) and (2.8) to integrate it.

Let ILPro(6,D, L,U,¢) be the ILP model defined by the four variables xTPDvP,
2" Pow oo 2Fpw and Constraints (2.5), (2.7) and (2.8). If ILPgo (8, D, L, U, €)
is unsatisfiable then: ARL € o(§) | L < WEE < U and unfgo(RL,D) < e.

2.3.2 Integration within FairCORELS

We have proposed a sufficient condition to reject prefixes that do not respect a given
fairness metric within a requirement of well-classified examples. One can use this
property to reject prefixes before they are treated in the main loop of FairCORELS.
This pruning idea can be integrated using two approaches.

The first one called the eager approach, checks the sufficient condition before
adding an extension of a prefix to the priority queue (before Line 12 with § U r
being the prefix given in the ILP). The second approach called the lazy approach,
checks the sufficient condition when a prefix is removed from the priority queue and
passed the branch and bound lower bound test at Line 5 with d being the prefix
tested. If the corresponding ILP (called with valid bounds) is unsatisfiable, then
the prefix § being tested can safely be discarded since no rule list whose prefix
starts with & can satisfy the conjunction of fairness and well-classified examples
requirements. The difference between the two approaches can be seen as the trade-
off between memory consumption and computational time. Indeed, given the same
inputs and exploration strategies, the eager approach consumes less memory than
the lazy approach as it prunes prefixes before adding them to the queue. However,
it requires more calls to the ILP solver.

Finally, we also consider using the ILP models to guide exploration. To real-
ize this, we add an objective to the previously defined ILP, maximizing 2w —
2 Prp 4270w —3Ppu The ILP is then called as in the eager approach, just before
adding an extension of a prefix to the priority queue (before Line 12). Whenever
it is unsatisfiable, the corresponding prefix is pruned. However, when it is satisfi-
able, we additionally get the best accuracy reachable (e.g., a lower bound on the
objective function value) while also meeting the fairness constraint and improving
the objective function. We use this value to order the priority queue @ and define
the ILP-Guided search heuristic. Intuitively, it guides the exploration towards the
prefixes whose fairness may conflict least with accuracy (those with highest ILP
objective function).

When building the ILP models, we use tight computations for the lower and
upper bounds on the number of well-classified examples L and U used in Con-
straint (2.5). We detail such bounds’ computations hereafter.
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Lower Bound. Within the main loop of FairCORELS, we can compute the mini-
mum number of examples that any extension of a prefix of length & must correctly
classify in order to improve over the current best known solution RL¢. This value
depends on k (as any extension of a prefix is at least as long as the prefix itself), as
well as on RLs length and number of well classified examples. More precisely, let
L(k,RL,D) = |D|- (1 — (misc(RL, D)+ \- (Krr —k))). We demonstrate in Propo-
sition 4 that this value is the minimum number of examples that any extension of
a prefix of length k must correctly classify in order to improve over rule list RL.

Proposition 4. Consider a rule list RLy. A rule list RLy = (0rL,,q0) has better
objective value on D than RLy if and only if WA > L(|0gr,|, RLa, D), in which
|0rL,| is the length of RLy’s prefiz.

Proof. objegpers(RL1, D) < objegrers(RL2, D) <= misc(RL1,D) + A - Kgr, <
misc(RL2,D) + A - Kgrp,

<~ |D| . (1 — miSC(RLl,D)) > ”D‘ . (1 — (miSC(RLQ,D) + A (KRL2 — ‘(5RLID))
— WE" > L(|6rL,|, RLa2, D) O

Consider the prefix § and the current best solution RL® of the main loop. Let
RL = (6rL,q0) € o(d). Using Proposition 4, we have RL has a better objective
value than RLC if and only if WEL > L(|6gL|, RLS, D) > L(|6|, RL¢, D) because
|0rL| > 19| (as RL € o(d)). Therefore L(|d], RL¢, D) is a valid lower bound for the
ILP, ensuring that rule list RL improves over the current best objective value.

Upper Bound. We leverage two observations to compute a tight value U (¢, D)
such that YRL € o(8), W5* < U(6,D). First, the examples captured and mis-
classified by § will always be misclassified for any RL € o(J). Second, among the
examples not captured by ¢, some may conflict (i.e., have the same features vector
associated with different labels) and can never be simultaneously predicted cor-
rectly. This computation corresponds to the Equivalent Points Bound of CORELS
(described in details in Section 3.14 of [Angelino et al. 2018]).

2.4 Experimental Study

The purpose of this section is two-fold. First, after describing our experimental
setup, we show the efficiency of the proposed pruning approaches using two biased
datasets and the four considered fairness metrics of Table 2.1. Afterwards, we
demonstrate the scalability of our method as well as its complementarity with a
new prefix permutation map, using a larger real-world dataset.

2.4.1 Setup

We implement and solve the ILP models in C++ using the ILOG CPLEX 20.10
solver®, with an efficient memoisation mechanism. Sensitive features are used for

3Source code of this enhanced version of the FairCORELS Python package is available on
https://github.com/ferryjul/fairCORELSV2. The use of the CPLEX solver is possible but not
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measuring and mitigating unfairness but are not used for the model’s inference
in order to prevent disparate treatment [Zafar et al. 2017]. For each dataset, we
generate 100 different training sets by randomly selecting 90% of the dataset’s
instances, with reported values being averaged over the 100 instances. Test values
are measured on the remaining 10% instances for each random split. All experiments
are run on a computing grid over a set of homogeneous nodes using Intel Xeon E5-
2683 v4 Broadwell @ 2.1GHz CPU.

We use three exploration heuristics: a best-first search ILP-Guided, a best-first
search guided by CORELS’s objective and a Breadth-First-Search (BFS). The former
inherently comes with an eager pruning. For the latter two, we compare the original
FairCORELS (no ILP pruning), as well as lazy and eager integrations of our pruning
approach. Then, we evaluate the seven exploration settings. However, results for
the three best-first searches guided by CORELS’s objective are omitted in this section
because they consistently provided worst performances (considering all evaluated
criteria) than the BFS with equivalent pruning integration. This can be explained
by the fact that this approach guides exploration towards accurate solutions first,
which conflicts with fairness in practice. In the Appendix B, we provide detailed
results including the three best-first searches guided by CORELS’s objective.

2.4.2 Evaluation of the Proposed ILP-based Pruning Approaches

To empirically assess the effectiveness of our proposed pruning on FairCORELS, we
perform experiments for the four metrics of Table 2.1 using two well-known classifi-
cation tasks of the literature with several fairness requirements. The first task con-
sists in predicting which individuals from the COMPAS dataset [Angwin et al. 2016]
will re-offend within two years. We consider race (African-American/Caucasian) as
the sensitive feature. Features are binarized using one-hot encoding for categorical
ones and quantiles (with 5 bins) for numerical ones. Rules are generated as single
features without minimum support. The resulting preprocessed dataset contains 18
rules and 6150 examples.

The second task consists in predicting whether individuals from the German
Credit dataset [Dua & Graff 2017] have a good or bad credit score. We consider
age (low/high) as the sensitive feature, with both groups separated by the me-
dian value. Features are binarized using one-hot encoding for categorical ones and
quantiles (2 bins) for numerical ones. Rules are generated as single features with
minimum support of 0.25 or conjunctions of two features with minimum support
of 0.5. Gender-related features were excluded. The resulting preprocessed dataset
contains 49 rules and 1000 examples. For experiments on the COMPAS (respec-
tively German Credit) dataset, the maximum running time is set to 20 minutes
(respectively 40 minutes). For each experiment, the maximum memory use is fixed
to 4 Gb. We detail our evaluation for the Statistical Parity metric, as results for

mandatory, as our released code also embeds an open-source solver (whose configuration has
been tuned to handle our pruning problem efficiently). This solver is Mistral-2.0 [Hebrard 2008,
Hebrard & Siala 2017b], in its version used for the Minizinc Challenge 2020.
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all other metrics show similar trends. Detailed results for all considered metrics are
provided within the Appendix B.
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Figure 2.3: Experimental evaluation of our pruning strategies for FairCORELS (left:
COMPAS dataset, right: German Credit dataset) for the Statistical Parity metric.

Figure 2.3a displays the proportion of instances solved to optimality as a func-

tion of the fairness requirement (which gets harder as 1 — ¢ increases) to illustrate
the joint action of CORELS’ bounds and the proposed ILP-based pruning. For low
fairness requirements, all evaluated methods reach optimality, thanks to the ac-
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tion of CORELS’ bounds. However, these bounds are less effective for strong fairness
requirements, and without the ILP pruning, optimality can hardly be reached. Con-
versely, the higher the value of 1 — ¢, the larger the pruning of the search space.
Hence, optimality is reached most of the time when performing an eager pruning
(eager BFS or ILP-Guided). This joint effect is particularly visible with the lazy
BF'S approach on the COMPAS dataset. Interestingly, we observe on both datasets
a threshold effect: when the fairness constraints become active and effectively mod-
ify the set of feasible solutions (i.e., above a certain value for 1 — ¢), the original
FairCORELS struggles to reach and prove optimality. As expected, this effect is
mitigated by our pruning strategies and especially the eager ones (eager BFS and
ILP-Guided).

Figures 2.3b and 2.3c are generated using high fairness requirements (unfairness
tolerances ranging between 0.005 and 0.02). Indeed, this corresponds to a regime
where the original FairCORELS struggles to reach and prove optimality for both
datasets, as observed previously in Figure 2.3a. Hence, this is precisely in this
regime that we aim at improving the exploration of the search space. Figure 2.3b
presents the solving time as a function of the proportion of instances solved to
optimality (lower is better). It shows a clear dominance of the proposed pruning
approaches. For COMPAS, the original FairCORELS does not prove optimality to
any of the instances, whereas all pruning methodologies prove optimality to all
instances. For German Credit, similar trends are observed. Overall, the eager ap-
proach appears more suitable to prove optimality, as it keeps the size of the queue as
small as possible. For experiments with German Credit, the ILP-Guided approach
effectively speeds up convergence and proof of optimality by guiding exploration
towards fair and accurate solutions. This is not the case when using COMPAS;
but the approach is still able to reach the best solutions, thanks to the performed
pruning. Figure 2.3c shows the learning time as a function of the objective func-
tion quality (normalized objective score proposed in [Hebrard & Siala 2017a]). The
proposed pruning allows finding better solutions within the time and memory lim-
its after a slow start. Indeed, the pruning slows the beginning of the exploration,
but pays off, given enough time, by effectively limiting the growth of the priority
queue. The lazy approach is faster than the eager one at the beginning of the explo-
ration. However, this trend is inverted given sufficient time. Again, the ILP-Guided
approach speeds up convergence on German Credit, but worsens it on COMPAS.

Finally, the reported results illustrate the efficiency of the proposed pruning
approaches to speed up the exploration of the prefix tree. The lazy approach less
slows exploration at the beginning, but the eager approach gives better results given
sufficient time. The ILP-Guided strategy showed an ability to speed up convergence,
but its performances depend on the problem at hand.

In Appendix B, we provide detailed results regarding these experiments. First,
we provide in Figure B.1 a detailed version of Figure 2.3, additionally including
the three approaches guided by CORELS’s original objective (which are omitted here
because they consistently perform worst than the BFS-based ones). We also provide
detailed results for all the other considered fairness metrics in Figures B.2, B.3, and
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B.4.

Test results are reported in Table 2.2, and suggest that building optimal models
does not result in worsening accuracy nor fairness generalization. More precisely,
we report, for each dataset and each fairness metric, the relative number of runs
(i.e., for the different values of ¢) for which each pruning approach led to the best
training (respectively test) accuracy. We also report average violation of the fairness
constraint at test time.

Table 2.2: Learning quality evaluation using different pruning strategies for
FairCORELS (unfairness tolerances ranging between 0.005 and 0.05). We report
the proportion of instances for which each method led to the best train (resp. test)
accuracy, and the average violation of the fairness constraint at test time. For each
experiment, best results are shown in bold.

BFS Original BFS Lazy BFS Eager ILP Guided
%Best Test %Best Test %Best Test %Best Test
UNF Train | Test Unf Train | Test Unf Train | Test Unf Train | Test Unf
Acc Acc Viol. Acc Acc Viol. Acc Acc Viol. Acc Acc Viol.

COMPAS dataset
SP 951 971  .009 1 .98 .009 1 981 .009 1 .98 .009
PE .927 956  .033 1 977 034 1 977  .034 1 977 034
EOpp 941 961 .03 1 .98 .031 1 983  .031 1 983  .031
EO .897 934 .035 .997 974 .036 1 .976  .036 1 .974 .036
German Credit dataset

SP 567 799 .045 .994 77 .045 .999 .783 .045 .996 779 .045
PE 967 914 138 1 914 137 1 914 138 .997 927 138
EOpp .683 .816 .056 .99 799 .055 1 .806 .055 991 .829 .054
EO .52 .759 .158 979 751 161 .997 741 .16 1 771 .159

2.4.3 Scalability and Complementarity with the Permutation Map

As discussed in Section 2.2.3, a prefix permutation map speeds up the CORELS
algorithm by leveraging symmetries. This structure ensures that only the best
permutation of a given set of rules implying the same antecedents is stored in the
priority queue and further explored. By doing so, it avoids exploring provably sub-
optimal parts of the search space. However, CORELS’s original permutation map
cannot be used within FairCORELS as optimality would no longer be guaranteed.
This is due to the fact that a given permutation of rules may allow for better
objective function values than others but may not lead to solutions meeting the
fairness requirement.

In this section, we modify CORELS’s prefix permutation map to enforce a weaker
symmetry-breaking mechanism while maintaining the guarantee of optimality. More
precisely, the proposed new prefix permutation map (PMAP) considers that two
prefixes of equal length are equivalent if and only if they have exactly the same con-
fusion matrix and their rules imply the same antecedents. Note that two prefixes
may not correspond to the same classification function, but still meet this require-
ment. Because equivalent prefixes have the same confusion matrix and capture the
same examples (because they use the same antecedents), we only need to keep one
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Table 2.3: Learning quality evaluation using different pruning strategies for
FairCORELS (Adult Income dataset, unfairness tolerances ranging between 0.005
and 0.1). We report the proportion of instances for which each method led to the
best train (resp. test) accuracy, and the average violation of the fairness constraint
at test time. For each experiment, best results are shown in bold.

BF'S Original BFS Lazy BFS Eager

%Best Test %Best Test %Best Test
Train | Test Unf | Train | Test Unf | Train | Test Unf
Acc | Acc | Viol. Acc | Acc | Viol. Acc Acc | Viol.

All ¢ values
No PMAP 938 942 -.004 | 963 .966 -.004 | .964 967 -.004

Map type

PMAP .966 97 -.004 | 998 987 -.004 1 989 -.004
€< 0.02

No PMAP 815 .835 .0 .89 907  .001 .892 91 .001

PMAP .897 91 .001 .993 .96 .001 1 968 .001

such prefix in the priority queue. The new PMAP is then implemented modifying
CORELS'’s original one, and pushes a new prefix to the priority queue @ (Line 12 of
Algorithm 1) only if () contains no equivalent prefix.

To evaluate the scalability of our pruning approaches, we consider Adult In-
come [Dua & Graff 2017], a larger dataset that gathers records of individuals from
the 1994 U.S. census. We consider the task of predicting whether an individual
earns more than 50,000% per year, with gender (male/female) being the sensi-
tive attribute. Categorical attributes are one-hot encoded and numerical ones are
discretized using quantiles (3 bins). The resulting dataset contains 48,842 exam-
ples and 47 rules (attributes or their negation), with a minimum support of 0.05%.
We consider only the Statistical Parity metric, as the three others do not conflict
strongly with accuracy in this setting as observed in Figure 1(a) of [Aivodji et al. 2019b].
Experiments are performed with and without the new PMAP. The maximum run-
ning time is set to two hours, with a maximum memory use of 8 Gb. Results for
the ILP-Guided approach are excluded here (but provided within Figure B.5 in the
Appendix B) as they show no clear improvement over the eager pruning, suggesting
that the guidance was not beneficial overall.

Results are summarized in Figure 2.4. The left plot of Figure 2.4a shows the
proportion of instances solved to optimality, for strong fairness requirements (un-
fairness tolerances ranging between 0.005 and 0.02). For these strong fairness re-
quirements, the approaches not using the new PMAP were never able to prove
optimality (as can be seen in the right plot) and are not represented. The comple-
mentarity with our pruning approach is particularly visible, with the methods using

“While we could have considered a larger dataset (both in terms of features and examples),
this version of Adult Income is empirically sufficient to challenge our algorithms. Indeed, as can
be seen in Figure 2.4a (left plot), even the most efficient pruning techniques along with the new
permutation map fail to prove optimality for roughly 30% of the instances. Getting closer to the
limits of our methods using larger datasets (without necessarily requiring optimality guarantees)
remains an interesting direction.
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Figure 2.4: Experimental evaluation of our pruning strategies for FairCORELS on
the Adult Income dataset.

both the PMAP and the ILP pruning having the best performances, both in terms
of objective function quality (Figure 2.4b, left plot) and proof of optimality. This
is also observed in terms of memory use in Figure 2.4b (right plot). Indeed, the
PMAP considerably reduces the size of the queue, leveraging the prefix tree sym-
metries. However, its effect is weakened for strong fairness constraints. The use of
the ILP pruning mitigates this trend and for very strong fairness requirements, the
eager pruning alone proposes lower memory consumption than the PMAP alone, to
reach the same solutions. Finally, learning quality results are provided in Table 2.3
and confirm these observations. More precisely, they consistently show that the ap-

proaches improving train accuracy also improve test accuracy, without impacting
fairness violation.

2.5 Improving Fairness Generalization

While experimenting with FairCORELS and our ILP-based pruning method, we ob-
served, as can be seen in Tables 2.2 and 2.3, that a model meeting some fairness
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constraint on its training set may still exhibit an unfairness violation greater than
zero when applied on a separate test set. While this violation can remain relatively
small as in the experiments using the UCI Adult Income dataset (Table 2.3), it may
also reach non-negligible values, as observed in Table 2.2. Indeed, as already noted
in Section 1.3.6, fairness generalization is an open issue. As a motivational exam-
ple, we report in Figure 2.5 the training and test Pareto frontiers approximations
(sets of trade-offs between error and unfairness) we obtained using FairCORELS on
the Adult Income dataset for the Equal Opportunity fairness metric. As one can
observe, unfairness does not generalize well, and while the learnt rule lists provide
an interesting Pareto frontier approximation at training time, the error/unfairness
trade-offs significantly degrade when applied to unseen data. This observation mo-
tivated our formulation of a sample-based robustness framework for fairness, which
we briefly summarize in this section.
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Figure 2.5: Pareto frontier approximations (trade-offs between error and unfairness
on both the training and test sets, averaged using 5-folds cross-validation) obtained
using FairCORELS on the Adult Income dataset, for the equal opportunity fairness
metric (¢f. Table 2.1).

We first introduce Distributionally Robust Optimization, which inspired our
method. We then discuss the connection of our proposed approach with the litera-
ture. We present our sample-based robustness framework for statistical fairness, and
derive a heuristic application of it. Finally, we provide some experimental results
demonstrating the effectiveness of our method to improve fairness generalization.

2.5.1 Distributionally Robust Optimization

As stated in Section 1.1.1, an important challenge in machine learning is that
we usually do not know the true underlying distribution P. Instead, we often
have access to a limited training set D, whose distribution P’ may differ from
P. To take into account this uncertainty, Distributionally Robust Optimization
(DRO) techniques can be leveraged. Instead of minimizing an objective func-
tion obj for a given distribution P’;, DRO [Ben-Tal et al. 2013, Duchi et al. 2021,
Rahimian & Mehrotra 2019] consists in minimizing obj for a worst-case distribu-
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tion, among a set of perturbed versions of P’ [Sagawa et al. 2020]. More precisely,
the objective is to build a model A minimizing obj for a set of neighbouring dis-
tributions of P’. Such neighbouring distributions are contained in a perturbation
set (also called ambiguity set) B(P'). In the DRO setting, the supervised machine
learning problem becomes:

argmin max obj(h, Q). 2.9
}%e?—t QeB(P) ik, Q) (29)

Distributionally Robust Optimization has been used in many different
domains [Rahimian & Mehrotra 2019], and has been applied widely in machine
learning [Kang 2017].

2.5.2 Related Works on Improving Fairness Generalization

Recent work on fairness generalization (reviewed in Section 1.3.6) targets integrat-
ing different techniques for improving robustness into existing fair learning algo-
rithms. While such methods have been shown (theoretically and empirically) to
improve fairness generalization, they often induce a considerable computational
overhead (e.g., solving an additional problem to determine a worst-case unfair-
ness [Mandal et al. 2020]), and thus have limited scalability. Some methods do not
suffer from this drawback but instead require additional splitting of the
data [Cotter et al. 2018, Cotter et al. 2019], hence possibly penalizing utility, as
the amount of data used to update the model is reduced. Finally, other ap-
proaches have limited applicability, as they are designed for a particular algorithm
or hypothesis class [Taskesen et al. 2020, Wang et al. 2021], or require some special
property of the underlying algorithm (e.g., access to a cost-sensitive classification
oracle [Mandal et al. 2020]).

To tackle these issues, we propose a new framework for statistical fairness ro-
bustness. Intuitively, our approach consists in ensuring fairness over a variety of
samplings of the training set. The approach that is the more closely related to
ours is that of [Mandal et al. 2020], which is based on a similar intuition, namely
ensuring fairness on a set of neighbouring distributions of the training set, called
re-weightings versions, can improve its generalization. However, we consider dif-
ferent definitions for such neighbouring distributions and in addition we propose a
heuristic approach variant exhibiting practical advantages compared to the exact
one. The work of [Huang & Vishnoi 2019] (which adds a stability-based regularizer
to the objective function) is also related to ours, as we seek to improve fairness ro-
bustness on samplings of the training set (which can be viewed as a form of training
fairness stability). We elaborate on our proposed theoretical framework in the next
subsection.
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2.5.3 Sample-based Robustness for Statistical Fairness

Following the principles of DRO, it has been shown that enforcing fairness over a set
of distributions that are neighbours to the training one is an efficient way to improve
its generalization [Mandal et al. 2020, Sagawa et al. 2020, Taskesen et al. 2020].
While DRO was formalized using distributions, practical machine learning appli-
cations usually deal with finite training sets that are sampled from an underlying
distribution. Indeed, instead of considering fairness robustness over perturbed un-
derlying distributions (which, in practice, are unknown), we enforce robustness with
respect to the training set sampling. For this reason, we propose to use the Jaccard
distance J as the distance metric measuring similarity between sample sets.

Definition 2. (Jaccard distance) Let D1 and D3 be two sample sets. The Jaccard

distance between Dy and Ds is defined as follows: J(D1,D3) =1 — }gigg;l

The Jaccard distance is a very popular measure, used to quantify (dis)similarity
between sample sets in a wide range of applications. For example, it has been
used in Machine Learning for feature ranking stability [Khoshgoftaar et al. 2013,
Saeys et al. 2008] and feature selection [Zou et al. 2016]. Intuitively, two sample
sets Dp and Dy that have a large intersection are close (i.e., J(D1, D2) is small and
in particular J(D, D) = 0) while two sample sets D3 and D4 with empty intersection
are far from each other (i.e., J(D3,Dy) is 1). We use the Jaccard distance to define
the perturbation sets of a given dataset D.

Definition 3. (Perturbation sets) Let T € [0,1], we define a perturbation set
B(D,T) as the set of subsets of D whose Jaccard distance from D is less than or
equal to 7. That is, B(D,7) ={D"| J(D,D') <7t A (D' CD)}.

Definition 3 states that B(D, 7) contains all subsets of D of size at least |D|x(1—
7). A special case arises if 7 = 0, as B(D, 0) simply contains D itself. In a nutshell,
the subsets of D contained in B(D,7) can be seen as points in a metric space
equipped with the Jaccard distance®, contained within a ball centered around D
whose radius is 7. This ball is itself contained within all sets B(D, ") with 7/ > 7.
We illustrate this nested structure in Figure 2.6, on a toy dataset with two protected
groups for the statistical fairness measure.

Similar to DRO, the proposed approach consists in ensuring a given property
(e.g., fairness) over a set of elements contained in a perturbation set. For DRO,
such elements are distributions while we rather consider sample sets. By considering
the perturbation set B(D,7) as a set of samplings of the dataset D, we aim at
building a model that is fair on all sets of B(D, 1), including D itself. This leads
to the formulation of our sample-robust version of Problem (1.3). More precisely,
the sample-robust fair learning problem on a perturbation set B(D, 7) is provided
hereafter in Problem (2.10). An optimal solution to this problem corresponds to

5The Jaccard distance satisfies all required properties to equip a metric space, and in particular
the triangle inequality [Kosub 2019].
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Figure 2.6: Example of perturbation sets for a dataset D with 5 examples and two
protected groups and u ({e4, e5}). Subsets that can not be used to
audit a model’s fairness with respect to protected groups p and u (i.e., datasets for
which the unfairness metric is undefined because they do not contain at least one
example from each protected group) are not represented.

a model h that minimizes the objective function obj on D, among those of H that
exhibit unfairness at most € over all sets contained in B(D, 1), including D itself.

arg min obj(h, D) (2.10)
heH
s.t. max unf(h, D) <e
D'EB(D,r)

This formulation is a particular instantiation of the general DRO formulation
of Problem (2.9), in which robustness is applied only on the enforced fairness con-
straints rather than on the objective function. With the proposed perturbation
sets definition, we observe that augmenting the distance 7 increases the number
of subsets being considered. As a consequence, considering higher values of 7 can
only raise the worst-case fairness violation, thus hardening the problem. Hence, the
parameter 7 directly controls the strength of the enforced robustness of the fairness
constraint. We further study the structure of our proposed perturbation sets and
the consequences in terms of fairness violation in our published work. Hereafter, we
show how one can ensure that fairness is satisfied within all sample sets contained
by B(D, ) without enumerating them all, which could be costly. To this end, we
introduce in the following definition the notion of fairness sample-robustness.

Definition 4. (Quantifying sample-robustness for fairness) Consider a
dataset D, a classifier h and an acceptable unfairness tolerance €. The unfair-
ness sample-robustness of h on D for constraint €, denoted by SR(h,D,¢€), is the
Jaccard distance (SR(h,D,¢) € [0,1]) such that:
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1. Y1 > SR(h,D,e),3D" € B(D, 1) such that unf(h,D’) > ¢.
2. V1 < SR(h,D,e),VD' € B(D,7),unf(h,D’) < e.

In other words, SR(h,D,¢) is the largest possible value of the Jaccard distance T
such that h is fair over all sets in B(D,7'),V7’' < 7.

Again, consider that D and all its subsets are points into a metric space equipped
with the Jaccard distance. Intuitively, SR(h, D, ¢) is the radius of the largest ball
centered around D such that h if fair over all sample sets strictly contained within
this ball. In simple words, h is fair on D and on subsets of D up to a (Jaccard)
distance of SR(h, D, ¢). The bigger SR(h, D, €), the more sample-robust h’s fairness
is.

Computing SR(h,D,e) in practice. In our published work, we propose an
integer programming model, coined ZPSR(h, D, ¢), and demonstrate that it can be
used to compute the exact value of SR(h, D, ¢). Furthermore, we also show that a
simple, linear-time (with respect to the number of examples) greedy algorithm can
be used to upper-bound SR(h,D,e). ZPSR(h,D,¢) is introduced and described
within the Appendix C.

Finally, we can formulate the sample-robust fair learning problem as a multi-
objective problem, using an e-constraint method. In other words, considering the
fair learning problem (1.3), we include our fairness sample-robustness term as a

constraint:
arg min obj(h, D) (2.11)
heH
s.t. unf(h,D) < e
SR(h,D,e) >

Note that Problem (2.11) is indeed equivalent to Problem (2.10), reformulated
to use the fairness sample-robustness quantification notion introduced in Defini-
tion 4 (i.e., SR(h,D,¢) and the discussed tools to measure it). In particular, the
w parameter of Problem (2.11) corresponds to the 7 parameter of Problem (2.10).
One can observe that we have to enforce that SR(h, D, ¢) is strictly greater than u
to ensure that h meets the fairness constraint over all subsets of D up to a Jaccard
distance p (including p itself). Indeed, as stated in Definition 4, if SR(h, D, e) = p,
then h is fair over all subsets of D up to Jaccard distance u, excluding p.

An important difficulty with Problem (2.11) is the calibration of the yx parame-
ter. More precisely, as a meaningful value of i depends on the dataset at hand, on
the considered sensitive attributes, on the unfairness metric and on the unfairness
constraint €, determining a good value for p is difficult. For this reason, we propose
to build a Pareto frontier between utility (obj(h, D)) and fairness sample-robustness
(SR(h,D,¢)), for a fixed value of €. To realize this, we first solve Problem (2.11)
with no constraint on SR(h,D,¢) (i.e., u < 0) to obtain the baseline fair (non
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robust) model hg. Then, we measure hy’s fairness sample-robustness SR (ho, D, €)
and solve Problem (2.11) again, using this value for the p parameter in order to
(strictly) strengthen the fairness sample-robustness constraint. We iterate this pro-
cess until a given stopping criterion is met. In our experiments, we consider different
stopping conditions, with some of them leveraging a separate validation set.

However, practical difficulties remain, such as an important computational over-
head and practical integration challenges (solving a MIP within a learning algo-
rithm). These challenges motivate a heuristic formulation of the problem.

2.5.4 Heuristic Formulation

We have showed that an exact application of our proposed formulation is possi-
ble, but challenging. Indeed, in practice, a heuristic application of our proposed
principle can be beneficial, even if no formal guarantees hold. The approach we
propose consists in computing n random subsets of the training set using n ran-
dom binary masks. Each mask M is a vector of size IV, in which each coordinate
Mieq.ny € {0, 1} is a random binary value. We denote by D the subset associated
with mask M as follows: D = {e; € D | M; = 1}. This is used in Definition 5 to
define the heuristic perturbation set.

Definition 5. (Heuristic perturbation sets) Consider a dataset D and a set of
n binary masks My ... M,, of size |D|. The heuristic perturbation set, denoted by
B, (D,n), is defined as: B,(D,n) ={D,D1,Da,...Dy}.

In a nutshell, instead of considering the entire previously defined perturbation
set B(D, 1), we only enforce fairness on some randomly generated subsets (belonging
to B(D, T) by construction). Intuitively, B(D,7) considers all subsets of D whose
Jaccard distance from D is at most 7. In contrast, B, (D, n) only considers n random
subsets of D (along with D itself). In the graph representation of Figure 2.6, our
heuristic perturbation sets contain randomly selected vertices.

By replacing B(D, ) by B,(D,n) in Problem (2.10), we get the heuristic for-
mulation of our sample-robust fair learning problem. The intuition behind this
heuristic approach is that the randomly sampled subsets of D have slightly different
distributions. Hence, enforcing fairness for such subsets effectively leads to a form of
heuristic distributionally robust optimization. It is possible to draw a parallel with
the Bagging (Bootstrap AGGregatING) ensemble learning method [Zhou 2012]. In-
deed, the idea underlying bagging is that training different models using different
samplings of the training set may improve robustness by reducing the variance.
This happens because such samplings have slightly different distributions, neigh-
bouring the original one. While bagging leverages the different samplings to learn a
set of models that will reduce the variance of the accuracy, we use them to enforce
fairness in a robust manner.

This heuristic formulation does not have the theoretical appeal of our exact
sample-robustness quantification framework, but exhibits considerable practical ad-
vantages. Indeed, it does not require calibrating the u parameter of Problem (2.11),
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which may require a separate validation set. In addition, computing unfairness over
a finite set of subsets defined with masks can be done in linear time with respect
to the input size, which is considerably simpler than solving ZPSR(h,D,¢). It is
also easier to integrate within existing algorithms (and in particular, gradient-based
techniques).

2.5.5 Some Experimental Results

We conducted a large empirical evaluation of our exact (Section 2.5.3) and heuristic
(Section 2.5.4) approaches in our published work. In this subsection, we only report
part of the results to highlight the main empirical findings.

Experiments using FairCORELS (exact and heuristic approaches). We in-
tegrated both our exact and heuristic fairness sample-robustness approaches within
FairCORELS. In a nutshell, before updating the current best solution (line 9 of Algo-
rithm 1), we verify whether the fairness sample-robustness desideratum is achieved
(using ZPSR(RL,D,¢) for the exact method and measuring unfairness over all
the subsets defined by the n masks for the heuristic one). Then, we only perform
the current best solution update if the candidate rule list RL satisfies the fairness
sample-robustness criterion.

Hereafter, we focus on our experiments using the Statistical Parity fairness
metric (¢f. Table 2.1), and four different datasets widely used in the fairness lit-
erature. For an unfairness tolerance ¢ = 0.01, we learn a set of rule lists using
our modified versions of FairCORELS, with either the exact or heuristic fairness
sample-robustness method, varying the robustness parameters. For the heuristic
approach introduced in Section 2.5.4, we set the number of masks n to either 10 or
30. For the exact approach, we build a set of trade-offs using the strategy described
at the end of Section 2.5.3, iteratively strengthening the fairness sample-robustness
constraint. We consider three possible stopping criteria, two of them leveraging a
separate validation set.

We report the error/unfairness trade-offs on the test sets (averaged using 5-
folds cross validation) in Figure 2.7. One can see that the original FairCORELS did
not meet the fairness constraint at test time on three out of the four considered
datasets (i.e., the test unfairness is greater than the considered unfairness tolerance
¢). Importantly, all the proposed methods usually diminish fairness violation at test
time (the associated points are either under ¢ or closer to it). This improvement
on fairness generalization induces a cost on the model’s error. As a general trend,
we see that the greater the fairness generalization improvement, the greater the
error incurred. However, the generated solutions often propose interesting trade-
offs between error and unfairness. In particular, in the Bank Marketing experiment
the robustness enforced for fairness can sometimes benefit the error generalization
as well. These partial results illustrate the usefulness of our proposed fairness
robustness framework to generate models whose fairness generalize better.

Going back to our motivational example of Figure 2.5, we show in Figure 2.8



Adult dataset Compas dataset
0.014 { 0.035
v
L v A
0.012 4 v v 0.030 .
. v
0.010 4 r 0.025
¥ A
@ ° . . o
£ 0.008 N € 0.020 y T .
g &
5 N 5 s
2 0.006 2 0.015 ¥ e
3 ° 3
~ Y ovyY ~ °
0.004 Ter ¥ ® 0.010 —*
Ty Y
YT w
0.002 v " 0.005 Y.
v sy
0.000 4 ¥ 0.000 Yy
0220 0225 0230 0235 0240  0.245 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470
Test Error Test Error
Default of Credit Card Clients dataset Bank Marketing dataset
0.010
00141 .~ .
3
v
0.012 4 . v
r . 0.008
0.0107 — x N
@ @
2 2 0.006
£ 0.008 LA N £
g N & L4
5 5
7 0.006 v § 0.004 °
[~ = °
¥ ¥
0.004 ; . .
N ¥ v 0.002
0.002 4 Y e v
N ¥
3 M
0.000 ¥ 0.000 v

0.200

Original FairCORELS
Heuristic - 10 masks °
® Heuristic - 30 masks ¥

0.205 0.210 0.215 0.220

Test Error

Exact - with validation (& criterion)
Exact - with validation (train unf. criterion)

0.107

L[]

0.109 0.110
Test Error

0.108 0.111

0.112

Exact - without validation (before-constant)
Actual unfairness tolerance constraint €

Exact - Sample robust fair frontier

Figure 2.7: Test error and unfairness of models generated by FairCORELS using our
exact and heuristic sample-robust fair methods (Statistical Parity metric, e = 0.01).

that our heuristic sample-robust method (used here with either n = 10 or n = 30
masks) is suitable to improve fairness generalization (rightmost plot), resulting in
significantly better trade-offs between error and unfairness at test time.

Experiments using TFCO (heuristic approach and comparison with a state-
of-the-art method). We also integrated our heuristic fairness sample-robustness
approach within a deep learning framework of the literature: TensorFlow
Constrained Optimization® (TFCO). This Python library can be used to opti-
mize inequity-constrained problems in TensorFlow and produce machine learning
models (not restricted to the fair learning problem). To integrate our heuristic fair-
ness sample-robustness approach within TFCO, we simply need to declare additional
constraints, stating that the fairness constraint(s) must be satisfied over each subset
specified by one of the n masks.

We consider our heuristic sample-robust approach Heur .n masks with a number

Shttps://github.com/google-research /tensorflow_ constrained_ optimization
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Figure 2.8: Pareto frontier approximations (trade-offs between error and unfairness
on both the training and test sets) and unfairness generalization obtained using
FairCORELS on the Adult Income dataset (with 5-folds cross-validation), for the
equal opportunity fairness metric (¢f. Table 2.1). We report results for the original
FairCORELS, as well as for our heuristic sample-robust version of FairCORELS with
n = 10 and n = 30 masks.

of masks n set to 10, 30, or 50. We compare it with three different methods. The
unconstrained approach simply trains a model without fairness considerations.
The baseline method implements the traditional fair learning strategy, simply
encoding the fairness constraints. Finally, validation is the approach described
in [Cotter et al. 2018, Cotter et al. 2019], which is proposed to improve fairness
generalization over the baseline approach. In a nutshell, to avoid constraints
overfitting, it splits the dataset between two distinct sets: train and wvalidation.
The former is used to update the model’s parameters, while the later is leveraged
for auditing fairness violation. By measuring fairness violations on a separate vali-
dation set, this approach was shown to improve fairness generalization (more details
regarding this method can be found in Section 1.3.6).

We compare all six methods on several experimentations, each using a different
dataset, for a particular fairness setting and model architecture. We report the
main insights hereafter, focusing on two particular experiments. The first one uses
the Adult Income dataset, and considers the statistical parity fairness metric. The
second one is based on the COMPAS dataset subject to Equal Opportunity fairness
constraints. Results are summarized in Table 2.4, for the two algorithms provided
within TFCO. They show that our heuristic sample-robust fair approach effectively
improves fairness generalization while not penalizing accuracy significantly. Overall,
it is competitive to the state-of-the-art validation method without requiring prior
split of the data. Results of Experimentation 1 on Adult Income demonstrate that
the fairness constraints violations on the test set are the smallest using our method.
Furthermore, increasing the number of masks seems to improve the fairness gener-
alization while penalizing accuracy, which suggest a fairness robustness / accuracy
trade-off controlled by the number of masks n. While the validation method also
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Table 2.4: Results of our experiments on fairness generalization using TFCO. We
report error rates and maximum fairness constraints violations for all compared
methods, for two of our experiments (all values are averaged over 100 runs). Best
test results are shown in bold, second best in italics.

Proxy Lagrangian Lagrangian
Train Test Train Test
Method Error | Viol. Error‘ Viol. || Error | Viol. | Error | Viol.

Adult Income Dataset
unconstrained | .122 072 | .144 .071 122 072 | .144 071

baseline 141 0 154 .009 141 0 155 .006

validation 132 | -.002 | .158 .004 134 0 157 .004
Heur.10 masks 14 | -.003 | .156 .003 143 | -.001 | .155 | -.003
Heur.30 masks 14 -.004 | .157 | -.001 148 | -.002 | .156 | -.003
Heur.50 masks 14 -.003 | .157 | -.001 151 | -.002 | .157 | -.003

COMPAS Dataset
unconstrained | .265 | .043 .33 .064 .265 .043 .33 .064

baseline 263 | -.004 | .33 .019 .264 | -.003 | .328 .025

validation 235 | .001 | .353 | .005 235 | -.002 | .352 .001
Heur.10 masks | .261 | -.008 | .336 .014 2295 | -.007 | .526 | -.006
Heur.30 masks | .261 | -.009 | .337 .015 307 | -.009 | .526 | -.011
Heur.50 masks | .262 | -.009 | .337 .013 31 -.011 | .322 | -.012

proposes an important reduction of the test fairness violation, our Heur.n masks
approaches give more interesting results on these experiments while less conflict-
ing with accuracy (which was expected as we do not require prior splitting of the
data). Results for Experimentation 2 (on the COMPAS dataset) suggest that in
some situations the fact that our approach does not use a separate validation set
(but subsets of the same training data) can limit its generalization improvement
abilities. However, compared to validation, it has a considerably smaller impact
on accuracy, and the resulting trade-offs appear competitive overall. Additionally,
we observe that enforcing fairness constraints in a robust manner can improve er-
ror generalization due to the metric used (i.e., in this case, Equal Opportunity)
being aligned with accuracy. Hence, ensuring fairness robustness may also benefit
to accuracy.

Finally, this overview of the experiments using our sample-robustness frame-
work for fairness demonstrates the applicability of our approach and its ability to
effectively improve fairness generalization.

2.6 Conclusion and Future Research

We propose effective ILP models leveraging accuracy and fairness jointly to prune
the search space of FairCORELS and learn optimal fair rule lists. Our large ex-
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perimental study shows clear benefits of our approach to speed-up the learning
algorithm on well-known datasets from the literature. This gain is illustrated on
three dimensions: achieving better training objective function values (without loss
of the learning quality), using less memory footprint (i.e., reduced cache size) and
certifying optimality in limited amounts of time and memory. Combined with a
proposed simple data structure, the ILP pruning approaches allow the learning of
optimal rule lists under fairness constraints for datasets of realistic size.

Thanks to the declarative nature of our pruning approach, our framework is
flexible and can simultaneously handle multiple fairness criteria for any number
of sensitive groups. Indeed, each group’s confusion matrix is modeled using two
variables in our ILP. Considering more than two groups would require declaring
additional variables, along with desired constraints using these variables.

Overall, our work illustrates the fact that statistical fairness and accuracy, when
considered jointly, can be leveraged to reduce the scope of feasible solutions effi-
ciently. In the future, it would be interesting to pursue this line of work by con-
sidering other learning algorithms and machine learning requirements. Guiding the
exploration by leveraging on the ILP models (as attempted with the ILP-Guided
approach) also seems to be a promising direction.

Motivated by our empirical observations, we proposed a novel formulation of
robustness for fair learning aimed at enhancing statistical fairness generalization in
machine learning. Our framework is metric-agnostic and based on the idea that
one wants to learn a model whose fairness is verified, even if the training dataset
sampling is somehow different. Our formulation is designed to be widely applicable,
as many real-world machine learning applications consider finite training sets. In
addition, the proposed method can be used both to audit any classifier’s fairness
robustness without any knowledge of the classifier’s structure but also for robust
fair learning, although it has some practical limitations. To deal with this issue, we
proposed an effective and efficient heuristic method, exhibiting practical advantages
while still improving fairness sample-robustness and fairness generalization.

A limitation of our framework is that it considers only subsets of the training
set (and not all possible sample sets within a given Jaccard distance). This pre-
vents the creation of unrealistic sample sets, which could result in over-constraining
the problem. It also gives an interesting structure to our perturbation sets, al-
lowing the derivation of several theoretical properties. Additionally, it leads to an
important computational advantage. Indeed, fairness sample-robustness audit can
be performed solving an integer programming model whose objective function is
linear in the decision variables. However, in a more general formulation of sample-
robustness, this would not be the case, as the denominator of the Jaccard distance
would no longer be a constant. Formulating and solving this problem efficiently to
ensure fairness over Jaccard-distance based perturbation sets in the general case is
a promising direction.

Finally, automatically determining the best parameters for our heuristic method
(i.e., distribution and number of the binary masks, as well as the cardinalities of
the defined subsets) is also a research avenue that we want to pursue in the future.
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In this chapter, we first review the literature on the interplays between
fairness and privacy in machine learning. Depending on the considered
notions, several synergies and tensions arise. In particular, enforcing
fairness constraints was often shown to cause privacy vulnerabilities.
We elaborate on this tension and introduce declarative programming
approaches aimed at reconstructing the sensitive attributes of a fair
model’s training set. By directly encoding information regarding the
model’s fairness, these methods illustrate the intrinsic tension between
enforcing fairness with respect to some sensitive attributes, and protect-
ing their privacy.
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In recent years, a growing body of work has emerged on how to learn machine
learning models under fairness constraints, often expressed with respect to some
sensitive attributes [Barocas et al. 2019, Caton & Haas 2023, Mehrabi et al. 2022].
These sensitive attributes correspond to characteristics such as gender, age or
race [Ding et al. 2021], which should not be taken into account in decision-making
processes impacting individuals [Barocas et al. 2019], for legal, ethical, social or
philosophical reasons. While fair models usually do not use such sensitive attributes
at inference time to avoid disparate treatment [Barocas & Selbst 2016], they still
require access to them at training time [Zliobaite & Custers 2016]. The fact that
these models are learnt with the objective to meet specific constraints regarding
these sensitive attributes indicates that fair models intrinsically contain informa-
tion about them.

Another fundamental aspect of responsible machine learning is the protection
of privacy. Indeed, machine learning models are often trained on large amounts of
personal data. Here, the main challenge is ensuring that these models learn useful
generic patterns without leaking private information about individuals.

In many applications, privacy and fairness should not exist in isolation: both are
actually needed for ethical use of machine learning, and it is therefore imperative
to understand their interactions [Chang & Shokri 2021, Ekstrand et al. 2018]. For
instance, in recidivism prediction applications, demographic groups (e.g., black de-
fendants and white defendants) should experience similar treatments (e.g., similar
accuracy, similar true positive rates, true negative rates...). Simultaneously, par-
ticipation in the training data means that an individual once committed a crime,
therefore requiring that privacy is enforced. Indeed, in this setting, membership
reveals the criminal records of individuals, which is a sensitive information. In ad-
dition, there can be situations in which privacy leaks lead to future discrimination,
or disparate impact may cause privacy issues.

In this context, inference attacks aim at leveraging the output of a computation
(e.g., a trained model) to retrieve information regarding its inputs (e.g., a train-
ing dataset) [Dwork et al. 2017, Rigaki & Garcia 2023, Cristofaro 2020]. Our work
belongs to the category of dataset reconstruction attacks, in which an adversary
tries to recover part of a model’s training data [Cristofaro 2020]. More precisely,
we study the setting in which an adversary aims at retrieving the entire column of
sensitive attributes of the training set. Depending on the available auziliary knowl-
edge, several strategies can be adopted by an adversary to reconstruct the sensitive
attributes of the training set. The proposed approach is a post-processing method
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that we coin as reconstruction correction, which takes as input an initial recon-
struction performed by an adversary, optionally associated with confidence scores
for each guess. The reconstruction correction method then minimally updates the
adversary’s initial guess to satisfy some user-defined constraints. OQur work focuses
on the scenario in which these are fairness constraints and the adversary leverages
the fact that a model is known to be fair to improve his initial reconstruction. Such
fairness information can for instance be the results of legal requirements, such as
the “80 percent rule” for Statistical Parity [Feldman et al. 2015] stated by the US
Equal Employment Opportunity Commission (EEOC) [EEOC. 1979]. Indeed, this
text states that the difference between acceptance rates of two sub-population must
not exceed 20%.

The tensions between fairness and privacy in machine learning have been studied
in recent years, mainly through the theoretical [Cummings et al. 2019, Agarwal 2021b)]
and empirical [Bagdasaryan et al. 2019, Chang & Shokri 2021, Fioretto et al. 2022]
conflicts existing between statistical fairness metrics and Differential Privacy (DP).
Our work takes a different direction but also demonstrates that enforcing statistical
fairness can endanger the privacy of sensitive attributes.

Related Works. Related work on reconstruction attacks can be found in Sec-
tion 1.5.3. Few works are directly related to our contribution. [Hu & Lan 2020] pro-
pose a mechanism whose principle is related to ours: explicitly exploiting fairness by
encoding it within declarative programming frameworks to enhance the reconstruc-
tion. They however consider a very particular framework where a learner can query
an auditor (owning the training set sensitive attributes) to known whether some
model’s parameters satisfy the fairness constraint(s). This particular setup is more
favorable to the attacker, as he possesses the fairness information for a whole set of
models instead than only for the final trained one. While the intuition is similar, our
work covers a more general setting, with no assumption on the underlying fairness-
enhancing method and in a less favorable attack setup. [Aalmoes et al. 2022] can
serve as a baseline work for our proposed attack, as they also consider the tradi-
tional learning pipeline but do not leverage the fairness information. More precisely,
their proposed attacker possesses a separate auxiliary dataset for which the sensi-
tive attributes are known. He uses this dataset, along with query access to the
target black-box, to train an attack model to predict the sensitive attributes given
an example’s unsensitive ones, label and black-box prediction. The trained attack
model can then be leveraged to predict the training examples’ sensitive attributes.

Outline of the Chapter. In Section 3.1, we first provide a large literature review
on the connections between fairness and privacy in machine learning. We summa-
rize they key identified synergies, compatibilities and tensions, observing that, in
particular, statistical fairness and privacy notions often conflict. In the remainder of
the chapter, we build on this observation and propose an original contribution, also
highlighting an intrinsic tension between fairness and training data privacy. More
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precisely, we present our contribution on reconstructing a fair model’s training set
sensitive attributes leveraging information regarding its fairness. We first introduce
our proposed attack framework in Section 3.2. We then empirically assess its effec-
tiveness to reconstruct fair models’ training set sensitive attributes in Section 3.3.
Finally, in Section 3.4, we discuss and evaluate possible mitigation strategies.

3.1 Connections between Fairness and Privacy

In this bibliography section, we review the literature at the intersection between
fairness and privacy in machine learning. Part of this intersection is covered by a
recent survey [Fioretto et al. 2022] studying the interactions between fairness and
differential privacy (DP), in both decision making and machine learning tasks. Here-
after, we first highlight the identified theoretical and empirical tensions between the
two notions. We then review some synergies and compatibilities illustrating that
the two desiderata can be conciliated.

3.1.1 Tensions

As discussed in Section 1.3, it is desirable and often legally required to ensure that
sensitive attributes do not directly or indirectly influence the predictions of a ma-
chine learning model. However, while many popular fairness-enhancing approaches
require the availability of such sensitive attributes, their collection and use may be
prohibited by law. Some approaches propose to use an encrypted version of the
sensitive attributes so that the users do not have to explicitly reveal this informa-
tion. For instance, [Kilbertus et al. 2018] leverage secure Multi-Party Computation
(MPC) to build a fair model. Nevertheless, as discussed in Section 1.5.1, processing
encrypted information does not protect the computation’s output from inference
attacks. This illustrates a first, straightforward intrinsic conflict between fairness
and privacy. Furthermore, when applied jointly, both notions can still conflict, as
discussed with more details in the following paragraphs.

Group fairness and differential privacy are theoretically incompatible. It
is provably impossible to build machine learning models strictly respecting a given
fairness constraint while respecting DP. More precisely, [Cummings et al. 2019]
show that (epp,0)-DP and fairness (Equal Opportunity) can not be simultane-
ously satisfied without reaching trivial accuracy. Authors note that this holds for
pure DP (epp,0)-DP, but is also applicable for (epp,dpp)-DP (as dpp is usually
required to be cryptographically small). [Agarwal 2021b] also state an impossibility
theorem, considering popular group fairness definitions: if a learning algorithm L
is (epp,0)-differentially private and is guaranteed to output an approximately fair
classifier, then L is constrained to output a constant classifier. The idea of their
proof is essentially the same as [Cummings et al. 2019]. (i) Consider a learning
algorithm £ that is (epp,0)-DP. For any two datasets D and D’, and for any classi-
fier h, if £ outputs h for D with probability strictly greater than zero, then it must
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output h for D’ with strictly positive probability too. This can be proved because,
for any two datasets D and D’, we can build a serie of datasets neighboring two-by-
two, from D to D’ (and the property must be verified for all pairs of neighbouring
datasets by definition of pure DP). (ii) Recall that £ can only output classifiers re-
specting a given (exact or approximate) fairness requirement: if a classifier h does
not meeet the fairness requirement on the training set D, then P(L(D) = h) = 0.
The conjunction of (i) and (ii) implies that £ can only release constant classifiers
(and hence pure DP and fairness can not be satisfied jointly - or we must accept
some fairness or DP violations).

Enforcing fairness increases privacy vulnerabilities. [Kulynych et al. 2022]
show that there exist disparities with respect to the vulnerability to Membership In-
ference Attacks (MIAs) between various subgroups of the population. They demon-
strate that vulnerability to MIA is caused by distributional overfitting, which quan-
tifies the distance between the distributions of outputs of the model on the training
set and outside. Disparate vulnerability to MIAs arises if and only if distributional
overfitting differs across subgroups. In practice, subgroups that are inherently more
difficult to fit and/or that are less represented in the data are indeed more vulner-
able to MIAs. Additionally, overfitting can increase these vulnerabilities, but also
their disparities. They empirically show that enforcing fairness constraints may
help under certain conditions, but can also exacerbate the observed disparities or
even create new ones in real-world applications. Finally, they recall that DP upper-
bounds the vulnerability of all individuals or subgroups, hence also upper-bounding
their disparity. It however does not remove it completely, and to get an interest-
ing mitigation, the privacy budget must often be really tight, hence resulting in
significant utility drops.

Indeed, in a position paper, [Ekstrand et al. 2018] emphasize the importance
for a privacy-preserving mechanism to protect individuals with equivalent effec-
tiveness. However, while DP provides the same (worst-case) theoretical protection
to all dataset examples, the actual privacy vulnerability is often not uniformly
distributed in practice. [Chang & Shokri 2021] empirically study the privacy impli-
cations of fairness, quantifying the data privacy risk as the success of a black-box
membership inference attack. They empirically show that enforcing fairness con-
straints disproportionately raises the privacy risk of the unprivileged subgroups:
“fairness comes at the cost of privacy, and the privacy cost is not equal across
subgroups”. This is explained by the fact that the fairness requirements they use
impose the model to equally fit the unprivileged subgroups. When such subgroups
are smaller, each example then has a stronger impact over the resulting model and,
in the worst case, is memorized. In addition, the more unfair the unconstrained
model is, the higher the privacy vulnerability disparity will be, as there is more
unfairness to be compensated. Finally, as discussed in the introduction, previous
work [Hu & Lan 2020] demonstrated that information regarding a model’s fairness
can directly be leveraged to reconstruct the model’s sensitive attributes. In the
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remainder of this chapter, we also illustrate this intrinsic tension in a more general
setting.

DP disproportionately affects utility. [Bagdasaryan et al. 2019] study the
effects of enforcing differential privacy on a model’s accuracy on different sub-
groups of the population, using the accuracy parity fairness notion (which equalizes
the model’s accuracy across the subgroups). Considering several image classifica-
tion and natural language tasks, they use the popular DP-SGD [Abadi et al. 2016]
framework for differentially private deep learning in both centralized and feder-
ated settings. This large empirical study shows that gradient clipping and random
noise addition, the key mechanisms of DP-SGD, disproportionately affect underrep-
resented and complex classes and subgroups. Indeed, enforcing DP leads to higher
accuracy drops for minorities and discriminated groups, such as darker-skinned peo-
ple in the context of facial recognition, but also intersections of different sensitive
subgroups. They note a “poor gets poorer effect” : the classes with low accu-
racy in the non-DP setting suffer the largest accuracy drops when applying DP.
In a follow-up work, [Uniyal et al. 2021] empirically observe that the differentially
private PATE [Papernot et al. 2017, Papernot et al. 2018] framework (introduced in
Section 1.5.5) also has disparate impact on the built model’s utility. They how-
ever report that PATE has smaller disparate impact compared to DP-SGD to reach
similar privacy levels, and note that a sweet spot for the number of teachers exists,
minimizing the induced disparities. [Farrand et al. 2020] observe that the accu-
racy disparity caused by DP still occurs even when the data is slightly imbalanced,
and for loose privacy guarantees. Indeed, two main factors were identified in the
literature to explain this effect: properties of the training data, and models’ char-
acteristics, which are summarized and analyzed with more details in a recent sur-
vey [Fioretto et al. 2022]. Concerning the former, input norms and distance to the
decision boundary, are “key characteristics of the data connected with exacerbating
the disparate impacts of private learning tasks” [Tran et al. 2021b].

It was also observed in health care applications (x-ray images classification and
mortality prediction in time series) that small groups and samples at the tail of the
data distribution suffer from a larger accuracy drop compared to majority groups
and typical examples [Suriyakumar et al. 2021]. Furthermore, the characteristics
of the DP learning mechanisms themselves are also directly related to the mag-
nitude of the observed disparate impact. This encompasses the gradient clipping
and noise addition mechanisms of DP-SGD (as aforementioned), as well as the size
of the teacher ensemble and the confidence of the voting teachers in the context
of PATE [Tran et al. 2021a]. Different technical solutions to mitigate the disparate
impact of DP on a model’s utility were proposed. Indeed, it was shown possi-
ble to modify DP-SGD to use different clipping bounds for the different identified
subgroups [Xu et al. 2021]. Other work [Zhang et al. 2021] performs early stop-
ping, leveraging a public validation set. When using PATE in low voting confidence
regimes, small perturbations may significantly affect the result of the voting result.
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To mitigate this phenomenon, [Tran et al. 2021a] propose to use soft labels and re-
port confidence scores associated with each target label, rather than reporting solely
the label with the largest confidence. While being heuristic in the sense that they do
not guarantee any form of fairness, these approaches are empirically shown to reduce
the disparate impact caused by traditional DP mechanisms. The disparate impact
of DP mechanisms was also observed for decision tasks. [Pujol et al. 2020] study the
setup where agencies release differentially private versions of their databases, that
are then used for several allocation problems. The authors consider three real-life
allocation problems using the differentially-private Census data: printing of election
materials in minority languages, allocation of funds to school districts to assist dis-
advantaged children, and apportionment of legislative representatives. They show
that the noise added by the DP mechanism causes errors in the computed alloca-
tions, compared to the true allocations (i.e., the allocations that would be decided
without the DP noise). The key point of their work is that this error affects the
entities being allocated some resources in a disparate manner. For instance, it is
empirically shown that small school districts often benefit an overestimated alloca-
tion. On the other side, larger district may get a smaller allocation, which harms
their enrolled children. This effect was also observed in the literature, and two main
causes were identified [Fioretto et al. 2022]. In a nutshell, the shape of the decision
problem can disproportionately exacerbate the noise added by the DP data release
if it involves non-linearities in its computation, such as thresholds for funds alloca-
tion. Additionally, post-processing steps can induce intrinsic biases. For instance,
ensuring simple non-negativity constraints within the computed values can imply a
positive bias. It was also shown that DP mechanisms adding data-dependent noise
are responsible for a more important disparity, due to the fact that, contrary to
standard DP mechanisms (such as the Laplace mechanism), the effect of DP differs
between entities. Finally, other notions of privacy may also impact fairness. For
instance, recent work [Koch & Soll 2023] show that training models to take into
account potential future un-learning requests from the training set users (such re-
quests are stated as a right by privacy regulations) disproportionately affects the
utility for minority groups.

Differential privacy disproportionately affects the quality of post-hoc ex-
planations. [Datta et al. 2016] propose differentially private post-hoc explana-
tions, among which some aim at identifying proxy features that cause a group dis-
parity (i.e., a difference in the average prediction between several protected groups).
Then, it is shown that, for small protected groups such as demographic minorities,
the amount of noise required to make the explanations differentially private results
in a significant loss in its utility, hence making more difficult the discovery of dis-
criminatory proxy features. While proposing a framework to generate differentially
private post-hoc explanations, [Patel et al. 2022] observe that sparse data regions,
which often correspond to underrepresented groups (minorities) are associated to
poorer performances, either in terms of required privacy budget or explanation
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quality. In both cases, privacy disproportionately affects minority groups, which is
consistent with previously mentioned works.

Overall, while DP and statistical fairness are theoretically incompatible, they
also strongly conflict in practice. On the one side, to ensure fairness for protected,
underrepresented groups, the corresponding examples shall yield a higher impor-
tance in the learning process, which exposes their information more than average.
On the other side, to ensure DP, one must reduce more the influence of underrep-
resented groups, as learning an equivalent amount of information for them would
result in an increased per-example privacy risk. In the next subsection, we never-
theless show that the two notions can be jointly applied, and that there can exist
synergies between privacy and fairness for some particular notions.

3.1.2 Compatibilities & Synergies

Differential privacy and approximate group fairness can be jointly en-
forced with some trade-offs. As discussed in Section 3.1.1, it is not possible for
a learning algorithm to satisfy DP while also producing a model strictly complying
with fairness constraints. However, it is possible for a DP learning algorithm to out-
put a model approzimately satisfying a given fairness criteria [Cummings et al. 2019].
Then, a trade-off between the DP guarantees and the model’s fairness is usually
observed. Hereafter, we first introduce different methods of the literature jointly
handling differential privacy and fairness. We then report a theoretical result which
bounds the unfairness increase due to privacy.

Differentially private and fair methods. [Cummings et al. 2019] propose
the notion of Private and Approximately Fair Agnostic PAC Learning, stating that
a learning algorithm satisfies differential privacy while returning an accurate and
approximately fair classifier with high probability. They implement this notion
using the Exponential Mechanism, with a utility function being the sum of a model’s
error and unfairness. The sensitivity of the utility function being data-dependent,
the Laplace mechanism is used to upper-bound it in a Differentially Private manner.
This approach achieves the desiderata of privacy, fairness and accuracy, but the
running time of the Exponential Mechanism scales linearly with the hypothesis
class size, which is exponential for common hypothesis classes. This motivates
the need for an efficient, polynomial-time algorithm conciliating these desiderata.
The authors build upon a polynomial-time algorithm from the literature, producing
approximately fair and accurate randomized classifiers with high probability. In a
nutshell, this algorithm formulates the fair learning problem as a two-player zero-
sum game, between a Learner minimizing error while satisfying fairness constraints
and an Auditor updating Lagragian multipliers to penalize the largest subgroup-
wise fairness violations. This algorithm is modified to satisfy differential privacy
by using a DP subroutine to privately compute the players’ best responses in each
round.
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[Xu et al. 2019] propose two methods to achieve differential privacy and fairness
jointly in logistic regression. They use the decision boundary fairness as a notion
of fairness that provably minimizes statistical parity violation. A first approach
coined PFLR consists in considering the fairness constraint as a penalty term to
the objective function. Differential privacy is enforced using the functional mech-
anism [Zhang et al. 2012]. More precisely, the objective function is approximated
through its polynomial representation based on Taylor expansion. The objective
function is then perturbed by injecting Laplace noise into its polynomial coefficients.
Minimizing the perturbed objective function leads to the computation of differen-
tially private model parameters. A second approach, named PFLR* and based on the
first one, takes advantage of the connection between ways of achieving differential
privacy and fairness. More precisely, authors note that adding the fairness penalty
is equivalent to shifting the value of some coefficients of the polynomial form of the
objective function. Thus, they do not incorporate the fairness penalty term directly
in the objective function and rather integrate it via mean-shifting the Laplace noise
added to a subset of the coefficients. As such shift is dataset-dependent, a small part
of the privacy budget is used to estimate it in a differentially private manner. The-
oretical analysis, as well as empirical evaluation, shows that PFLR*, by separating
privacy budgets on objective function and fairness constraint, offers a more flexible
framework to find good trade-offs among privacy, fairness, and utility. In a follow-
up work, [Ding et al. 2020] extend PFLR and propose to have two distinct privacy
budgets in order to add Laplace noise with larger magnitude to the coefficients of
the terms involving the sensitive attributes than to the others within the objective
function. They also propose a second approach using the relaxed functional mech-
anism to enforce the relaxed version of differential privacy (epp,dpp)-DP in order
to improve the utility. It utilizes the extended Gaussian mechanism to perturb the
objective, adding random Gaussian noise to the coefficients of the polynomial form
of the objective function. Empirical evaluation on real-world datasets confirms that
the use of (epp,0pp)-DP allows an improved utility in all scenarios compared to
pure DP. Furthermore, the use of two distinct privacy budgets can help enforcing
stronger privacy guarantees while also reducing the correlations with the protected
attribute, practically improving fairness.

[Tran et al. 2021c| propose a Differentially Private framework to train Deep
Learning models that satisfy several popular group fairness notions. The approach
considers the Lagrangian relaxation of the fairness-constrained learning problem,
and leverages a Lagrangian dual approach to solve it: the fairness violation terms,
weighted by Lagrangian multipliers, are directly added to the objective function.
The training procedure then consists of iteratively repeating two successive steps:
primal and dual. Primal update step optimizes the model parameters to minimize
the objective function, given the current Lagrangian multipliers. Then, the dual
update step updates the value of the Lagrangian multiplier to approximate the
stronger Lagrangian relaxation. In order to enforce differential privacy for sensitive
attribute information, differential privacy is achieved at both steps, when computing
the fairness violation terms or their gradients. In the primal update step, clipped
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and noisy gradients are used. The model parameters optimization is done on this
noisy version of the objective function (where only the fairness violation term, ac-
cessing sensitive group membership which we want to protect, is impacted by the
DP mechanism). A similar mechanism is done on the dual update step, where
constraint violations are clipped and perturbed with carefully calibrated Gaussian
noise. Extensive empirical evaluation shows that the fairness violation decreases as
the privacy budget increases: enforcing DP leads to violating more fairness. This
is explained by the fact that relaxing the DP constraint allows either to perform
more iterations (hence propagating more fairness violation information) or to inject
less noise for a fixed number of iterations (hence propagating more accurate fair-
ness violation information). Another surprising trend is that the model accuracy
slightly decreases as epp increases. This is due to the fact that enforcing weaker
DP allows the fairness constraints to have more impact on the objective function,
hence penalizing more the accuracy.

[Jagielski et al. 2019] adapt two fair learning algorithms in order to satisfy both
fairness (Equalized Odds) and differential privacy (with respect to the sensitive
attributes). They first consider the post-processing method of [Hardt et al. 2016],
which we introduced in Section 1.3.3. Given a pre-trained and possibly unfair
classifier, the approach first computes its per-group per-ground truth prediction
proportions. It then solves a Linear Program to compute per-group per-class pre-
diction probabilities defining a fair randomized classifier. To enforce epp-DP in
this setting, the authors simply add well-calibrated noise drawn from the Laplace
distribution to the computed statistics before solving the LP with them. Theo-
retical analysis of how the introduced noise propagates to the solution of the LP
leads to bounds on accuracy and fairness violation that are met with high proba-
bility. This quantifies a trade-off between accuracy, fairness and privacy: weaker
DP guarantees lead to tighter bounds on accuracy and fairness, while stronger DP
guarantees (satisfied by adding more noise) increase the bounds, and the possi-
ble loss on accuracy and fairness. Experimental evaluation shows that this simple
method is able to give interesting trade-offs even with small datasets but is ex-
pected to perform worst than the second approach on large ones. The later builds
upon an in-processing approach [Agarwal et al. 2018], which we also introduced in
Section 1.3.3. It formulates the problem of learning a fair and accurate classifier as
finding the equilibrium of a two-player min-max game. A Learner minimizes the
objective function over the set of possible classifiers while an Auditor maximizes it
by choosing the value of the multipliers penalizing fairness violations. To enforce
(approximate) (epp,dpp)-DP, the authors add well-calibrated Laplace noise while
computing the gradients of the Auditor, and use the exponential mechanism for the
Learner’s model selection. Similar to the first case, a stronger privacy guarantee
(smaller epp and dpp) leads to weaker accuracy and fairness guarantees. However,
a new trade-off can be controlled through the maximum norm of the multipliers:
larger values lead to tighter fairness bounds but looser error bounds, and vice-versa.
For both approaches, we see that introducing noise to achieve DP leads to a reduc-
tion in the fairness guarantees (in a similar manner as for accuracy).
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[Mozannar et al. 2020] consider the setup in which the sensitive attributes are re-
leased using local differential privacy, and propose a two-step approach. First, a
classifier which is fair with respect to the noisy sensitive attributes is built, using a
state-of-the-art in-processing fair learning algorithm [Agarwal et al. 2018]. Second,
a modified version of a post-processing fairness-enhancing method [Hardt et al. 2016]
is used to ensure with high probability that the model is also fair with respect to
the (unknown) original sensitive attributes. For strong privacy regimes, this post-
processing step is empirically shown to significantly decrease fairness violation. In-
terestingly, the set of trade-offs between accuracy, fairness and privacy is shown
to differ in this local DP setup, compared to the previously mentioned central DP
approaches.

The fairness cost of differential privacy can be theoretically bounded.
Recent work theoretically shows that the impact of DP on fairness is bounded and
can be computed to obtain non-trivial guarantees regarding the private model’s
fairness [Mangold et al. 2023]. The underlying analysis relies on the fact that, just
like a model’s accuracy, common statistical fairness metrics are pointwise Lipschitz
continuous with respect to the model parameters. Then, proving that the private
model is sufficiently close to the optimal non-private one implies that their fairness
are also close. Interestingly, the theoretical bound tightens linearly with respect to
the size of the training set: the “loss of fairness” due to privacy vanishes when N
increases.

Individual fairness and differential privacy are both robustness defi-
nitions. As introduced in Section 1.3.2, individual fairness can be formulated
as a Lipschitz condition: just like differential privacy, it is a robustness defini-
tion [Ignatiev et al. 2020]. More precisely, [Dwork et al. 2012] observe that individ-
ual fairness constitutes a generalization of differential privacy. The authors draw an
analogy between individuals in the setting of fairness and databases in the setting of
differential privacy. Indeed, as also noted by [Zemel et al. 2013], differential privacy
requires that “algorithms behave similarly on similar databases”, while individual
fairness enforces that classifiers yield similar outcomes for similar instances. This
allows the use, for fairness purposes, of mechanisms designed for differential privacy.
For instance, [Dwork et al. 2012] propose an efficient individually fair learning algo-
rithm based on the exponential mechanism [McSherry & Talwar 2007], coming with
provable loss bounds. In [Jagielski et al. 2019], the proposed privacy-preserving ap-
proach (ensuring DP for the sensitive attributes) can be seen as a relaxation of the
strict notion of individual fairness proposed in [Ignatiev et al. 2020]. Indeed, while
the former enforces a ratio on the probabilities of different outcomes when a single
sensitive attribute label is modified, the latter enforces that the sensitive attribute
is never used. In this way, fairness through unawareness is a strict, simple but
certifiable way to ensure sensitive attribute privacy.
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Privacy and statistical fairness can enhance each other for particular se-
tups. [Khalili et al. 2021] consider the particular setup where a pre-trained model
generates qualification scores for a set of applicants. These scores are then used to
determine a fixed number of candidates that will be selected by the process (e.g.,
for a grant, a job...etc). The authors show that the exponential mechanism can
be used to perform the selection given the qualification scores, in order to both
enforce DP for the selection process and improve fairness (Equal Opportunity).
Under some conditions regarding properties of the different protected groups, the
proposed approach can make the selection procedure perfectly fair. Other notions
of privacy can also have different interactions with fairness definitions. For instance,
[Ruggieri 2013] studies the context of itemset mining: given a dataset, the objective
is to mine frequent patterns. The author shows that ¢-closeness (a data anonymiza-
tion technique, introduced in Section 1.5.1) with carefully chosen parameters implies
popular group fairness notions. [Hajian et al. 2015] also consider frequent patterns
discovery, and propose two-step algorithms to jointly address non-discrimination
(fairness) and privacy. More precisely, they first apply a privacy preserving mecha-
nism, before using data sanitization methods to enforce non-discrimination. Indeed,
considering either k-anonymity or differential privacy, they theoretically prove that
the privacy guarantees are not affected by the later fairness-enhancing stage. On the
contrary, they observe that applying privacy-preserving mechanisms on a sanitized
data could alter the resulting patterns’ fairness, either increasing or decreasing dis-
crimination depending on the considered scenario (in line with the aforementioned
tensions). Importantly, they empirically note that the utility loss incurred by jointly
enforcing fairness and privacy is only marginally higher than that of enforcing pri-
vacy only. This result highlights a form of synergy between the two desiderata,
where the former privacy-enhancing step sometimes also improves fairness, overall
leading to a more modest utility drop from the later discrimination sanitizing step.
This trend is valid for both k-anonymity and differential privacy, although the later
leads to a significantly higher utility cost.

As discussed throughout this section, there are multiple conflicts and synergies
that can be highlighted between privacy and fairness notions. In particular, enforc-
ing fairness was shown to increase privacy vulnerabilities of the resulting trained
model. Consistent with this observation, we illustrate in the next subsections an in-
trinsic tension between enforcing fairness with respect to some sensitive attributes,
and ensuring such attributes’ privacy.

3.2 Leveraging Fairness to Improve Sensitive Attributes
Reconstruction

In this section, we introduce our proposed framework to enhance the reconstruc-
tion of sensitive attributes by leveraging the information about the target model’s
fairness. Afterwards, we describe a general integer linear programming model that



3.2. IMPROVING SENSITIVE ATTRIBUTES RECONSTRUCTION 97

can be used to correct any adversary’s guess about the sensitive attributes vec-
tor, given some knowledge expressed as constraints over this vector. We show how
this model can be reformulated leveraging tools from constraint programming to
improve scalability in the case of statistical fairness metrics. Finally, we discuss
how the proposed models can be generalized to handle other metrics and sensitive
attribute values.

Table 3.1: Summary of the considered statistical fairness metrics for our reconstruc-
tion correction experiments.

Metric Constraint Expression
I . Ze-e’ng Ze-eDls-:s Qj
Statistical Parity (SP) Vs, BT ~ Teeps =) | = €
Do eply;=0¥  DoeeDlyi=0,s,=s Vi
o . . € Y= N eJED|yJ70,5]75
Predictive Equality (PE) | Vs, e, 2Dl =0} — T{e;€Dly.=0.0=s}| < €
Z €D| 471331' Z . e Uj
. € Y= N E]€D|y]71,s]75
Equal Opportunity (EOpp) | Vs, | T /eppy =1 ~ Te,eDly,=ta;=s)T| =
Equalized Odds (EO) Conjunction of PE and EOpp

Considered Fairness Metrics. The different fairness metrics we consider are
summarized in Table 3.1. As in Chapter 2, we consider the binary classification
task, which is in line with the fairness literature. We use the popular one-vs-all
formulation of group fairness notions, bounding the difference between each pro-
tected group and the overall dataset. This notion is in particular used in the fair
learning frameworks that we later use in our experiments. Compared to the one-vs-
one (pairwise) formulation (used in Chapter 2), it only requires a linear number of
constraints (compared to a quadratic one) with respect to the number of protected
groups |S| (¢f. Table 1.2). Furthermore, in our proposed reconstruction correc-
tion models (described hereafter), it results in linear constraints (while the pairwise
formulation leads to quadratic ones). This is due to the fact that the sensitive at-
tributes are unknown in our tackled reconstruction problem (while they are usually
known in the fair learning problem). As noted in Section 1.3.2 this formulation is
equivalent to the pairwise one, with carefully chosen unfairness tolerance ¢.

3.2.1 Attack Pipeline

Figure 3.1 illustrates the different components of the proposed framework. Given a
training dataset D = (X, S,Y), a model h is trained using a fair learning algorithm
L, which ensures that h is fair on D according to some statistical fairness metric with
respect to the sensitive attribute S. Note that h does not use the sensitive attribute
S for inference to prevent disparate treatment [Barocas & Selbst 2016]. Thus once
trained, h can be used for inference based only on non-sensitive attributes X. Our
approach does not make any assumption on the underlying fairness-enhancing tech-
nique £ used. Indeed, the only requirement of our attack is the knowledge of the
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Figure 3.1: The proposed attack framework. A model h is learnt by the fair learning
procedure £ and used for inference. Then, a Baseline Adversary tries to reconstruct
the sensitive attributes S of h’s training set. Our contribution lies in the Recon-
struction Corrector component, which takes as input the Baseline Adversary’s guess
S and corrects it to comply with the fairness information by outputting S*, the cor-
rected sensitive attributes reconstruction.

fairness information. Interestingly, we will see in Section 3.4 than this information
can easily be estimated by an adversary, hence relaxing this assumption.

The attack itself aims at retrieving the training set sensitive attributes vector
S. Recall that in the considered pipeline, S is only used by £ to ensure h’s fairness
(and never used again). In the first step of the attack, a Baseline Adversary makes
a guess Son S , based on some auxiliary knowledge. The adversary also outputs
a probability vector P, illustrating his confidence for each component of the guess
vector S. Our attack does not assume anything about the form of the auxiliary
knowledge. If the adversary does not compute confidence scores, the confidence
vector can simply be set to the identity vector. Importantly, our framework is
agnostic to the used baseline adversary as the proposed reconstruction correction
process only requires access to its outputs (S and P). In our experiments, we will
use an adversary of the literature [Aalmoes et al. 2022], which leverages a separate
dataset to learn an attack model predicting the sensitive attribute(s) of an example,
given its non-sensitive ones, its label, and its prediction from the target model.
Then, this attack model is used to compute S (and P) from X, Y and Y.

In the second step of the attack, a Reconstruction Corrector component takes as
input the baseline adversary’s guess and confidence vectors (S' and P). It outputs
a new reconstruction guess S* minimizing the (confidence-weighted) changes to the
adversary’s guess while satisfying some given properties, such as statistical fairness
constraints. To ensure the respect of such constraints, the Reconstruction Corrector
component also needs as input the fairness information, the target model’s predic-
tions on the training set Y as well as (depending on the particular statistical fairness
metric at hand) the true labels Y. Importantly, if the actual fairness information
is unknown, it can still be estimated as discussed later in Section 3.4.2. As stated
previously, our attack does not make any assumptions about the target model h,
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which can be seen as a black-box as it only requires access to its predictions Y.
Importantly, the attack is agnostic to the actual type of the model, the training
algorithm and the fairness mitigation procedure.

The success of the attack pipeline can be evaluated as the reconstruction accu-
racy of S* (i.e., proportion of elements of S correctly predicted in S*). The core
contribution of our attack lies in the Reconstruction Corrector component, which,
by incorporating solely the fairness information, is able to significantly improve the
quality of the reconstruction of the sensitive attribute. Such improvement can be
quantified by comparing the reconstruction accuracy of the initial adversary’s guess
S and that of the corrected one S*.

3.2.2 General Reconstruction Correction Model

We now introduce RC (S , P,Y,e), a general Integer Linear Programming model
implementing the Reconstruction Corrector component of Figure 3.1, for the binary
sensitive attributes setting: S = {0,1}. Its objective is to modify the adversary’s
guess for the training set sensitive attributes to satisfy some constraints (here, the
fairness information) while minimizing the (confidence-weighted) changes to the
adversary’s original guess.

Inputs
e 5;€{0,1}, j=1,...,N (adversary’s initial guesses).
e p; €[0,1], j=1,...,N (adversary’s confidence for ;).
e J;€{0,1}, j=1,...,N (target model h’s predictions).
o Fairness information: h satisfies fairness constraints for some metric (e.g., SP)

and some tolerance €.

Decision variables

e s5€{0,1}, j=1,...,N (corrected guess for the sensitive attributes vector).

Integer linear programming model RC(S’, P, Y,s)

N N
min Y (pj- (L—38;)-s))+ > (pj- 8- (1—s})) (3.1)
j=1 j=1
N
st.:0<Y sE<N (3.2)
j=1
ZN:1 U; ZJV:]_ @j - 8%
—e< JN]f 2 <e (3.3)
i=15]

. Yildi Xiag(L-s)
B N §V:1(1—8§)

<e (3.4)
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The objective (3.1) aims at minimizing the confidence-weighted changes to the
original adversary’s guess S. Bach modification of a component 5; of the origi-
nal adversary’s guess is penalized with cost p; and the model minimizes the total
cost. Constraint (3.2) simply ensures that the reconstruction contains at least one
example from each protected group. Finally, constraints (3.3) and (3.4) encode
the fairness constraint for the Statistical Parity metric. Note that considering any
other statistical fairness metric would simply require plugging the adequate con-
straint within the model. Constraint (3.3) (respectively, constraint (3.4)) ensures
that the Positive Prediction Rate (PPR) on group 1 (respectively, group 0) is no
further than e from the PPR on the overall dataset. Indeed, as mentioned at the
beginning of this section, we use the one-vs-all formulation, which bounds the dif-
ference of the given statistical measure between each protected group and the entire
dataset. Because there are two protected groups, this results in two constraints,
while the use of the one-vs-one formulation would have created a single one in this
particular case. However, here, fairness is ensured by modifying the reconstruction
of the sensitive attributes. This differs from the typical case of fair model training,
in which the sensitive attributes are known and fairness is ensured by modifying
the model’s predictions §; (which, in turn, are fixed here, and exploited to build
the sensitive attributes sj) Importantly, note that the two constraints can easily
be linearized because the denominator of the first term (V) is a constant, which
would not be the case using a one-vs-one formulation.

Finally, an optimal solution to our general reconstruction correction model
RC(S,P,Y,e) is an assignment of the binary variables s7 that minimizes (3.1)
while satisfying constraints (3.2) to (3.4). This assignment S* corresponds to the
minimum (confidence-weighted) changes to the original adversary guess S in order
to meet the fairness requirement. If the performed changes are correct most of the
time (which is to be expected if the adversary provides good confidence scores), then
the overall reconstruction accuracy will be improved. In any case, the algorithm is
guaranteed to find a solution satisfying the fairness constraint - which is not the
case of the baseline adversary. Indeed, as it is able to modify the sensitive attributes
guess of all training examples, the model could actually set any fairness value re-
garding the sensitive attributes corrected reconstruction. Thus, the knowledge of
the exact training unfairness value (rather than a simple upper bound) could easily
be used to reduce the set of acceptable reconstructions and enhance the perfor-
mance of the reconstruction correction. Finally, because it explicitly encodes each
training example’s sensitive attribute, RC (S , P, f/, e) can be used to formulate any
constraint using such attributes.

3.2.3 Efficient Model for Statistical Fairness

The search space of the reconstruction correction model RC (S’ , P, }A/, €) grows expo-
nentially with the number of training examples N. As each element of the sensitive
attributes vector S is considered independently from the others (and represented
as a binary decision variable), the search space of this model is O(2%), which lim-
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its its scalability. However, when considering statistical fairness metrics, one does
not need such granularity. More precisely to satisfy the fairness constraint, the
reconstruction corrector may consider exactly four different moves: (i) flipping an
element of the reconstructed sensitive attributes 5; from 1 to 0, for an example
with prediction g; = 1, (ii) flipping 5; from 0 to 1, for an example with prediction
g; = 1, (iii) flipping 5; from 1 to 0, for an example with prediction §; = 0, or (iv)
flipping 5; from 0 to 1, for an example with prediction g; = 0. Then, for the chosen
move, the model will always select the example with the lowest confidence score
(and then, eventually, the second lower and so on), which drastically reduces the
size of the search space as we explain below.

Let nf be the number of training examples positively predicted by the target
model and assigned to group 1 by the initial adversary’s guess: ni = Z;-V:l 55 - 9j-
Similarly, let:

N N N
nd = (1-53)-95, ni=> 58 -1-9;), and ng=> (1—3)(1—4;).
j=1 j=1 j=1

The four numbers nf, nar, n; and n;, are the cardinalities of the four groups
of examples defining the four possible moves (respectively, (i), (ii), (iii) and (iv))
from a fairness perspective. For each group, we sort and cumulate the confidence
scores associated to its examples and obtain the following arrays: T+, 1o+, 11—
and Ty-. For instance, Ti+ contains the confidence scores associated to the nT
training examples positively predicted by the target model and assigned to group
1 by the initial adversary’s guess. Tj+[j] is the sum of the j lowest confidence
scores among this group. Indeed, Ti+[j] is the exact minimal cost of switching
the final reconstruction guess from 1 to 0 for j examples positively predicted by
the target model. We use four positive integer decision variables, modeling the
number of times each of the four moves is performed to correct the reconstruction.
We now define our efficient model for sensitive attributes reconstruction correction:
RCe(S,P,Y ¢).

Inputs

« Original guesses cardinalities nj, ng, n; and ng.

o Arrays of sorted and cumulated adversary’s probabilities for each original
guess : 11+, To+, 17— and Ty-.

o Fairness information: h satisfies fairness constraints for some metric (e.g., SP)
and some tolerance €.

Decision variables

. s{ﬁ e {o,... ,nar }: number of changes of §; from 0 to 1, for examples such
that Q]’ =1.
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. sfo e {o,... ,nf}: number of changes of s; from 1 to 0, for examples such
that Q]' =1.

e 501 € {0,...,ny }: number of changes of §; from 0 to 1, for examples such
that gjj =0.

e 550 € {0,...,n7 }: number of changes of s; from 1 to 0, for examples such
that g]‘ =0.

Constraint programming model RCg(S', P.Y,e)
min Ty+ [sy] + Ti+ [s7o] + To-[s01] + T1-[s10) (3.5)

sit.ond +ng —sfy — sg; + 879+ 879> 0

ny +ny —sfy—sjo+ sg + sg > 0

N A~
2 j=1Y; ny — sy + so1
—< — <e (3.8)
- N T +ny —sfy—sio+sgi+so1
Ny TNy — 8190 — S10 T So1 T So1
N ~
> i=10; ng — so1 + 51
—< — <e (3.9)
- N ng +ng —sgy — So1 + 510 + 510
0 0 01 — S01 T S10 T 510

Similarly to the general model, the objective (3.5) minimizes the confidence-
weighted sum of the changes. It can be efficiently implemented using element
constraints within a Constraint Programming (CP) solver. Such constraints are
used to access a data array at index given by the value of a variable: Ty+[sd;] =
element(7y+, 53'1). Furthermore, when minimizing only the number of changes, one
could simply sum the four decision variables. The objective would then become
linear as the whole model which could be solved using off-the-shelf Mixed Integer
Linear Programming solvers.

Constraints (3.6) and (3.7) simply ensure that the reconstruction contains at
least one example from each protected group. Finally, constraints (3.8) and (3.9)
encode the fairness constraint for the Statistical Parity metric. Asin RC (S’ , P, }A/, e),
the two constraints can easily be linearized because the denominator of the first term
is a constant (N). More generally, RCs(S, P, Y, ¢) could be used to encode any rate
constraints on the target model’s outputs (using the sensitive attributes), including
(but not restricted to) all statistical fairness metrics.

Once the model is solved, optimal assignments of the four decision variables
define the (confidence-weighted) minimal number of moves that must be done to
ensure fairness. In a post-processing step, the associated moves are performed to
the corresponding examples in an increasing order of the confidence scores (so that
the overall cost is exactly the objective value (3.5) of the solved model). This results
in the corrected reconstruction vector S*. One can notice that S* is also an optimal
solution to the general reconstruction correction model RC (3 , P, f/, ¢). Indeed, as
stated in Theorem 1, both models share the same set of optimal solutions, even
though their encodings of such solutions differ. The difference is that some non-
optimal solutions to the general model RC (S’ ,P,Y,e) do not correspond to any
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solution to our efficient model RCg(S ,P,Y, e) (i.e., they are simply not part of its
search space). Such solutions are all the assignments in which the corrector makes
one of the four aforementioned moves but does not select the example with the
lowest confidence score (which in this context does not make sense).

Theorem 1 (Equivalence of models). In the context of statistical fairness con-
straints, the general reconstruction correction model RC(S, P,Y ,€) and the efficient
one RCe(S, P,Y ) share the same set of optimal solutions.

Proof. (a) Any optimal solution to RC(S, P)Y, g) corresponds to a solution to
RCg(S, P,Y, e). Let S* be an optimal solution to RC(S, P,}A/,s). Then, count the
number of performed changes of each type between S* and S (i.e., for an example
J with g; =0 (or 1), switching 3; from 0 to 1 (or the contrary)). When performing
such changes, the solver must have chosen the examples with the lowest confidence
scores, or else another solution also satisfies the fairness constraint and has a better
objective function value, which contradicts the optimality hypothesis. Afterwards,
S* corresponds to a solution to RCg(S’ ,PY, g), represented by the counts for the
four moves. Indeed, application of the aforementioned post-processing procedure
then allows to retrieve S*.

(b) Any solution to RCg(S', P,Y, g) corresponds to a solution to RC(S’, P,Y, £).
Consider a solution to RCg(S, P,}A/,e) and then apply the post-processing step
aforementioned. The obtained reconstruction vector is a solution to RC (S’ ,P,Y, £).

(¢) The objective function value of any solution of RCe(S,P,Y ) is the same
in RCg(S’, P)Y, e) and RC(S’, P,Y, g). Consider a solution to RCg(S, P,Y, e) with
objective value o and apply the aforementioned post-processing step before plug-
ging the resulting reconstruction vector into RC (S’ , P, }A/,e). By construction, the
objective value of this solution of RC (S ,P,Y, e) will be exactly o.

Overall, by (a), (b), and (¢), each optimal solution to one of the models is also
an optimal solution to the other. O

Model RCg(S’ , P,Y,e) uses four variables whose total sum cannot exceed N.
Its search space is then O(N*), which is polynomial in the training set cardinality.
Our resolution method also requires some polynomial O(N -log(NN)) pre-processing
and O(N) post-processing computations, which does not modify the overall solving
complexity. Overall, for statistical fairness constraints, solving our new model is
equivalent to solving the general one, but with polynomial search space instead
of exponential one. In practice, this will lead to running times smaller by several
orders of magnitude.

Remark 1. Designing an ad-hoc algorithm for reconstruction correction would also
be possible. Because the size of the search space explored in this subsection is poly-
nomial in the training set cardinality, such a dedicated algorithm would have at
worst polynomial O(N4) complexity, which corresponds to an exhaustive enumer-
ation. However, it would not yield the flexibility of the proposed declarative pro-
grammang approach, which can easily handle additional or different constraints.
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Furthermore, the potential running time improvements would be relatively modest,
as RCg(S, P, f/,e) is solved to optimality within fractions of seconds in all our ex-
periments, even for the largest datasets - which is negligible compared to the running
times of the baseline adversaries.

3.2.4 Generalizing the Reconstruction Correction

The proposed models directly encode the Statistical Parity fairness constraints, but
can also be used to correct sensitive attributes reconstructions from all the other
metrics of Table 3.1. Recall that the Predictive Equality (PE) metric equalizes the
False Positive rates (across the protected groups), which is equivalent to satisfying
Statistical Parity over the negatively-labelled subset of the training set. Then,
one can simply use the reconstruction correction model on the negatively-labelled
subset of the training set. Indeed, PE gives no information on the positively-labelled
subset of the training set. Similarly, Equal Opportunity (EOpp) equalizes the True
Positive rates, and reconstruction can be achieved using the proposed model on the
positively-labelled subset of the training set. Finally, dealing with the Equalized
Odds (EO) metric can be done by successively applying Predictive Equality and
Equal Opportunity reconstruction corrections. The overall corrected reconstruction
is still guaranteed to be optimal because the two successive reconstructions are
completely independent: they work on disjoint subsets of the training set, hence
optimizing over disjoint subsets of variables (corrected sensitive attributes). Overall,
the model proposed for the Statistical Parity metric can actually be used for any of
the statistical fairness metrics of Table 3.1, by applying the reconstruction correction
on the appropriate data slice(s).

An important remark is that while the true labels Y are not required when
dealing with the statistical parity metric (and are not used to build our proposed
reconstruction correction models, as shown in Sections 3.2.2 and 3.2.3), they are
necessary to handle the metrics discussed in the previous paragraph (PE, EOpp,
and EO). Indeed, one must first select the appropriate subset of the entire training
set based on the labels’ values, before applying the reconstruction correction (either
using RC(S,P,Y,¢) or RCe(S, P,Y ,€)) on this subset.

Observe that even though RC (S’ , P,Y,s) is proposed for the binary sensitive
attributes setting, it could easily be generalized by adapting the domains of the

*
J
the additional groups. Extending RCg(S,P,Y,¢) can also be done by declaring
additional variables and constraints. Appendix D depicts how both models can

be extended to the general case of multi-valued sensitive attributes, along with a

sk variables and adding the appropriate cardinalities and fairness constraints for

discussion regarding the resulting complexity.

3.3 Experimental Study

In this section, we present our large experimental study regarding the proposed
reconstruction framework. More precisely, we consider a wide range of scenarios
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using two fair learning algorithms intervening at different stages of the machine
learning pipeline, three datasets of various sizes with diverse sensitive attributes,
four fairness metrics and a variety of unfairness tolerances. First, we describe
our baseline adversaries before detailing the experimental setup and the results
obtained.

3.3.1 Baseline Adversaries Initial Reconstruction

We instantiate the framework described in Figure 3.1 with two different baseline
adversaries, A and A’, which are introduced separately hereafter. Knowledge of
both adversaries is further summarized in Table 3.2. In line with the reconstruc-
tion literature [Dinur & Nissim 2003, Dwork et al. 2007, Gadotti et al. 2019], we
consider that the dataset contains a “large amount of nonprivate identifying infor-
mation and a secret bit, one per individual” [Dwork et al. 2017]. Here, the private
bit of every individual j is his sensitive attribute s;. Both adversaries hence know
the training set non-sensitive attributes vector X and ground truth labels Y (i.e.,
all training set columns except the secret one, which is the sensitive attribute in
our case). Furthermore, both adversaries have access to an auxiliary attack set,
Da = (X4,54,Y 4) drawn from the same distribution as the actual training set.
This attack set models the knowledge of an approximation of the distribution of
the sensitive attribute with respect to the non-sensitive ones and the ground truth
label. Indeed, the use of such attack set to train an attack model is in line with the
literature [Aalmoes et al. 2022].

Adversary A. Adversary A can be used to estimate to what extent general
knowledge about the distribution (of the sensitive attributes with respect to the
non-sensitive ones and the ground truth label) can be leveraged to reconstruct the
sensitive attributes of the training set. Indeed, it does not have any knowledge
about the sensitive attributes singularities of the training set, as .S is not used di-
rectly or indirectly for any of its inputs. As aforementioned, adversary .4 has access
to the training set non-sensitive attributes vector X and ground truth labels Y, and
owns an auxiliary attack set Dy = (X 4,54,Y 4). It relies on such attack set to
train a machine learning model (coined attack model) to predict S 4 from (X 4,Y 4).
Adversary A then uses his trained attack model to predict S from (X,Y).

Adversary A'. Adversary A’ has access to all information that our reconstruction
correction will later use, which constitutes the strongest baseline possible to compare
against our reconstruction correction. Furthermore, it corresponds to the adversary
proposed in [Aalmoes et al. 2022]. More precisely, A’ also has access to the auxiliary
attack set Dg = (X 4,54,Y 4), and to the training set non-sensitive attributes X
and ground truth labels Y (just like .A). However, A’ also knows the target model’s
predictions on the training set ¥ = h(X) and on the attack set Y4 = h(X 4).
Adversary A’ relies on the attack set to train an attack model to predict S from
(X4,YA,Y 4). He then uses his trained attack model to predict S from (X,Y,Y).
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Table 3.2: Summary of the knowledge of the considered baseline adversaries, intro-

duced in Section 3.3.1.

Auxiliary attack set | Training set non-sensitive | Target model predictions
Da=(Xa,54,Y4) attributes vector and Training set Attack set
true labels (X,Y) Y = h(X) YVa=h(Xa)
A 4 v X X
A v v v v

3.3.2 Confidence Scores Calibration

The attack models perform binary classification, hence their confidence scores lie
between 0.5 and 1.0. Using these scores directly to weight our reconstruction cor-
rection problem would imply that modifying a prediction with confidence 1.0 (the
attacker was certain about it) is better than modifying two predictions with confi-
dence 0.51 (the attacker was unsure). To encourage the reconstruction correction
to target the predictions with the lowest scores, we normalize all confidence scores
and exponentiate them in order to enlarge their differences. In practice, all the
normalized scores are set to the power of k, in which k is chosen to maximize re-
construction correction accuracy on part of the attacker’s data used as a validation
set. However, other confidence scores processing techniques are possible and may
improve the reconstruction correction step. For instance, an adversary could learn
how to best discriminate the confidence scores between correct and incorrect predic-
tions on his attack set. Preliminary experiments using such supervised confidence
scores processing did not show significant improvements over our simple exponen-
tiation technique. Overall, each adversary outputs a guess S = {3jeq1...ny} for the
sensitive attributes vector, along with a confidence vector P = {pje{l... N}}.

3.3.3 Setup

Table 3.3: Summary of the datasets used in our sensitive attributes reconstruction
correction experiments.

Binary #Non-Sensitive Sensitive
Dataset Prediction Task #Examples Features Feature
UCI Adult Income Income 45.999 7 categorical, Gender
[Dua & Graff 2017] above $50K ’ 6 numerical (Male/Female)
. * Coverage from . Age
ACSPublicCoverage public health 98,028 17 categorical, | gy Ouartile
[Ding et al. 2021] . 1 numerical
insurance /Others)
ACSIncome” Income 135.924 7 categorical, Race Code
[Ding et al. 2021] above $50K ’ 2 numerical (White/Other)

" (Texas State, 2018)

Datasets. To obtain sufficiently diverse scenarios, we consider three datasets of
the fairness literature with different sizes, each with a different binary sensitive at-
tribute. The first one is the UCI Adult Income dataset [Dua & Graff 2017], which
gathers records about the 1994 US Census database, with the classification task be-

ing to predict whether individuals earn more than $50, 000 per year. The considered
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sensitive attribute is gender (female/male). We also consider two datasets built from
the American Community Survey (ACS) Public Use Microdata Sample (PUMS) of
the US Census Bureau. More precisely, the datasets are built from data collected in
the Texas state in 2018. The second dataset, ACSPublicCoverage [Ding et al. 2021],
contains data about individuals under the age of 65, with an income of less than
$30,000, with the classification task being to predict whether they are covered
by public health insurance. Here, age is used as the sensitive attribute (younger
quartile/others). The third dataset, ACSIncome [Ding et al. 2021], gathers records
about individuals above the age of 16, who reported usual working hours of at
least 1 hour per week in the past year, and an income of at least $100. Simi-
lar to the original UCI Adult Income dataset, the classification task is to predict
whether individuals earn more than $50,000 per year. We rely on the binarized
race (white/others) as the sensitive attribute.

Table 3.3 summarizes the datasets used in our experiments. For all experiments,
each dataset is split between a training set (%), a test set <%) and an attack set (%) .
The test set is only used to ensure that the fair target model is trained appropriately
(in particular, to show that it does not overfit). The attack set is known by the
baseline adversary (see Section 3.3.1).

Target Fair Models. To validate our approach, we have tested two off-the-shelf
fair learning methods implemented in the Fairlearn library [Bird et al. 2020]: one
in-processing method, ExponentiatedGradient [Agarwal et al. 2018], as well as a
post-processing method, ThresholdOptimizer [Hardt et al. 2016]. Both approaches
are introduced with more details in Section 1.3.3. In a nutshell, ExponentiatedGra-
dient [Agarwal et al. 2018] formulates the fair classification problem as a sequence of
cost-sensitive classification problems. Given a cost-sensitive base learner, it follows
a two-player game structure in which one player trains the base learner while the
other adapts the training examples weights. ThresholdOptimizer [Hardt et al. 2016]
takes as input a trained (possibly unfair) classifier and computes group-specific
thresholds on the outputs of the classifier to adjust its predictions. The thresholds
are optimized to enforce some fairness constraints while having minimal impact on
classification accuracy.

By using two fair learning techniques intervening at different steps of the ma-
chine learning pipeline, we want to emphasize that our method is completely ag-
nostic to the type of fairness intervention. Indeed, the only information used by
our reconstruction correction strategy is the final fairness information, along with
the predictions of the model. Both methods require the use of a base learner: the
ExponentiatedGradient method uses it to iteratively solve the cost-sensitive classi-
fication problems, while the ThresholdOptimizer post-processes its predictions after
training. We use scikit-learn [Pedregosa et al. 2011] Decision Tree classifiers as
base learners with the maximum depth being set to 8 and all other parameters left
to their default values.
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Fairness Metrics. We run experiments for the four fairness metrics presented in
Table 3.1. Experiments using the ExponentiatedGradient method use 49 different
values of the unfairness tolerance e, ranging non-linearly from 0.0 (exact fairness)
to 0.20 (loose constraint). The ThresholdOptimizer method modifies the initial
model’s predictions to approximate 0.0 unfairness, so we cannot vary the unfairness
tolerance here.

Attack Models. The attack models used by our baseline adversaries are
scikit-learn [Pedregosa et al. 2011] Random Forest classifiers, which are known
to be resistant to overfitting and generalize well in many situations. This hy-
pothesis class was chosen based on thorough preliminary experiments. To handle
sensitive attributes imbalance [Aalmoes et al. 2022], we use a class-balanced loss.
The Random Forest hyperparameters are optimized using the HyperOpt-Sklearn
framework [Komer et al. 2014], with a maximum of 100 evaluations for its Tree of
Parzen Estimators search algorithm. This setup ensures that the baseline adversary
implements a strong baseline and is in line with the literature.

Reconstruction Correction. Our efficient reconstruction correction model
RCg(S, P,}A/,s) (depicted in Section 3.2.3) is implemented and solved using the
IBM ILOG CP Optimizer Version 12.10!via the DOcplex? Python Modeling API
(version 2.21.207) and its default configuration. The number of threads used in CP
Optimizer is set to 1 and the optimality tolerance (absolute and relative) is set
to 0.0. Indeed, due to the probabilities exponentiation process presented in Sec-
tion 3.3.1, some values can be very small and would lie below the solver’s default
optimality tolerance. Our reconstruction correction method is implemented as a
Python class and is available on our repository?®.

Experimental Parameters. We set a one minute timeout for the reconstruction
correction step (model creation and solving). It was never reached in practice, and
all models were solved to optimality in less than a few seconds (less than one second
in average). Each experiment is repeated 100 times, with different seeds for the data
split process and the random state of the algorithms. The results are averaged over
the 100 runs and the standard deviation is reported. All experiments are run on
a computing cluster over a set of homogeneous nodes using Intel Xeon E5-2683 v4
Broadwell @ 2.1GHz CPU.

3.3.4 Results
3.3.4.1 Experiments using the ExponentiatedGradient technique

In this section, we report the results for adversary A’. Results for adversary A,
which are provided in our full paper [Ferry et al. 2023a], are almost perfectly iden-

"https://www.ibm.com/analytics/cplex-cp-optimizer
*http://ibmdecisionoptimization.github.io/docplex-doc/
Shttps://github.com/ferryjul/SensitiveAttributesReconstructionCorrector/
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Figure 3.2: Corrected and original (adversary A’) reconstruction quality, for our
experiments using the ExponentiatedGradient in-processing fairness enhancing
method with four fairness metrics, on the UCI Adult Income dataset.

tical and follow the same trends. This suggests that the adversary A’ is not able
to leverage the additional knowledge. One possible explanation is that contrary to
our approach, its attack model does not explicitly encode the fairness information
in a structured manner. The training and test performances of the target fair mod-
els are also reported in our published work, and consistently show that the learnt
fair models do not overfit. As expected, training accuracy and unfairness both in-
crease when the fairness constraint is relaxed (i.e., € increases). Due to the models’
relatively good generalization, test accuracy and unfairness follow the same trends.

Results of our experiments using the ExponentiatedGradient in-processing
method [Agarwal et al. 2018] are displayed for the three considered datasets and
the four fairness metrics in Figures 3.2, 3.3 and 3.4. The reconstruction accuracy
results demonstrate the effectiveness of the proposed approach. As the adversary
A’ exploits all the information that our reconstruction correction uses, any further
improvement in the reconstruction accuracy can only be explained by the semantics
of the fairness constraint integrated in our Reconstruction Corrector model. Recall
that the reconstruction accuracy is the proportion of training examples e; for which
the sensitive attribute s; € S was correctly reconstructed (in the baseline attacker
original guess 5; € S or in the corrected one s; € S*).

One can observe that the corrected reconstruction is always more accurate than
the adversary’s original guess, which means that the changes made by the recon-
struction correction model are correct most of the time. Furthermore, the corrected
reconstruction accuracy gets better as the fairness constraint becomes tighter (i.e.,
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Figure 3.3: Corrected and original (adversary A’) reconstruction quality, for our
experiments using the ExponentiatedGradient in-processing fairness enhancing
method with four fairness metrics, on the ACSPublicCoverage dataset.

lower values of the unfairness tolerance ¢). Indeed, the reconstruction accuracy im-
provement is related to the amount of bias mitigated by the fair learning technique,
which in turn depends on the considered fairness metric, the unfairness tolerance
and the original data bias. For tight fairness constraints, we observe reconstruc-
tion accuracy absolute improvements up to 0.06, as in the experiments using the
Statistical Parity metric on the ACSIncome dataset (Figure 3.4, top left). Such
improvements are due to the fairness information, which is the only constraint of
our correction models.

Recall that the Predictive Equality (respectively Equal Opportunity) metric
only applies to the negatively-labelled (respectively positively-labelled) training ex-
amples. This means that such metrics can only help in partially correcting the
adversary’s guess (as described in Section 3.2.4). Because the datasets used are
imbalanced, with the majority of training examples belonging to the negative class,
the Equal Opportunity metric relates only to a minority of training examples. As
a result, the reconstruction accuracy improvement is more modest than for the re-
maining metrics. Indeed, even with a close rate of correct modifications, the number
of corrections applied (and thus the overall improvement) is smaller.

When varying the unfairness tolerance €, the only input of the reconstruction
methods that is modified is the fair model’s predictions ¥ (and the fairness infor-
mation). The fact that the reconstruction accuracy of the baseline adversary A’
is rather constant across variations of € shows that the fair model’s predictions Y
are not used a lot by the learnt attack models. In contrast, as our method knows
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Figure 3.4: Corrected and original (adversary A’) reconstruction quality, for our
experiments using the ExponentiatedGradient in-processing fairness enhancing
method with four fairness metrics, on the ACSIncome dataset.

exactly how to interpret the fairness information with respect to Y, it is able to
exploit it to significantly improve the final reconstruction accuracy.

Finally, the empirical results show that our reconstruction correction method is
able to considerably improve the reconstruction accuracy of the training set sensitive
attributes, even when the original adversary is as informed as our method.

3.3.4.2 Experiments using the ThresholdOptimizer technique

Results of our experiments using the ThresholdOptimizer [Hardt et al. 2016] fair
post-processing method are displayed in Table 3.4. The observed trends are similar
to that of the previous subsection, which demonstrates that the type of fairness
intervention does not impact our framework. One can observe that the performances
of both baseline adversaries are very close. As he possesses more information than
A, A" always performs better on the attack set (used to train the attack models).
However, his generalization is sometimes poorer, resulting in worse reconstruction
performances when used on the target model training set. This may be due to the
distribution of the target fair model’s predictions on its own training set ¥ being
different from that on the adversary’s attack set Y 4.

Importantly, we observe that the reconstruction correction step always improves
the reconstruction accuracy. Indeed, the improvement obtained depends on the
considered fairness metric and on the original bias of the reconstruction (which is
related to the inherent bias of the original training set). The reconstruction accuracy
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Table 3.4: Summary of the results of our sensitive attributes reconstruction correc-
tion experiments using a post-processing method for fairness.

Target model h (under attack) Reconstruction Accuracy
Metric Train Test Train Test Baseline Corrected
Acc. Acc. Unf. Unf. A A A A’
UCI Adult Income dataset
Sp 0.820 0.808 0.003 0.005 0.808 0.814 0.851 0.858
4+0.008 +£0.009 | £0.002 +0.003 | £0.005 +0.006 | +£0.003 +0.005
PE 0.849 0.836 0.002 0.003 0.808 0.807 0.843 0.844
4+0.005 +£0.006 | £0.001 +0.003 | £0.005 +0.005 | +£0.003 +0.004
EOpp 0.857 0.845 0.005 0.041 0.808 0.805 0.810 0.807
4+0.005 +£0.005 | £0.005 +0.023 | £0.005 +0.005 | £0.005 £0.005
EO 0.846 0.834 0.007 0.037 0.808 0.807 0.839 0.840
4+0.006 +£0.007 | £0.006 +0.021 | £0.005 +0.004 | +£0.008 +0.009
ACSPublicCoverage dataset
Sp 0.861 0.851 0.001 0.003 0.861 0.860 0.874 0.875
+0.003 £0.003 | £0.001 £0.002 | +£0.005 =£0.006 | £0.005 +0.007
PE 0.861 0.853 0.001 0.003 0.861 0.860 0.864 0.870
+0.002 £0.002 | £0.000 £0.002 | £0.005 =£0.005 | £0.005 +0.007
EOpp 0.851 0.843 0.002 0.022 0.861 0.859 0.862 0.861
+0.005 £0.004 | +£0.002 £0.011 | +£0.005 =£0.006 | £0.004 £0.006
EO 0.841 0.833 0.003 0.023 0.861 0.860 0.862 0.861
+0.004 £0.004 | £0.002 £0.011 | £0.005 =£0.005 | £0.004 £0.005
ACSIncome dataset
Sp 0.788 0.776 0.002 0.005 0.690 0.715 0.756 0.764
+0.003 £0.003 | +£0.001 £0.004 | +0.007 £0.010 | £0.005 +0.006
PE 0.797 0.785 0.001 0.004 0.690 0.688 0.736 0.735
+0.002 £0.002 | +£0.001 £0.003 | +0.007 £0.007 | £0.007 +£0.006
EOpp 0.796 0.784 0.001 0.010 0.690 0.685 0.693 0.689
+0.003 £0.003 | +£0.001  £0.007 | £0.007 £0.006 | +£0.007  +£0.006
EO 0.795 0.783 0.002 0.010 0.690 0.688 0.737 0.735
+0.003 £0.003 | +£0.001 £0.006 | +£0.007 £0.007 | £0.007 +£0.006

improvements over the two baseline adversaries are of the same magnitude than
with the ExponentiatedGradient method. Again, reconstruction correction using
the Equal Opportunity metric offers modest improvements due to the fact that it
applies to a minority of training examples.

3.4 Discussion on Countermeasures

Previously, we have seen that the proposed reconstruction correction method is
able to exploit the fairness information to significantly improve the reconstruction
accuracy, even with an informed adversary. In this section, we discuss possible
countermeasures to limit the effectiveness of the reconstruction correction step.

3.4.1 Differential Privacy

Differential Privacy (DP) [Dwork et al. 2006, Dwork & Roth 2014] (introduced in
Section 1.5.4) is considered to be one of the state-of-the-art methods for preventing



3.4. DISCUSSION ON COUNTERMEASURES 113

inference attacks against machine learning models. While it may affect the perfor-
mances of a baseline adversary, DP cannot be an effective countermeasure to our
proposed reconstruction correction step. Indeed, it is designed to ensure that the
output of a mechanism does not rely too much on any single example, but rather
on general patterns. However, statistical fairness metrics are measured over an
entire dataset and do not specifically rely on individual examples. Thus, as our
reconstruction correction method only relies on group-level statistics, DP cannot
effectively affect its performances [Cormode 2010].

Additionally, DP is incompatible with the strict respect of any statistical fairness
measure [Cummings et al. 2019, Agarwal 2021b]. Indeed, releasing a model along
with information regarding its strict respect of any statistical fairness constraint is
intrinsically non-DP compliant.

3.4.2 Hiding the Fairness Information

Intuitive countermeasures consist in perturbing the fairness information (type of
fairness metric used or unfairness tolerance parameter ). Note that this may not
be possible when a particular fairness requirement is also a legal requirement, as
for the “80 percent rule” for Statistical Parity [Feldman et al. 2015] stated by the
US Equal Employment Opportunity Commission (EEOC) [EEOC. 1979]. When
possible, releasing noisy or empty fairness information may be a reasonable defense
mechanism. However, adversaries may still use diverse strategies to infer both the
fairness metric that was optimized and the unfairness tolerance parameter. Depend-
ing on the adversarial knowledge, such property inference attacks [Cristofaro 2020]
might give a good estimation to the adversary, which we can expect would still allow
reasonable reconstruction correction performances from our approach (for which the
fairness information is simply an input). Using our baseline adversaries A or A’,
a simple strategy would be to quantify the target model unfairness on the attack
set D4 for different metrics. Then, one can select the metric with the smallest
measured unfairness, and consider that the model is fair for this metric with un-
fairness tolerance € equal to the measured unfairness. To assess its effectiveness,
we implemented this fairness information estimation strategy and performed our
experiments again.

Results for the experiments using the ThresholdOptimizer [Hardt et al. 2016]
method are reported in Table 3.5. We report the performances of the fairness
constraint estimation process, namely the rate of correct metric identification, and
the average unfairness tolerance inferred. Due to the simple estimation process,
the Equalized Odds metric can never be identified as its violation is the maximum
of the Predictive Equality and Equal Opportunity violations (hence it can never
be the smallest value). However, for the other metrics we observe that even this
simple estimation process is often able to correctly identify the optimized metric.
Several trends can be noted when comparing the reconstruction results with those
of Table 3.4, in which the reconstruction correction is done using the actual fair-
ness constraint. A first situation occurs when the fairness constraint is correctly



114 CHAPTER 3. FAIRNESS & PRIVACY

Table 3.5: Summary of the results of our sensitive attributes reconstruction cor-
rection experiments using a post-processing method for fairness, for the simple
countermeasure of not revealing the fairness information. Reconstruction results
have to be compared with those of Table 3.4.

Corrected Reconstruction
Metric Estimated Constraint Accuracy
(Estimated Constraint)
% Correct Average A N
Metric Tolerance
UCI Adult Income dataset
SP 0.95 0.004 £0.003 | 0.848 £0.009 0.856 +0.011
PE 0.97 0.003 £ 0.002 | 0.841 £0.006 0.843 £ 0.007
EOpp 0.26 0.018 £ 0.010 | 0.829 £0.012 0.828 £0.013
EO 0.00 0.005 £ 0.005 | 0.841 £0.006 0.843 4 0.007
ACSPublicCoverage dataset
SP 1.00 0.002 £0.002 | 0.873 £0.005 0.873 4+ 0.009
PE 1.00 0.003 £ 0.002 | 0.863 £ 0.005 0.865 4 0.007
EOpp 0.28 0.008 £0.005 | 0.862 £ 0.005 0.862 =4 0.005
EO 0.00 0.002 £ 0.002 | 0.868 £ 0.006 0.869 4 0.007
ACSIncome dataset

SP 0.80 0.003 £0.003 | 0.743 £0.026 0.754 4 0.020
PE 0.86 0.003 £0.003 | 0.729£0.016 0.728 +0.016
EOpp 0.73 0.008 £ 0.006 | 0.704 +£0.019 0.700 £ 0.020
EO 0.00 0.002 £0.002 | 0.723 £0.021  0.721 4 0.022

inferred, which is the case in all experiments using the Statistical Parity or Predic-
tive Equality metrics with the ACSPublicCoverage dataset. In this scenario, the
reconstruction correction still brings important improvement - slightly weakened by
the fact that the estimated tolerance is usually not as tight as the actual one. A
second interesting situation is when the fairness metric is not correctly identified,
which is the case for all experiments using the Equalized Odds metric. Nonethe-
less, the fairness information estimation process can still come with a valid fairness
constraint (even if it is not the one that was optimized during training), which can
effectively be leveraged by the reconstruction correction step. When the fairness
estimation proposes a metric more informative (in terms of number of involved
examples) than the actual one, the reconstruction improvement can sometimes be
better. For instance, consider the experiment using the UCI Adult Income dataset
with the Equal Opportunity metric. In 74% of the runs, the fairness constraint
estimation process came up with a Predictive Equality constraint. Even though
this is not the actual constraint that was optimized during training, this constraint
is approximately valid and the corresponding metric relates to a greater number
of examples. As a consequence and somewhat counter-intuitively, the final recon-
struction is better than with the actual constraint (see Table 3.4). Finally, one
important drawback of the fairness estimation process is that the performances of
the reconstruction correction step are more variable as shown by greater standard
deviation values.
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Figure 3.5: Original (adversary A’), corrected (from actual fairness constraint, and
from estimated one (est.)) reconstruction quality.

Results using the Exponentiated Gradient method [Agarwal et al. 2018] are pro-
vided in Figure 3.5 for the experiment using the ACSIncome dataset with the Sta-
tistical Parity metric and baseline adversary A’. Results for all four metrics, three
datasets and two adversaries are provided in our full paper [Ferry et al. 2023a].
They show similar trends as those using the ThresholdOptimizer method: esti-
mating the fairness constraint still allows for good reconstruction correction per-
formances but leads to a greater variability in the final reconstruction accuracy.
Here also, inferring a fairness constraint different from the actual one can improve
reconstruction correction, especially when the original tolerance is larger than the
actual bias contained in the data (i.e., large values of €). In such cases, the ad-
versary’s baseline reconstruction already meets the actual fairness requirement and
the reconstruction correction process cannot improve it. In contrast, the fairness
constraint estimation process can infer a tighter value, allowing some reconstruction
improvement.

Overall, we see that the knowledge of the actual fairness constraint is not neces-
sary as estimations can provide comparable-quality reconstruction correction per-
formances. Using the proposed fairness constraint estimation process, we provide in
Appendix E additional reconstruction experiments using a pre-processing method
for enhancing fairness. Results demonstrate the effectiveness of the proposed recon-
struction correction approach, even when fairness metrics are not directly optimized
and no fairness information is available. They also demonstrate empirically that
the proposed framework is agnostic to the type of fairness intervention, as it was
shown effective against pre-, in-, and post-processing fairness-enhancing methods.

3.5 Conclusion and Future Research
We have proposed a novel approach using declarative programming (either inte-

ger linear programming or constraint programming) to improve the reconstruction
performances of any baseline adversary by incorporating user-defined constraints.
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While the general problem may be computationally challenging, we have demon-
strated that in the case of statistical fairness metrics (and, more generally, group-
level constraints), it can be reformulated and solved efficiently.

In addition, our thorough experimental study shows that due to the use of
the sensitive attribute information to ensure fairness of the built model, fairness-
enhancing learning techniques inherently leak information about it. Indeed, the
fairness constraints provide information regarding the distribution of a fair model’s
(training set) predictions with respect to the (training set) sensitive attributes. Even
if such information is at the group level, it can be leveraged by an adversary to im-
prove baseline reconstructions of the sensitive attributes. Furthermore, the tighter
the fairness requirement, the more significant the reconstruction improvement.

We additionally observed that, even if the fairness information is not available,
an adversary can still try to infer it and obtain good (and sometimes, even better)
reconstruction correction performances. While the fairness information is simply
an input of our proposed reconstruction correction component, this finding demon-
strates the applicability of our approach. It also illustrates the fact that due to their
use of the sensitive attributes information, statistical fairness metrics intrinsically
conflict with protecting the privacy of such attributes.

Future work includes combining our reconstruction correction component with
different baseline adversaries, optimizing the adversary confidence vector P pro-
cessing as well as applying our framework in the context of non-binary sensitive
attributes. The declarative nature of the reconstruction correction step allows con-
sidering a wide range of constraints. Hence, extending our proposed pipeline to
improve baseline reconstruction attacks by enforcing other constraints (e.g., pro-
portion constraints, rate constraints, ...) is also an interesting research direction.
Leveraging recent advances in end-to-end predict-then-optimize approaches (e.g.,
the methods of [Berthet et al. 2020, Elmachtoub & Grigas 2022]), which train a ML
model embedding a combinatorial optimization solver, to directly integrate con-
straints over the training set sensitive attributes within the attack model (rather
than ensuring these constraints in a post-processing correction step) could also im-
prove the attack’s success.

Finally, the proposed reconstruction correction step proposes a reconstruction
of the training set sensitive attributes by computing an optimal solution of ei-
ther ’RC(S, P,Y,e) or RCg(S, P,}A/,s). However, this reconstruction is not nec-
essarily unique, as there can be several different instantiations of the training set
sensitive attributes with the same objective function value ((3.1) or (3.5)) and sat-
isfying the fairness constraints. In our experiments, we simply used the optimal
solution returned by the solver. Enumerating the other solutions to assess their
number and evaluate them is an interesting direction, which is in line with the
following chapter.
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Interpretable Models Intrinsic
Privacy Vulnerabilities

Fairness

Interpretability Privacy

In this chapter, we first review the literature on the connections be-
tween privacy and interpretability in machine learning. Even if the two
desiderata can be conciliated with some trade-offs, they often conflict.
In particular, interpretability, by providing additional information to
the users of the model, intrinsically constitutes a new attack surface.
Consequently, we show how to measure the amount of information an
interpretable model carries regarding its training data. This precise
measure quantifies an inherent tension between releasing trained inter-
pretable models and preserving the model’s training data privacy.
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Interpretability and privacy are key requirements for trustworthy machine learn-
ing. On the one hand, the use of machine learning models for high-stakes decision-
making necessitates some form of understanding of the model behavior from its
users. Learning models that are inherently interpretable then appears as an ap-
pealing solution to avoid the drawbacks of post-hoc explainability frameworks (as
discussed in Section 1.4.4). The field of medicine constitutes a good illustration,
as scoring systems are popular models to assist practitioners in their analysis and
diagnosis [Rudin et al. 2022]. On the other hand, machine learning techniques of-
ten require large amounts of data, which can be highly sensitive, as in the medicine
example use case. Training useful models while preserving the privacy of the people
whose data is used is then of particular importance.

Releasing interpretable models is desirable from a transparency perspective,
however, it intrinsically leaks information regarding the model’s training data. For
instance, previous work [Gambs et al. 2012] exploited this information to build a
probabilistic reconstruction of a decision tree’s training set - effectively implement-
ing a form of reconstruction attack. It is then possible to quantify the amount of
information leaked by the model by measuring the uncertainty remaining within
the reconstructed probabilistic dataset. Interestingly, this approach tackles one
limitation mentioned at the end of Chapter 3: traditional reconstructions are often
not unique, and probabilistic datasets are able to represent a whole set of possible
ones. However, the proposed method relies on strong assumptions, such as sta-
tistical independence and uniform distribution of the random variables modeling
the probabilistic dataset. While it allows probabilistic reconstructions from deci-
sion trees, it is not generic enough to encode more general types of knowledge, and
cannot be used with other types of interpretable models, such as rule lists. In this
chapter, we generalize the notion of probabilistic dataset by relaxing the aforemen-
tioned assumptions. In particular, we show how the success of such generalized
probabilistic reconstructions can be assessed. We illustrate this point theoretically
and empirically on several forms of interpretable models.

Related Works. Related work on reconstruction attacks can be found in Sec-
tion 1.5.3. The only work directly related to this chapter is [Gambs et al. 2012],
which also considers the setup where an attacker has white-box access to a trained
interpretable machine learning model. The attacker then leverages this knowledge
to reconstruct a probabilistic (uncertain) version of the model’s training set. In
Section 4.2, we provide more details about this baseline work, which we aim to
extend hereafter.
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Outline of the Chapter. We first provide a large literature review on the con-
nections between interpretability and privacy in machine learning in Section 4.1.
We synthesize the main identified synergies, compatibilities and tensions, before
focusing on one particular aspect in the remainder of the chapter: the inherent in-
formation leak of interpretable models regarding their training data. More precisely,
we introduce in Section 4.2 key notions from previous work regarding probabilistic
dataset reconstructions from decision tree models. We generalize these notions to
handle more generic types of knowledge in Section 4.3. In Section 4.4 we show
how the success of such generalized probabilistic reconstructions can be assessed
provided some assumptions regarding the structure of the interpretable model at
hand. Finally, we illustrate in Section 4.5 the applicability of the approach through
an example use case: comparing the amount of information optimal models carry
compared to greedily-built ones.

4.1 Connections between Interpretability and Privacy

In this section, we survey the literature at the intersection between explainable Al in
the broad sense (i.e., either post-hoc explainability or interpretability, as introduced
in Section 1.4.3) and privacy in machine learning. We first discuss synergies and
compatibilities between the two fields, and summarize existing frameworks jointly
addressing both of them. Motivated by the observed trade-offs, we then discuss
their inherent tensions.

4.1.1 Compatibilities & Synergies

Interpretability eases model audit and can be leveraged for privacy pur-
poses. [Doshi-Velez & Kim 2017] argue that interpretability can be used to con-
firm other desiderata of ML systems, such as privacy. [Rudin 2019] also states that
it is easier to detect possible privacy issues when building interpretable models.
Furthermore, this auditable nature is particularly appreciated in the area of ma-
chine learning based cybersecurity systems [Srivastava et al. 2022]. Indeed, machine
learning models have shown great abilities to detect abnormal behaviors or intru-
sions. However, their black-box nature and lack of certification can be problematic
as it possibly introduces weaknesses inside the security system. By providing an
understanding of the underlying mechanisms and reasoning of the model, inter-
pretability techniques can be helpful to detect overfitting, or in cases where the
model captures noise or inaccurate values in the data. This allows deploying more
trustworthy models, but also helps the administrators identify potential breaches.

Interpretability can be conciliated with privacy with some trade-offs.
Learning interpretable models while satisfying differential privacy is possible, as
pointed out in a recent survey [Gong et al. 2020] for decision trees or linear re-
gression models. For instance, [Friedman & Schuster 2010] study data mining with
differential privacy guarantees, considering decision tree induction as an illustrative
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task. They demonstrate that the design of the privacy preserving mechanism is
crucial, and that there is a huge difference in terms of model utility and required
sample size between a naive implementation using a general purpose privacy pre-
serving data interface and a task-specific differentially private learning algorithm.
Their empirical study demonstrates the ability of their proposed algorithm to learn
differentially private decision trees with reasonable cost in terms of accuracy. More
precisely, they build a set of trade-offs between accuracy and the differential pri-
vacy parameter. Several other works also tackled differentially private decision tree
building, as summarized in [Fletcher & Islam 2019]. An important finding it that
the choice of the splitting criterion (e.g., gini impurity, entropy ...) highly influ-
ences the resulting model’s utility. Indeed, different measures of the information
gain yield different sensitivity - which can additionally be difficult to quantify or
upper-bound. This implies that, for similar privacy guarantees (i.e., values of epp
and dpp), different magnitudes of noise have to be added, resulting in different
trade-offs with utility. Interestingly, the splitting criteria leading to the most accu-
rate differentially private trees are not the ones exhibiting the best performances in
the non-private setting. [Harder et al. 2020] propose to learn Locally Linear Maps
(LLMs), that consist in a linear combination of logistic regressions for each possible
class. Such interpretable models are suitable to provide local explanations (using
the appropriate LLM) but also global ones, as the coefficients of each class’s LLMs
provide insights regarding which features really matter to it. The authors propose a
procedure to learn LLMs under differential privacy, leveraging mechanisms from the
DP-SGD framework [Abadi et al. 2016]. They finally observe an empirical trade-off
between the privacy guarantee and the model’s accuracy and interpretability.

Post-Hoc Explainability can be conciliated with privacy with some trade-
offs. [Datta et al. 2016] propose a framework coined Quantitative Input Influence
(QII), leveraging Shapley values to provide feature-based explanations quantifying
the influence of input features over the model’s predictions. As such measures may
leak information regarding individual users, the authors introduce a mechanism to
generate differentially private explanations to the so-called transparency queries.
Providing pure differential privacy guarantees, it consists in adding Laplace noise
to the query answers, scaled to the query function sensitivity. As the proposed
measures generally have low sensitivity, the amount of added noise remains reason-
able which results in relatively small average utility losses. Nonetheless, for some
types of explanations with exceptionally high sensitivity, the amount of noise added
may significantly harm their utility. [Patel et al. 2022] introduce a method to gen-
erate differentially-private feature-based explanations (local linear surrogates) of a
black-box model. In their framework, the explanations are computed using a differ-
entially private gradient descent leveraging the Gaussian mechanism. They further
propose an adaptive mechanism, reducing the spending of the privacy budget by
leveraging the explanations to previous queries when computing a new one. Using
tabular, text and image data, they empirically observe that the explanations’ qual-
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ity degrade while the privacy guarantees tighten. [Naidu et al. 2021] investigate
the impact of a model’s differential privacy on the quality of post-hoc explanations
(saliency maps generated with Grad-CAM [Selvaraju et al. 2017]) of this model and
on its utility, considering either local DP (classical learning algorithm applied on
DP data) or global DP (differentially private training algorithm). In both cases,
one can note that the explanations are also differentially private by post-processing
property (cf. Section 1.5.4). Handling either general or medical imaging applica-
tions, they learn neural networks under different differential privacy budgets and
evaluate the quality of post-hoc explanations of their predictions using two metrics
from the literature. In a nutshell, these metrics aim at quantifying how much the re-
gions highlighted by explanation maps actually account for the explained decisions.
The experimental results show that these metrics degrade while the privacy budget
is tightened. Furthermore, they suggest the existence of a three dimensional trade-
off space between privacy, explanation quality and model accuracy. To face the
explanation-guided backdoor poisoning attack studied in [Severi et al. 2021] (and
discussed in Section 4.1.2), [Nguyen et al. 2023] propose to generate Locally Dif-
ferentially Private explanations. By randomly perturbating the top-k features in
the generated feature-based explanations, the mechanism is shown to mitigate the
success of the attack. [Mochaourab et al. 2021] design an approach to generate ro-
bust counterfactual explanations for differentially private Support Vector Machines
(SVMs). More precisely, privacy is achieved by adding Laplace noise to the SVMs’
weights, and classical counterfactual explanation frameworks may generate coun-
terfactuals that allow to cross the classifier’s noisy boundaries, but not to actually
change the example’s class in real-life. To address this issue, they instead generate
robust counterfactual explanations by solving an optimization problem with prob-
abilistic constraints. In practice, the generated counterfactuals require more and
more changes to the example as the privacy level tightens, in order to ensure that its
classification changes with respect to the (unknown) non-private classifier. Again,
this illustrates the tension between explanations quality and privacy protection. In
the context of federated learning, recent work [Li et al. 2023| also noticed that dif-
ferential privacy can alter the meaningfulness of gradient-based explanations. They
propose an adaptive mechanism still providing differential privacy guarantees but
injecting noise within the model’s parameters in a manner aimed at preserving the
quality of gradient-based explanations. Finally, recent work also studied differential
privacy for counterfactual explanations [Yang et al. 2022]. The approach consists
in using an autoencoder trained in a differentially private manner (through the
functional mechanism) to build noisy class prototypes, which can then be leveraged
to generate the counterfactuals.

As aforementioned, applying explainability techniques while preserving formal
privacy guarantees is possible but implies some cost on either one aspect or the
other. We further discuss the tensions between the two fields in the next subsection.
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4.1.2 Tensions

Interpretability /Explainability and Privacy conceptually have opposite
goals. While interpretability and privacy protection are both important require-
ments for trustworthy machine learning, they intrinsically pursue contrasting ob-
jectives [Datta et al. 2023]. Indeed, on the one side, interpretability tools aim at
providing more information to enhance users’ understanding of a model’s behavior.
On the other side, privacy protection requires a tight control of the leaked infor-
mation, often obfuscating part of it to protect individuals’ data. Jointly addressing
both desiderata hence necessitates some form of arbitration [Banisar 2011].

Explainability tools can be used with the purpose of designing attacks
against machine learning models. Tools from explainable Al can be leveraged
by malicious entities to perform more effective attacks against machine learning
based systems. For instance, [Severi et al. 2021] study malware detection models,
that are usually trained on crowd-sourced data to distinguish between malicious
softwares (malwares) and legitimate ones. Their objective is to perform back-
door poisoning attacks, where an attacker injects carefully chosen datapoints to the
crowd-sourced training set, resulting in its chosen malware being wrongly classified
as legitimate by the detection model. In this context, they leverage Shapley values
to identify highly effective features and their values, and efficiently craft the poi-
soned examples. Explainable Al techniques were also leveraged to fool ML-based au-
thentication systems. Such systems take as input a user ID along with some finger-
printing authenticating the user uniquely. Then, it was shown [Garcia et al. 2018]
that an attacker can leverage perturbation-based feature explanation techniques on
a local surrogate model to efficiently craft a fingerprint authenticating a desired
user given its ID. Again, the feature importance explanations help guiding the ma-
licious crafting process by indicating which features most influence the decision.
[Kuppa & Le-Khac 2021] modify a counterfactual explanation framework to gener-
ate adversarial examples. They also use counterfactual explanations of a black-box
model to identify the features that influence the model’s decision boundaries and
generate examples that can be used to conduct backdoor poisoning attacks.

Post-Hoc explanations can be exploited to perform or improve infer-
ence attacks. Inference attacks traditionally query a model (e.g., via a pre-
diction API) and use its outputs to achieve their goal, for instance determining
an individual’s membership in the training data, reconstructing part of the train-
ing dataset, extracting the model itself, or inferring an individual’s missing at-
tributes [Dwork et al. 2017, Cristofaro 2020]. Post-hoc explainability techniques,
by offering explanations as additional outputs, expose a new attack surface. Sev-
eral works showed that such explanations, whatever form they take (e.g., example-
based, feature-based ... ), can be leveraged to enhance the different types of privacy
attacks (introduced in Section 1.5.2):
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Model extraction attacks. [Milli et al. 2019] show that gradient-based (a
class of feature-based) explanations of a black-box model can be exploited by an
adversary to reconstruct the underlying model. In the considered setup, the ad-
versary owns an auxiliary dataset and can query the black-box model to obtain
the model’s gradients as explanations for given input points. They design a near-
optimal algorithm which provably extracts the entire underlying model within a
bounded number of queries, in the particular case where it is a two-layer neu-
ral network with ReLLU activations. For the general case, they design an effective
heuristic inspired by previous works on standard reconstruction attacks against pre-
diction APIs. More precisely, the attacker trains a surrogate model mimicking the
black-box behavior and optimized to match its gradients thanks to the provided
explanations. Importantly, the results show that model extraction from gradient
explanations requires orders of magnitude less queries than from the sole predic-
tions. [Miura et al. 2021] also consider gradient-based explanations, but assume no
auxiliary dataset. In such case, the data used to query the black-box and train the
surrogate model is outputted by a generative model, which, in turn, tries to gen-
erate examples for which the surrogate disagrees with the black-box. Importantly,
the generative model is updated leveraging the provided gradient explanations -
which dramatically reduces the required number of iterations (and queries to the
black-box). Furthermore, [Aivodji et al. 2020] show that providing counterfactual
(a class of example-based) explanations (CFs) can help an attacker achieve model
extraction attacks with better precision and limited number of requests. More
precisely, the attacker queries the black-box model with a given attack set, and
trains a surrogate using the predictions of both the attack set instances and the
provided CFs. The authors empirically show that the use of the provided CFs im-
proves the attack by both increasing the built surrogate’s fidelity with respect to
the black-box model, and dramatically decreasing the required number of queries.
[Kuppa & Le-Khac 2021] propose a similar approach but leverage knowledge dis-
tillation techniques to train the surrogate model, which may mitigate the potential
performance harm of an architecture mismatch between the actual black-box model
and the reconstructed surrogate. [Wang et al. 2022b] also leverage CFs provided by
Machine-Learning-as-a-Service (MLaaS) platforms and propose an efficient query-
ing strategy to steal the underlying classification model. Their strategy is based
on the following observation: the generated CFs usually lie close to the decision
boundary, while the attack set examples do not necessarily. This leads to a “de-
cision boundary shift issue”, in which the surrogate model’s decision boundary is
shifted compared to that of the actual black-box. To circumvent this issue, the au-
thors propose to generate counterfactuals for the CFs themselves, and to use them
all for training the surrogate.

Membership inference attacks. [Shokri et al. 2021] leverage feature-based
explanations to perform membership inference attacks. More precisely, they con-
sider both backpropagation-based (gradient-based) and perturbation-based expla-
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nations. On the one side, they demonstrate that the former leak information regard-
ing membership, and can effectively be leveraged to perform membership inference
attacks. In particular, the explanations’ variance is very informative: explanations
of training examples usually exhibit a low variance, while, for unseen examples,
this value can be considerably higher. This is due to the fact that for training
examples, the model is usually very confident, as it was optimized on them, and
small perturbations are likely to not change its predictions. On the contrary, un-
seen samples can be closer to the decision boundary, which results in some features
having a great impact on the model’s predictions (hence high gradients norms),
and the resulting explanation having high variance. On the other side, they further
show using two popular perturbation-based frameworks (LIME [Ribeiro et al. 2016]
and Smoothgrad [Smilkov et al. 2017]) that the later are more resistant to mem-
bership inference. This may be explained by the fact that perturbation-based
frameworks often generate perturbed examples that lie out of the data distribu-
tion [Kumar et al. 2020]. The black-box model behavior on such examples is un-
specified, and so querying it with them does not provide insightful information
to perform inference attacks. This also suggests that the resulting explanations
may qualitatively by poorer: “privacy comes at the cost of explanation quality”.
[Kuppa & Le-Khac 2021] leverage counterfactual explanations to conduct member-
ship inference attacks. More precisely, they query the black-box model with an
auxiliary dataset and use the model’s outputs and generated counterfactual exam-
ples to train a shadow model. Membership of a given example is then established
by comparing the difference in prediction probabilities between the shadow model
and the actual black-box to a threshold.

Dataset reconstruction (and membership inference) attacks.

[Shokri et al. 2021] consider an example-based explainability framework based on
influence functions [Koh & Liang 2017], which returns influential training examples
that most contribute to an example’s prediction. Because they explicitly reveal
training points, and a training point is likely to be used to explain itself, such
explanations are highly vulnerable to membership inference attacks. Indeed, this
class of explanations allows for stronger attacks, such that dataset reconstruction
attacks. The authors propose two algorithms that leverage the provided example-
based explanations to reconstruct (part of) the model’s training set. The first
algorithm is based on subspace reduction and comes with a certifiable lower bound
on the number of points it discovers. Empirical evaluation shows that it can be used
to retrieve most of the training dataset for high dimensional data. The second one
is heuristic and offers no theoretical guarantees, but works well in practice for low
dimensional data. It simply consists in using previously revealed points to reveal
new points. Influence functions naturally define an influence graph structure over
the training set, where an edge between two training examples means that one is
provided as an explanation for the other. The proposed algorithm can then be used
to explore entire Strongly Connected Components within this graph.
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Model inversion attacks. [Zhao et al. 2021] propose model inversion at-
tacks that aim at reconstructing the black-box model’s inputs given its outputs
(here, its prediction along with some feature-based explanation), hence harming

L' (i.e., active users of the model). In the context

the privacy of test instances
of image-based tasks, they focus on different types of saliency map explanations
to reconstruct the target model’s input images, namely gradient-based explana-
tions [Simonyan et al. 2014], influence-based explanations [Ramaswamy et al. 2020]
(obtained by multiplying each input feature by its associated gradient), activation-
based  explanations  [Selvaraju et al. 2017], and layer-wise  relevance
propagation [Bach et al. 2015] (attributing pixels’ importance by backpropagat-
ing neurons’ relevance). The proposed attack uses an attack model, trained on
an independent auxiliary dataset to predict images (given as input to the target
model) given predictions and explanations (outputted by the target model). As
expected, the frameworks directly using the input within the explanation com-
putation (i.e., influence-based ones) leak more information regarding the model’s
inputs, hence allowing better attack results. Importantly, the paper shows that even
non-explainable models can be attacked, leveraging attention transfer to build an
explainable surrogate whose explanations are used to conduct the attack. With a
same attack goal, [Luo et al. 2022] show that Shapley value-based explanations pro-
vided by popular Machine Learning as a Service (MLaaS) providers can be exploited
to reconstruct the private model inputs. They provide an information-theoretical
analysis of the relationship between an example and its associated Shapley values,
and demonstrate that an adversary can always infer useful information about the
former using the later. This analysis also holds for sampling-based Shapley-values,
which are commonly computed as an efficient approximation of the exact Shap-
ley values. They then study two distinct adversarial settings, and show that even
an adversary with no background knowledge can reconstruct most of the private
model’s input examples given only its outputs and explanations.

(Sensitive) attribute inference attacks. [Duddu & Boutet 2022] study sen-
sitive attribute inference attack leveraging feature-based model explanations, com-
puted either with backpropagation-based or perturbation-based methods. They
consider the two realistic scenarios where the sensitive attribute is (or not) used for
training the model and for inference. In both studied scenarios, the attacker lever-
ages an auxiliary dataset to train an attack model to predict an example’s sensitive
attribute given only the outputs of the target model (prediction and explanation)
for this example. They empirically show that their attack is able to leverage such
explanations to perform attribute inference attack. Furthermore, they suggest that
model explanations lead to higher attack success compared to model predictions,
hence constituting a stronger attack surface to exploit.

!This differs from the previously mentioned reconstruction attacks. Indeed, in reconstruction
attacks, the goal of the adversary is to infer information regarding the model’s training data. In
the discussed model inversion attacks, the objective is to gain information about the examples
provided to the model at inference time, by only observing the model’s outputs.
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Interpretable models inherently leak information regarding their training
data. [Gambs et al. 2012] show that the structure of a trained decision tree can
be leveraged to reconstruct a probabilistic version of its training set. We describe
this work and summarize its key concepts in Section 4.2, and generalize it in the
remainder of this chapter. More precisely, we show how the knowledge from a given
interpretable model can be encoded to build a probabilistic reconstruction of its
training data and quantify the associated information leak.

Providing useful yet privacy-protective explanations remains an open
challenge. As we saw in Section 4.1.1, differentially private explainability tools
have been proposed, but always imply some trade-off between the explanation qual-
ity, the privacy guarantee and the model utility. Furthermore, [Milli et al. 2019] re-
call that DP can help guard against attacks from prediction APIs, but it is not clear
if this is a viable approach for preventing reconstruction from explanations. On the
same line, [Shokri et al. 2021] state that “the effect of DP techniques (notably the
randomness they induce) on model transparency is unknown.” Furthermore, the
effect of DP on the explanations’ robustness and user trust are still to be investi-
gated [Aivodji et al. 2020].

As aforementioned, interpretability and explainability tools, by providing more
information to the user of a model, intrinsically expose new attack surfaces which
may be exploited by an adversary to infer information regarding the model’s training
set. In particular, in the remainder of this chapter, we show how the structure of
a given interpretable model can be used to reconstruct a probabilistic version of
its training set. Importantly, we precisely quantify the amount of information the
model carries regarding its training data.

4.2 Probabilistic Dataset Reconstruction from Inter-
pretable Models

A trained interpretable machine learning model, such as the decision tree pre-
sented in Figure 4.1, inherently encodes information regarding its training set.
In DBLP:conf/dbsec/GambsGH12, this information is extracted and used to build
a probabilistic reconstruction of the training dataset, in the form of a probabilistic
dataset, as introduced in Definition 6.

Definition 6. (Probabilistic Dataset) [Gambs et al. 2012]. A probabilistic
dataset V is composed of N data points (also called examples) {e1,...,en} and M
attributes {X1,...,Xnp}. Each attribute X,, has a domain of definition X,, that
includes all the possible values of this attribute. The knowledge about attribute X,, of
example e; is modeled by a probability distribution over all the possible values of this
attribute, using random variable Vj,,. Importantly, variables {Vje[l..N],me[l...M}}
are assumed to be statistically independent from each other and their probability
distribution to be uniform.
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In practice, if a particular value v;,, € A&}, of an attribute gathers all the
probability mass (i.e., it is perfectly determined: P(Vj,, = vjm) = 1), then the
attribute is said to be deterministic. By extension, a probabilistic dataset whose
attributes are all deterministic (i.e., the knowledge about the dataset is perfect) is
called a deterministic dataset.

Previous work [Gambs et al. 2012] propose a procedure to build a probabilistic
dataset VPT given the structure of a trained decision tree DT. Such probabilistic
dataset gathers the knowledge that the decision tree inherently encodes about its
(deterministic) training dataset V°7%. The construction of this probabilistic dataset
can then be coined as a probabilistic reconstruction attack. By construction, VPT
is compatible with VO"9: the true value vOT of any attribute X,, for any example

J7m
ej is always contained within the set of possible values for this attribute and this

example in the probabilistic reconstruction: P (VfWTL = vfgg ) > 0. A natural way
to quantify the success of the probabilistic reconstruction attack is in terms of the
average amount of uncertainty that remains in the built probabilistic dataset V27T

as stated in the following definition.

Definition 7. (Measure of success of a probabilistic reconstruction at-
tack) [Gambs et al. 2012]. Let VO"9 be a deterministic dataset composed of
N data points and M attributes, used to train a machine learning model IM . Let
VIM be o probabilistic dataset reconstructed from IM. By construction, V™M s
compatible with VO™ . The success of the reconstruction is quantified as the aver-
age uncertainty reduction over all attributes of all examples in the dataset:

, 1 L& HYM
: IM y,Origy _ J,m
Dist (VM V0ri9) = " T (4.1)

in which random variable Vj, corresponds to an uninformed reconstruction, uni-
formly distributed over all possible values X, of attribute X,,, and H denotes the
Shannon entropy.

Smaller values of Dist(V!M VOMQ) indicate better reconstruction performance
(i.e., a more successful attack). In particular, if VIM = pOrig Dist(VIM 1YOrig) — (.
the reconstruction is perfect and there is no uncertainty at all. In contrast, in other
extreme in which V'™ contains no knowledge at all, Dist(WIM pOrig) = 1.

Reminder: the Shannon Entropy. Recall that the Shannon entropy of a ran-

M

-, quantifies the average level of information inherent to the vari-

dom variable le’
able’s possible outcomes, computed as:

MO == % (V= ) o2 (¢ (4 =)

’L}jymGXm

which simplifies to H(VIM) = —log2 (ﬁ) if all the values within X,, are equally

probable for the realization of VJI% (i.e., VUjm € X, P (VJI% = vj,m) = ﬁ)
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Remark 2. Definitions 6 and 7 are slightly more general than in [Gambs et al. 2012].
Indeed, both use actual random variables while in the original formulation each at-
tribute of each erxample is simply modeled via a set of possible values, which is
only suitable under the assumed hypothesis of statistical independence and uniform
distribution of the random variables. Thus, our extended formulation eases the
generalization we further provide in Section 4.8 while encompassing this particular

case.

Table 4.1: Example Table 4.2: Example probabilistic dataset VPT
deterministic dataset VO"%9.  reconstructed from a Decision Tree (Figure 4.1).
X1 X2 X5 Label X1 XQ X3 Label

er |12 | 0 | 3 0 1 € {12,13,14, 15} €{0,1} | €{2,3} | ©

ez | 14 | 1 | 2 0 es € {12,13,14,15} c{0,1} [e{2,3} | ©

es | 11 | 1 | 2 1 es € {10, 11} c{0,1} | €{2,3} 1

e | 14 | 0 | 1 1 es | €{10,11,12,13,14,15} | € {0,1} | € {1} 1

X3<=1.5
samples = 4
value = [2, 2]

/ N

samples = 1 s);1m<pl=e§-];53
value = [0, 1] value = [2, 1]
samples =1 samples = 2
value = [0, 1] value = [2, 0]
Figure 4.1: Example Decision Tree DT trained using

scikit-learn [Pedregosa et al. 2011], with 1.0 accuracy on VO (Table 4.1).

We illustrate the reconstruction process proposed in [Gambs et al. 2012] with
a toy example. A deterministic dataset VO provided in Table 4.1 is used to
train a decision tree classifier DT depicted in Figure 4.1. This dataset includes
four examples ejc(1234) Wwith three attributes X,,cf1233 with domains
Xy = {10,11,12,13,14,15}, X5 = {0,1} and X3 = {1,2,3}. This decision tree,
learnt using the scikit-learn python library [Pedregosa et al. 2011], provides the
per-label number of training examples in each internal node and each leaf. Intu-
itively, its structure can then be used to reconstruct a probabilistic version of its
training dataset VP71 given in Table 4.2. The algorithm used to build VP simply
follows each branch and performs the domains’ reductions associated to each split
along the branch. Using Definition 7, we can compute the success of the reconstruc-
tion as the average amount of uncertainty contained within VP7. For instance, we
have X; = {10,11,12,13,14,15} and V§} takes values in {10,11}. Then, consid-

ering that all the possible values are equally probable, the uncertainty reduction
DT

H _ 1
for attribute X7 of example eg is: H(l;‘:ll) = Jzzggii ~ 0.387. By averaging such
’ 6
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computation over the entire dataset (i.e., over all attributes of all examples), we
obtain Dist(VPT, VOr9) ~ 0.736.

To facilitate reading, we aligned VO and VPT. In practice, such alignment
can be performed using the Hungarian algorithm [Kuhn 1955, Munkres 1957] as is
done in [Gambs et al. 2012]. In a nutshell, it consists in performing a minimum
cost matching between the examples of VO and those of VP where the assign-
ment cost is computed as the sum of the distances between the paired examples.
Intuitively, the objective is to determine to which example within VO™ corresponds
each reconstructed example in VPT. However, this would not be needed in scenarios
in which V"% is unknown, as VPT is compatible with V"% by construction, and
Dist (4.1) does not require further information regarding V7.

In the remainder of this chapter, we generalize the notions introduced in this
section to be able to handle more general type of knowledge, coming from other
types of interpretable models.

4.3 Generalizing Probabilistic Datasets Reconstruction

In this section, we first illustrate the limits of probabilistic datasets and motivate
the need to relax some of their underlying assumptions. Consequently, we intro-
duce generalized probabilistic datasets, which can be used to encode any arbitrary
knowledge regarding a dataset. Finally, we define a generalized metric Distg which
can be used to quantify uncertainty reduction within such datasets.

4.3.1 Motivation

The concept of probabilistic dataset as described in Definition 6 is suitable to encode
knowledge regarding a dataset, as long as this knowledge involves each cell (i.e.,
which corresponds to one attribute for one example) individually. For instance,
this is appropriate for decision trees in which an example is classified ezactly by one
branch. Furthermore, each branch corresponds to a conjunction (i.e., logical AND)
of conditions (splits) over features, which all have to be satisfied. These conditions
allow for the reduction of each such feature’s domains individually. However, for
other representations of interpretable classifiers, such as rule lists or rule sets, this
condition will not be valid. Again, we illustrate this observation using a toy example.

More precisely, Rule List 4.1 was trained on (deterministic) dataset V079,
shown in Table 4.3. It gathers five examples e}e (1,2,3,4,5} described by three bi-
nary attributes, named X;ne{LQ’S} (with domains Xr’ne{m,g} = {0,1}). For each
rule (including the default rule), RL indicates the number of training examples
it captures, for each class. For example, the second rule captures two training
examples belonging to class 0 (here, €5 and €}).

The algorithm reconstructing a probabilistic version of a rule list RL’s training
set from RL itself simply follows the path of each example. For an example classified
by the ith rule, it reduces the domains of the attributes involved in the ith rule
accordingly. It also eliminates all attributes’ conjunctions contradicting the fact
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Table 4.4: Example (generalized)
probabilistic dataset W reconstructed
from Rule List 4.1.

Table 4.3: Example deterministic
dataset VO’

X[ [ X5 | X5 | Label , , ,
e/1 1 1 1 1 i Xl X2 X3 Label
e/2 1 1 0 1 6,1 1 1 € {0,1} 1
6’3 0 1 1 0 6/2 1 1 € {0,1} 1
ef; 1 0 1 0 e? € {(070)a(07 1)7(150)} 1 0
A 1 0 0 1 €4 € {(070)7(07 1)7(170)} 1 0
> et | € {(0,0),(0,1),(1,0)} 0 1

if [X{] and [X3] then [true] ([0 ; 2] examples)
else if [X3] then [false] ([2 ; 0] example)
else [true] ([0 ; 1] example)

Rule list 4.1: Example rule list RL trained using CORELS [Angelino et al. 2017,
Angelino et al. 2018], with 1.0 accuracy on VO (Table 4.3).

that the example did not match the previous rules within RL. For instance, the
following knowledge can be extracted from Rule List 4.1:

o The first rule indicates that for 2 (positive) examples, the two Boolean at-
tributes X| and X}, are true.

 Using the second rule, we know that the Boolean attribute X} is true for
2 (negatively-labelled) examples. Furthermore, we know that X| and X} can
not be simultaneously true for these examples (or else they would have been
captured by the first rule).

o Finally, the default rule states that for 1 (positively-labelled) example, X}
is false, and X| and X} can not be simultaneously true.

Using such knowledge, one can build a (generalized) probabilistic dataset as shown
in Table 4.4. In this example, part of the model’s knowledge directly reduces the
individual domains of some attributes for the concerned examples. As such, the
information it brings will successfully be quantified by Dist and encoded in a prob-
abilistic dataset. However, other information (specified in italic) does not reduce
any attribute’s domain individually. For instance, as shown in Table 4.4, one knows
that for examples e and €}y, X| and X} can not simultaneously be true. Never-
theless, taken apart, their respective domains would be unchanged as both binary
attributes can still take values in {0,1}. While such knowledge brings informa-
tion for reconstruction, this cannot be quantified using Dist nor represented using
a probabilistic dataset as formalized in Definition 6.

Indeed, one key assumption with Definition 6 is that the random variables rep-
resenting each attribute for each example are independent from each other. This
is leveraged by Dist, which computes the reductions of the individual entropies.
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However, this representation cannot handle more generic knowledge, in which un-
certainty can be spread jointly across multiple random variables. This limitation
is also pointed out in the theory of probabilistic databases. More precisely, quot-
ing [Suciu et al. 2011], this representation (talking about a scheme similar to proba-
bilistic datasets as formalized in Definition 6 and illustrated in Figure 4.2) is “more
compact”, as we do not need to expand all possible combinations of the different
variables’ values explicitly. However, “it cannot account for correlations across pos-
sible readings of different fields, such as when we know that no two persons can
have the same social security number”. In this particular case, this corresponds to
a correlation across examples, while in the aforementioned example of Rule List 4.1
we observed correlations between attributes within the same example. For instance,
to encode the knowledge regarding attributes X| and X of examples e and e,
we had to enumerate all the possible combinations of these two attributes’ values
(Table 4.4).

In the next subsection, we generalize probabilistic datasets to handle any form
of knowledge, such as the italicized one from the above example.

4.3.2 Generalized Probabilistic Datasets

As illustrated in the previous subsection, the assumptions underlying probabilistic
datasets (Definition 6) - namely statistical independence and uniform distribution of
their random variables - make them inappropriate in the general case. Generalized
probabilistic datasets remove these assumptions as stated in Definition 8.

Definition 8. (Generalized probabilistic dataset). A generalized probabilis-
tic dataset W is composed of N data points (also called examples) {ei,...,en}
and M attributes {X1,...,Xp}. The knowledge about attribute X,, of example
ej is modeled by a probability distribution over all the possible values of this at-
tribute, using random wvariable W;,,. Importantly, variables {Wje[l..N],me[l..M}}
are not necessarily statistically independent from each other and can follow any
arbitrary distribution. Fach possible instantiation w = {wje[l..N],me[l..M]} of the
Wie1..N],me]1..Mm) variables (i.e., each deterministic dataset compatible with W) is

J
named a possible world. We let II(W) denote the set of possible worlds within W:

OOW) = {w | POWVjen. Npmef1..M] = Wic[i..N],me[1..m]) > 0}

Again, if all its variables are determined, a generalized probabilistic dataset is
said to deterministic. A key difference between probabilistic datasets and their
generalized counterparts is that the set of possible worlds of a probabilistic dataset
simply consists in all combinations of the possible variables’ values, all random
variables being statistically independent. For generalized probabilistic datasets, it
is not the case as there can exist complex inter-dependencies between the random
variables that directly influence II()WV) (as illustrated in Section 4.3.1).

Our generalized probabilistic dataset definition matches the notions of proba-
bilistic or incomplete databases that are used in the theory of probabilistic



132 CHAPTER 4. PRIVACY & INTERPRETABILITY

databases [Suciu et al. 2011]. Indeed, an incomplete database defines a set of pos-
sible worlds, denoting the possible states of the database (i.e., set of values for
the different relations). If one can associate a probability to each possible world,
then the database is called a probabilistic database - which generalizes incomplete
databases. In the context of this work, one could leverage external knowledge (e.g.,
demographic information about the data distribution) to associate probabilities to
the possible worlds in II(W}). This would lead to a reduction of the uncertainty of
the dataset (thus lowering its joint entropy and raising the reconstruction success).

Both incomplete and probabilistic databases are semantic definitions for which
designing a practical representation is challenging [Suciu et al. 2011]. To circum-
vent this issue, some compact representations have been proposed. For instance,
in conditional tables (or c-tables), the different values of the database cells are as-
sociated to a propositional formula, called condition, over some random variables.
The different assignments of the random variables define the different states of the
database (i.e., possible worlds). Probabilistic conditional tables (or pc-tables) ex-
tend this concept by assigning probabilities to the conditional variables assignments.
While (p)c-tables may be an interesting representation for generalized probabilistic
datasets, we do not assume any specific representation for our generalized proba-
bilistic datasets in this work. Rather, we demonstrate in Section 4.4 that in the
context of training set reconstruction from an interpretable model, we can quantify
the amount of uncertainty that remains in the resulting generalized probabilistic
dataset without building it explicitly (which in practice may be infeasible even with
efficient structures such as c-tables).

4.3.3 Generalized Measure of the Attack Success

We now generalize the metric introduced in Definition 7 to quantify the success of a
probabilistic reconstruction attack. As stated in Definition 9, our new metric Distg
is more general as it quantifies the uncertainty reduction on the entire dataset using
the joint entropy of the underlying random variables.

Definition 9. (Generalized measure of success of a probabilistic recon-
struction attack). Let WO be a deterministic dataset composed of N data
points and M attributes, used to train a machine learning model IM. Let WM be
a generalized probabilistic dataset reconstructed from IM. By construction, WM
is compatible with WO (i.e., WO € IWIM)). The success of the performed
reconstruction is quantified as the overall uncertainty reduction in the dataset:

H({WI] j € [1..N],m € [1.M]})
H({Wjm | j € [L.N],m € [L.M]})
Ywerpwiny —P(w) - log2(P(w))

= 4.3
AN HOW,m) (*3)

Diste: (WM, WOr9) =

(4.2)

in which H denotes the Shannon entropy (or joint entropy, when applied to a set
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of variables, as in (4.2)), and random variable W;,, corresponds to an uninformed
reconstruction, uniformly distributed over all possible values of attribute X,,.

The denominator in Equation (4.2) can be decomposed as a sum in Equa-
tion (4.3) because the random variables Wic(i. n)mef1..a) are independent from
each other, and the joint entropy of a set of variables is equal to the sum of the
individual entropies of the variables in the set if and only if the variables are statis-
tically independent. This is not the case for variables W]Iéw[l N]me[L..M]» and thus
the generalized probabilistic dataset has to be considered as a whole through its set
of possible worlds TI(WM).

The key properties of Dist also hold for Distg. In particular, for any deterministic
dataset WO we have Distg(WOT9,WOT9) = 0. Furthermore, if WM contains
no knowledge at all, we have that Distg(W™™ WOT9) = 1 for any deterministic
dataset WO,

One important difference between Dist and Distg is the fact, that due to its
averaging over the per-example-per-attribute individual uncertainty reductions, Dist
considers all features equal (in terms of contribution to the overall uncertainty) while
it is not the case for Distg. To illustrate this, let us assume a toy scenario with a
(deterministic) dataset VO™ with a single record e; = (1,1) and two attributes X;
and Xy with domains &} = {0,1} and X5 = {1,2,3}. Consider the two probabilistic
datasets V¢! in which we know that for e;, X; = 1, and V"¢, in which we know
that for e;, Xo = 1. These datasets are summarized in Tables 4.5, 4.6 and 4.7.

Table 4.5: VOrig Table 4.6: Vreel Table 4.7; Yree2
Xl X2 X1 X2 Xl X2
len [ 1] 1 len [ 1 ] €{1,2,3} e [efo1} ] 1

Using Definition 7, we have Dist(Vreel, VO™9) = 0.5, as:

=1

HWVigh) _ —log2(1) _ 0 and HWVish) _ —log2(%)
H(Vi1)  —log2(3) H(Vip)  —log2(3)

Conversely, we also have Dist(V7¢? VOT9) = (0.5 because:
HVIT?)  —log2(3)
HWV11) —logQ(%)

However, out of 6 possible reconstructions for e; (without any knowledge), 3
are possible within V¢! while only 2 are possible with V"2, Intuitively, V"¢
yields more information (or, conversely, less uncertainty) than V7!, but Dist can-

H(VIS?)  —log2(1) _

=1 and = =
H(Vi2) —logQ(%)

not account for this difference due to normalization and individual measure of en-
tropy across examples’ attributes. For notation consistency, we associate to these
datasets their generalized counterparts WO Wreel and Wre2, containing the ex-
act same information (recall that probabilistic datasets are simply a particular case
of generalized probabilistic datasets, in which the dataset’s variables are statistically
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independent and uniformly distributed). Using our generalized metric introduced
in Definition 9, we have:

' H {Wrecl7 Wrecl —loa? 1
DiStG(Wrecl’WOrzg) — ( 11 1,2 ) _ og (;I,) ~ 0.613
6

H({Wi1,Wi2})  —log2(})
and
H {Wre(:27wrec2 _loa? 1
(VP2 V) —tog () 0387
6

Dist WrecQ?WOrig — _
d )= TV —log2(})

As lower values indicate less uncertainty (i.e., better reconstruction performances),
we observe that Distg successfully distinguishes between Wl and W"¢2. Thus
by avoiding the drawbacks of the normalization across dataset cells, the new met-
ric Distg successfully takes into account the specificities of the two probabilistic
datasets.

4.4 Quantifying the Success of Generalized Probabilis-
tic Reconstructions in Practice

We now investigate how to quantify the success of a probabilistic reconstruction
attack in practice. First, we discuss how the attack success computation can be de-
composed under reasonable assumptions regarding the structure of the interpretable
model considered. Then, we show how it can be computed without explicitly build-
ing the entire set of possible worlds, as long as one is able to count them. Finally,
we demonstrate that such simplification is possible for decision trees as well as rule
lists models, and theoretically compare the reconstruction quality from these two
hypothesis classes.

4.4.1 General Case

Let WM be a generalized probabilistic dataset reconstructed from an interpretable
model IM. As stated in Definition 9, the success of the probabilistic reconstruc-
tion attack can be quantified using Distg. One can observe that the denominator
( j-V:l Z%I:l H (W]m)) is a constant, only depending on the attributes’ domains
Xmepi.v)- Indeed, variables Wjc(y N1, are uniformly distributed over X, (the

domain of attribute X,,) and so H(W, ) = —log2 (ﬁ) Thus:

N M M 1
jzl mZ:l HW);m)=N - mZ:1 —log2 (’/Y'm|> (4.4)

As the denominator in Equation (4.2) is a constant that can be easily computed,
we will focus only on the numerator in the remaining of this section, using the
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following notation:

Dist (W™ W) oc H ({leé\{l..N],me[l..M]}) : (4.5)

4.4.1.1 Independence assumptions: decomposing the attack success com-
putation

In the general case, the computation of the joint entropy of the generalized proba-
bilistic dataset’s cells must be done through its set of possible worlds ITI(W!M), as
shown in Equation (4.3). However, if one can establish the statistical independence
of some of the WJI ]‘n{ variables, this computation can be further decomposed. Indeed,
the joint entropy of a set of statistically independent variables is equal to the sum
of their individual entropies. For instance, if the knowledge of model I M applies
to each data point e;¢c[1. ) independently, the sets of variables {le,]\w{e[l..M] }je[l..N]
are independent from each other. This condition is satisfied if 1M is a decision tree
or a rule list, because each example is captured by exactly one “decision path” (i.e.,
branch or rule). Indeed, this decision path reduces the set of possible reconstruc-
tions for each example e; independently from the other examples. By a slight abuse
of notation, we let IT; (W) denote the set of possible worlds (i.e., reconstructions)
for example (row) e;. As a consequence, we have:

N
Diste (W™, W) oc 3" H <{Wj{%e[l.,M]}> (4.6)
=1

N
x Z ( Z —P(wj) - logQ(IF’(wj))) . (4.7)

j=1 ’LU]'GHJ'(W”M)

While Equation (4.7) holds for both rule lists and decision trees, its compu-
tation can be further decomposed for the later. Indeed, in a decision tree each
example is classified by exactly one branch, and such branch defines a conjunction
of Boolean conditions over attributes’ values, called splits. Such conditions must all
be satisfied for the example to be captured by the branch - hence all the concerned
attributes’ domains can be reduced individually. As a consequence, this implies

that all variables Wfé‘fl N]mel1..m] Are actually statistically independent resulting
in:
' N M
Dist; (W™, WOr9) oc 3= 3~ H (W), (4.8)
j=1m=1

Note that Equation (4.8) corresponds to the particular case studied
in [Gambs et al. 2012], with the computation being exactly as for their proposed
Dist metric (Definition 7), with the only difference being the absence of normaliza-
tion. Observe that Equation (4.8) does not hold in general for rule list models due
to the fact that for a given example, the information that it did not match previous
rules within the rule list corresponds to negating a conjunction, hence producing
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a disjunction. As a result, this potentially breaks the statistical independence be-

tween some of the {WJI ]\Tr/LIE[l.. M)} variables.

4.4.1.2 Uniform distribution assumptions: efficient attack success com-
putation

The explicit enumeration of the possible worlds II(W!M) is not practically con-
ceivable for real-size datasets. However, quantifying a probabilistic reconstruction
attack success can sometimes be done only by computing their number [II(WM)].
Indeed, assuming a uniform probability distribution between them, one can then
easily quantify the amount of uncertainty using Distg (Definition 9), as Yw €
OOWIM) P(w) = m, resulting in:

1
wen(zwm) _P(w) - log2(P(w)) = —log2 <|H(WIM)|) . (4.9)

Remark that only the number of possible worlds [TI(W!M)| is needed to compute
Equation (4.9). In the general case, this number cannot be retrieved without build-
ing H(WIM ) explicitly. However, several types of interpretable models enable to
compute [II(WIM)| efficiently (i.e., without building II(W'M)). For instance, this
is the case when reconstructing generalized probabilistic datasets from decision tree
or rule list models. Plugging together Equations (4.7) and (4.9), we have:

N
. 1
Dista (W™, WOT9) oc >~ —log2 () 4.10
( ) ot |TL; VI (4.10)

In the next subsections, we demonstrate how the number of possible reconstruc-
tions for each example |TT; (W!M)| je[1..n] can be computed in polynomial time (with
respect to the model’s size) for decision trees and rule lists.

4.4.2 Decision Trees

Let DT be a decision tree with K pr branches, in which each branch b;cy. ), Is a
conjunction of Boolean assertions over attributes’ values ending with a leaf predic-
tion. The value num(b;) represents the number of different examples (i.e., number
of different combinations of attributes values) that satisfy b;. It can be computed
by multiplying the cardinalities of the reduced domains. Thus, for each example
e;j classified by branch b;, we have [IL;(WPT)| = num(b;). Additionally, Ciell..Kpr)
is defined as the support of each leaf (i.e., the number of training examples going
through the branch bic. g, ending by this leaf, as indicated in the decision tree
of Figure 4.1). Importantly, the tree branches partition the set of examples (as the
leaves’ supports are all disjoints), so we have Zie[l__ Kl C; = N. Furthermore,
the sum of Equation (4.10) which was performed over all N examples can be re-
placed with a sum over the K pr branches, with the entropy of each branch b; being
weighted by its support C;. Plugging these new notions into Equation (4.10), we
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obtain that the overall joint entropy of the reconstructed probabilistic version of
DT’s training set is:

K
Diste(W"T, WO o ZDjT—Ci +log (1) (4.11)
’ Pt num(b;)

4.4.3 Rule Lists

Let RL = (a1,q1) ... (aKp,. 9Kz, ) be a rule list, following the notation introduced
in [Rivest 1987]. Each term a;c(. i, is a conjunction of Boolean assertions over
attributes’ values and gje(1.. ;] is @ prediction. Rule Kpy, is the default decision,
with ak,, being the constant value True?. Similarly to the leaves of a decision tree,
each rule 7 is associated with its support C;. Again, let num(a;) denote the number
of different examples (i.e., number of different combinations of attributes values)
that satisfy a;. As a branch, a rule corresponds to a conjunction, hence num(a;)
can be computed easily by simply multiplying the cardinalities of the attributes’
reduced domains.

Finally, we define V1 < i < Kpy, Captgy(a;) as the number of possible differ-
ent examples (i.e., number of different combinations of attributes values) that a;
captures within RL (i.e., examples satisfying a; while not matching the antecedents
of the previous rules within RL). As a particular case, note that we always have
Captpy(a1) = num(ap) as the first rule of any rule list is always applied first. For
1 <i < Kpgy, a straightforward general formulation is:

i—1
Captpy(a;) = num(a; A /\ —ay). (4.12)
=1

The main challenge is that num( ;;} —ap), in which };% —a; is the conjunc-
tion of the negations of the previous rules’ antecedents, cannot be computed di-
rectly as aje1.;-1) may overlap. Indeed, each antecedent ¢; is a conjunction -
hence its negation is a disjunction. More precisely, overall we get a conjunction
of disjunctions, which means that the number of possible examples it character-
izes cannot be computed by simply multiplying attributes’ cardinalities as the
different disjunctions may overlap. By a slight abuse of notation, we define for
1<1<i< Kgy, Captpy(ar,a;) as the number of possible different examples (i.e.,
number of different combinations of features values) that a; could capture but that
are actually captured by a; in RL:

-1

Captpy(a,ai) = num(a; A a;) — Z Captpy (ag, (a; A a;)). (4.13)
k=1

2This is consistent with the notation introduced in Chapter 2. For the sake of notation concise-
ness, we defined a rule list as RL = (drr,qo) in which 0rr = (r1,72,...,7x) With r; = a; — ¢; is
RL’s prefiz, and qo € {0, 1} is a default prediction. Here, the first Krr — 1 rules define RL’s prefix
0rr, while g, is the default prediction.
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The first term corresponds to the overlap between a; and a;, while the second one
subtracts the unique examples within this overlap that are actually captured by
rules placed before a; in RL. Then:

Captpy (a;) = Captpy (ai, a;) (4.14)
i—1
= num(a;) — Z Captpr(ar, a;) (4.15)

=1

Just like the branches of a decision tree, the rules within a rule list partition the
set of examples (as each example is captured by exactly one rule in the rule list).
Then, the sum over all N examples in Equation (4.10) can be reformulated using
a sum over the Kpry rules, with each rule’s entropy being weighted by its support.
Then, plugging (4.15) into (4.10), we obtain:

Kpgr 1

Diste(WEE, WOT9) o Z —C; - log2 (4.16)
i=1

i—1
num(a;) — lz Captpy(ar, ai)
—1

Comparing Decision Trees and Rule Lists. Comparing (4.16) to (4.11), we
observe that an additional term is subtracted to the denominator of (4.16). This
term corresponds to the information that the examples captured by rule ¢ did not
match any of the previous rules [ < ¢ within RL. By lowering the denominator,
it raises the overall success of the probabilistic reconstruction attack. There is no
such term in (4.11) because there can be no overlap between a decision tree’s leaves’
supports. On the contrary, the rules within a rule list can overlap because they are
ordered. Overall, these theoretical results confirm that rule lists are more expressive
than decision trees, encoding more information than a decision tree of equivalent
size [Rivest 1987].

4.5 Experiments

While our proposed metric quantifies precisely and theoretically the amount of
information an interpretable model carries regarding its training dataset, the aim
of this section is to illustrate its practical usefulness through an example use. More
precisely, we will investigate the differences between optimal and heuristically-built
models, for both rule lists and decision trees.

4.5.1 Setup

In these experiments, we use both optimal and heuristic learning algorithms to
compute decision trees and rule lists of varied sizes. Furthermore, optimal models
are learnt optimizing solely accuracy, to avoid interference with other regulariza-
tion terms. All details regarding the considered experimental setup are provided
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hereafter.

Learning algorithms. We use the following learning algorithms:

o Optimal decision trees. We use the DL8.5 algorithm [Aglin et al. 2020a,
Aglin et al. 2020b] through its Python binding?.

e Heuristic decision trees. We use an optimized version of the CART greedy
algorithm [Breiman et al. 1984], as implemented within the scikit-learn?
Python library [Pedregosa et al. 2011] with its DecisionTreeClassifier ob-
ject. We coin this method sklearn_DT.

o Optimal rule lists. We use the CORELS algorithm [Angelino et al. 2017,
Angelino et al. 2018] through its Python binding®. Note that CORELS was
presented in details in Section 2.2.2.

e Heuristic rule lists. While some implementations exist in the literature for
building heuristic rule lists (for example, one is provided within the imode1s®
library” [Singh et al. 2021]), they do not offer precise control over the desired
rule support and/or maximum rule list depth. For this reason, we imple-
mented a CART-like greedy algorithm (close to the imodels’ implementation),
that we coin GreedyRL. In a nutshell, this algorithm selects the rule yield-
ing to the best Gini impurity improvement at each level of the rule list, in a
top-down manner.

Datasets. We use two datasets (binarized, as required by CORELS) which are very
popular in the trustworthy machine learning literature. First, the UCI Adult In-
come dataset® [Dua & Graff 2017] contains data regarding the 1994 U.S. census,
with the objective of predicting whether a person earns more than $50K /year. Nu-
merical features are discretized using quantiles and categorical features are one-hot
encoded. The resulting dataset includes 48,842 examples and 24 binary features.
As DL8.5 was unable to learn optimal models within the specified time and memory
limits for the largest size constraints, we randomly sub-sample 10% of the whole
dataset. Second, the COMPAS dataset (analyzed by [Angwin et al. 2016]) gath-
ers records about criminal offenders in the Broward County of Florida collected
from 2013 and 2014, with the task being recidivism prediction. We consider its
discretized version used to evaluate CORELS in [Angelino et al. 2017], consisting in

7,214 examples characterized with 27 binary features®.

Shttps://github.com/aia-uclouvain/pydl8.5

‘https://scikit-learn.org/

*https://github.com/corels/pycorels

Shttps://github.com/csinva/imodels

"imodels is a Python library gathering tools to learn different types of popular interpretable
machine learning models, such as decision trees, rule lists, rule sets, or scoring systems.

Shttps://archive.ics.uci.edu/ml/datasets/adult

“https://github.com/corels/pycorels/blob/master/examples/data/compas.csv
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https://github.com/corels/pycorels
https://github.com/csinva/imodels
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/corels/pycorels/blob/master/examples/data/compas.csv
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Experimental Parameters. For each experiment, we randomly select 80% of
the dataset to form a training set, and use the remaining 20% as a test set to ensure
that models generalize well. We repeat the experiment five times using different
seeds for the random train/test split, and report results averaged across the five
runs. All experiments are run on a computing cluster over a set of homogeneous
nodes using Intel Platinum 8260 Cascade Lake @ 2.4Ghz CPU. Each training phase
is limited to one hour of CPU time and 12 GB of RAM. Within the proposed
experimental setup, all models produced by the optimal learning algorithms (DL8.5
for decision trees or CORELS for rule lists) are certifiably optimal.

Models Learning. We set various size limits to the decision tree building algo-
rithms, using maximum tree depths between 1 and 10 (ranging linearly by steps of
1) and (relative) minimum leaf supports between 0.01 and 0.05 (ranging linearly
by steps of 0.01). For the rule list learning algorithms, we proceed identically and
generate rule lists with various size constraints, using maximum depths (number
of rules within the rule list) between 1 and 10 (ranging linearly by steps of 1) and
(relative) minimum rule supports between 0.01 and 0.05 (ranging linearly by steps
of 0.01). As we are interested in the optimality guarantee, we consider rules con-
sisting in a single binary attribute (or its negation). Indeed, in our experiments,
CORELS was unable to reach and certify optimality while also considering conjunc-
tion of features, as it dramatically increases the number of rules - and consequently,
the algorithm search space. Finally, we set CORELS’s sparsity regularization coeffi-
cient to a value small enough (7.e., smaller than %) to ensure that only accuracy is
optimized. All methods’ parameters are left to their default value.

Resources. Source code for our implementation of the CART-like greedy rule list
learning algorithm GreedyRL is provided on our repository'?. We also provide the
binarized datasets, and all scripts needed to reproduce our experiments, along with
the results and plots themselves.

4.5.2 Results

After having learnt optimal and heuristic decision trees and rule lists under var-
ious constraints, we compute the amount of information they contain regarding
their training sets using Distg, leveraging the computational tricks presented in
Equations (4.11) and (4.16). Recall that lower uncertainty values indicate better
reconstruction performances. We relate this value to two dimensions: the sizes of
the models and their training accuracy. The former corresponds respectively to
the number of splits performed in a decision tree or to the number of rules for a
width-1 rule list. The later indicates the model’s performance on its training set -
i.e., exactly what we aim at optimizing.

Results are provided for our experiments comparing exact and greedily-built
decision trees and rule lists respectively in Figures 4.2 and 4.3. We observe the

Ohttps://github.com/ferryjul/ProbabilisticDatasetsReconstruction
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(a) Entropy reduction as a function of the tree size (number of splits/internal nodes).
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(b) Entropy reduction as a function of training accuracy.
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Figure 4.2: Results of our experiments comparing optimal and greedily-built de-
cision trees (learnt respectively with DL8.5 and sklearn_DT), for different (rela-
tive) minimum leaf support values. Left: Adult Income dataset, Right: COMPAS
dataset.

same trends for the two types of models. First, one can observe in Figures 4.2a and
4.3a that optimal models usually represent more information in a more compact
way: the reconstruction uncertainty decreases faster for optimal models than with
greedily-built ones. However, while for a given size optimal models contain more
information regarding their training data, they are also way more accurate. This
dimension is observed in Figures 4.2b and 4.3b. More precisely, we consistently
observe that for a given accuracy level, optimal models always leak less information
regarding their training data. These observations can be explained by the nature
of the learning algorithms. On the one side, greedy algorithms make heuristic
choices iteratively. These choices are usually sub-optimal, and thus while leading
to sub-optimal models (in terms of accuracy), they can also cause unnecessary
leaks regarding their training data. On the other side, because they perform global
optimization, optimal learning algorithms encode exactly the information needed
in the most effective way.

For both datasets and types of models, the entropy reduction is not uniformly



142 CHAPTER 4. PRIVACY & INTERPRETABILITY

0.96
0.94
&
§§ 0.92
;‘ 0.90
g
K 0.88
o
0 0.86
0.84 .
2 4 6 8 10
# rules # rules

(a) Entropy reduction as a function of the rule list size (number of rules).
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(b) Entropy reduction as a function of training accuracy.
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Figure 4.3: Results of our experiments comparing optimal and greedily-built rule
lists (learnt respectively with the CORELS and GreedyRL algorithms), for different
(relative) minimum rule support values. Left: Adult Income dataset, Right: COM-
PAS dataset.

distributed across all training examples. Indeed, we plot in Figure 4.4 the mini-
mum entropy reduction ratio as a function of the proportion of concerned training
examples. One can observe that the amount of information contained by the learnt
models varies significantly between different training examples. For instance, in the
experiments using optimal rule lists with maximum size 10 and minimum support
0.01 on the Adult Income dataset (Figure 4.4b (left)), the less exposed training
examples have an entropy reduction ratio above 0.95: knowledge of the rule list
removes only 5% of the uncertainty regarding such samples. For the most exposed
examples, this number becomes smaller than 0.60: knowledge of the rule list re-
moves more then 40% of the uncertainty regarding such samples. This disparate
information leak is intuitive: an example classified by a very long branch of a tree
goes through many nodes, which gives more information regarding its features. This
phenomenon is observed in all our experiments, with roughly identical distribution
of the uncertainty reduction over the training datasets. It suggests that, beyond
average-case uncertainty reduction as reported in Figures 4.2 and 4.3, investigating
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(a) Optimal and greedily-built decision trees, learned respectively with the DL8.5 and
sklearn_DT algorithms.
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(b) Optimal and greedily-built rule lists, learned respectively with the CORELS and GreedyRL
algorithms.

Figure 4.4: Tlustration of the disparate information leak phenomenon, for both
optimal and greedily-built decision trees and rule lists, learned with the largest
considered size constraints, i.e., maximum depth 10 and minimum (relative) support
0.01. More precisely, we report the proportion of training examples for which the

entropy reduction ratio is at most at a given value. Left: Adult Income dataset,
Right: COMPAS dataset.

per-example uncertainty reductions can also be insightful.

One can note that averaging the curves of Figure 4.4 leads to the computation
of dataset-wide metrics as shown in Figures 4.2 and 4.3. For instance, we observe
in Figure 4.4b that for most proportions of training samples, rule lists learnt using
CORELS exhibit a lower entropy reduction ratio than those produced by GreedyRL.
As aforementioned, these experiments use the largest considered rule lists (learned
with maximum depth 10 and minimum support 0.01) for both methods, correspond-
ing to the rightmost points on Figure 4.3a. Observing these particular points, one
can see that rule lists built with CORELS indeed exhibit lower entropy reduction
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ratios than those built by GreedyRL, which is consistent with Figure 4.4b.

We observe a different trend for the decision trees learnt on the Adult Income
dataset (Figure 4.4a (left)): the models built with the greedy sklearn_DT algorithm
exhibit lower entropy reduction ratios than the optimal ones produced by DL8.5,
hence containing more information. Again, these models correspond to the right-
most points on Figure 4.2a (left). For these experiments, the optimal models learnt
with the DL8.5 algorithm with the largest size constraint are indeed more com-
pact than those produced by sklearn_DT and contain less information overall. As
aforementioned, this illustrates a drawback of greedy learning algorithms: by per-
forming local (possibly sub-optimal) choices, they can produce models performing
non-necessary or redundant operations, leaking additional information regarding
their training data. This dimension is further explored in the Appendix F, where
we relate the actual models’ sizes and entropy reduction ratios to the constraints
enforced during learning.

Finally, comparing decision trees and rule lists empirically as was done theo-
retically in Section 4.4.3 could also be insightful. In particular, one could assess
whether the rules’ ordering, which allows the rules within a rule list to overlap
(while the branches of a decision tree are all disjoint), empirically provides more
information regarding the training data as was expected theoretically. However,
such an experiment requires learning optimal rule lists whose rules’ widths (i.e.,
number of attributes involved in a rule’s conjunction) match the depth of the tree’s
branches, which is computationally challenging. Indeed, considering sub-optimal
models would bias the comparison as the results would depend on the performances
of the learning algorithms rather than those of the models themselves.

4.6 Conclusion and Future Work

We extended previous work and proposed generic tools to represent and precisely
quantify the amount of information an interpretable model encodes regarding its
training data. While the practical use of such tools may be computationally chal-
lenging in the general case, we demonstrated theoretically that they can be employed
efficiently under reasonable assumptions. We empirically illustrated their usefulness
through an example use case: assessing the effect of optimality in training machine
learning models.

A promising extension of our study consists in leveraging the knowledge of the
learning algorithm’s internals to lower the reconstructed generalized probabilistic
dataset entropy. For instance, if a greedy algorithm uses the Gini impurity as a
splitting criterion, we know that at a given node no feature other than the chosen one
can yield a better Gini impurity value in the training set. Additionally, optimality
itself gives information: some combinations of the attributes not used within an
optimal decision tree can be discarded if they could allow the building of a better
decision tree.

We observed in our experiments that the entropy reduction brought by the
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knowledge of some interpretable model is not uniform across all examples of the
probabilistic dataset. Investigating whether it disproportionately affects some sub-
group of the population is an interesting direction. Another promising future work
consists in combining the knowledge of different generalized probabilistic datasets,
as was proposed in [Gambs et al. 2012]. This would require aligning them, as
well as merging several probability distributions, while in the original setup it
simply consisted in union of sets. Finally, investigating the effect of privacy-
preserving methods such as the widely used differential privacy [Dwork et al. 2006,
Dwork & Roth 2014] on the quality of the built probabilistic datasets (such as the
differentially private decision trees proposed in [Friedman & Schuster 2010]) is also
an insightful research avenue.






Conclusions and Future
Directions

Conclusions

We have seen throughout this manuscript that while fairness, interpretability and
privacy are three important dimensions of trustworthy machine learning, they often
conflict, both theoretically and empirically. We then focused on using combinatorial
optimization approaches to conciliate or highlight such tensions.

Conciliating the observed conflicts. The integer linear programming based prun-
ing approach presented in Chapter 2 is able to prune part of an optimal fair learning
algorithm’s search space, effectively conciliating accuracy, fairness and interpretabil-
ity. It is interesting to note that this pruning mechanism is effective precisely be-
cause the objective function and the fairness constraints conflict: our empirical
study further shows that the stronger the conflict, the more effective the pruning
mechanism. We also demonstrated how integer programming can help enhancing
the generalization of statistical fairness metrics, by being able to quantify a form
of fairness stability (sample-robustness) over a given dataset.

Highlighting the identified tensions. Learning a model to be fair with respect to

some sensitive attributes necessarily influences the model building - as long as the
fairness constraint is active, which is the case if there is some bias to be corrected.
Our sensitive attributes reconstruction correction method, introduced in Chapter 3,
unsurprisingly shows that this influence can be exploited to infer information re-
garding these sensitive attributes. It relies on either integer linear programming or
constraint programming to exactly encode the considered constraints and enforce
them within the computed reconstruction.
Finally, we used in Chapter 4 tools from information theory to precisely quan-
tify the amount of information an interpretable model inherently leaks, through its
structure, regarding its training data. This illustrates a tension between releasing
interpretable models and keeping their training data private. Our experiments ad-
ditionally show that optimal interpretable models usually represent information in
a more compact way, hence leaking more information than sub-optimal models of
the same size, but less information than sub-optimal models of the same utility.

Overall, applying machine learning techniques to a real-world high-stakes decision-
making problem necessarily raises several challenges. First, one has to guarantee
that the training data is properly protected and that the built model (or its predic-
tions) can not be used to retrieve it. Second, it is important and legally required to
ensure that the predictions do not discriminate individuals or subgroups based on
protected characteristics. Third, trustworthiness, audibility and recent legal texts
require that the model’s logic can be understood by humans. Last and not least,
while we showed throughout the thesis that many conceptual, technical and empir-
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ical tensions exist between pairs of these three desiderata, one should enforce all
three simultaneously, while also ensuring that the built model has a good utility.
We identified synergies, or at least compatibilities, which suggests that this task
is feasible but that compromises have to made. Nevertheless, this considerably in-
creases the complexity of the learning process while requiring a thorough analysis
of the used techniques. A reasonable takeaway could hence be that a preliminary
step before considering the use of data-based approaches is to ensure that they are
the only applicable strategy. In particular, if other approaches can be used that do
not require the use of data, it may be worth it to try them at first. Finally if ma-
chine learning is the only possible method, learning a model with non-trivial utility
and satisfying our three identified desiderata then requires a thorough theoretical
design, being aware of the different existing tensions and of common techniques to
enforce their compatibility.

Finally, it is crucial to promote an interdisciplinary approach, for computer sci-
entists to ensure that the metrics they optimize for actually match legal and ethical
requirements. This is a particularly challenging aspect: ethical analysis are often
strongly context-dependent while genericity is a common practice in computer sci-
ence, and not all legal and philosophical notions can easily be implemented and
quantified using mathematical formulas. It is hence necessary to verify the align-
ment of the notions we use with the concepts we target, for the development of
machine learning systems that can be trusted and that do not harm the society.

Future Directions

As discussed throughout the thesis, many different techniques were proposed to
ensure fairness, interpretability or privacy, and the three desiderata have a variety
of pairwise interplays. Consequently, one can identify a great number of interesting
future works to further characterize these interactions and address the observed
tensions. Furthermore, we used combinatorial optimization techniques for several
applications of trustworthy machine learning, and plenty other ones are possible.
Hereafter, we summarize and briefly explain some future research directions.

Fairness & Interpretability.

Studying the effect of regularization on fairness and other trustworthiness desider-
ata. We saw that several learning algorithms consider regularization terms for spar-
sity (as was the case for CORELS as described in Section 2.2.2). It is then important
to characterize the empirical effects of such sparsity regularization, and in particular
see how they trade-off simplicity (as a proxy for interpretability), fairness and ac-
curacy. Comparing the obtained trade-offs with other integrations of sparsity, such
as hard constraints on the models’ size, could help design proxies of interpretability
that impact as least as possible the other desiderata.

Characterizing (and improving) the fairness of hybrid interpretable models. Hy-
brid interpretable models (discussed in Section 1.4.5) raise several interesting ques-
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tions regarding fairness, because they inherently partition the input examples within
two sets: these classified by an interpretable component, and those classified by a
black-box. First, this directly results in a disparity regarding the right to expla-
nation and the access to interpretability. Second, this may also cause disparities
regarding privacy vulnerabilities. Empirically quantifying such disparities would
be insightful, as well as designing privacy attacks specifically targeting hybrid in-
terpretable models. The identified disparities could then be leveraged to propose
mitigation mechanisms.

Fairness & Privacy.

Characterizing the relationship between fairness sample-robustness and sensi-
tive attributes privacy. An interesting direction, connecting Chapter 3 to the end
of Chapter 2, is to investigate the theoretical implications between our proposed
sample-based robustness notion for fairness and sensitive attributes Differential Pri-
vacy. It could draw a connection between stability with respect to the training set
sensitive attributes, and privacy protection of such attributes. Empirically assessing
the effectiveness of fairness sample-robustness to prevent sensitive attributes infer-
ence (e.g., using our own attack described in Chapter 3) would also be insightful.

Privacy & Interpretability.

Optimizing the information leak while learning an interpretable model. We
showed in Chapter 4 how to quantify the amount of information an interpretable
model encodes regarding its training data. An interesting future work consists
in taking this value into account while training the model, to either limit its to-
tal theoretical information leak or ensure that it is homogeneously shared among
the training set examples or demographic groups. Such measure could be inte-
grated within branch-and-bound algorithms building interpretable models, such as
GOSDT [Lin et al. 2020] for decision trees or CORELS [Angelino et al. 2017] for rule
lists.

Learning differentially private interpretable models. Building interpretable and
differentially private models can be done by leveraging recent advances in both
interpretable machine learning algorithms and differentially private mechanisms.
Furthermore, comparing the effects of different differential privacy mechanisms on
the resulting training overhead and model’s utility would be insightful. However, de-
signing ad-hoc differential privacy mechanisms may lead to more interesting trade-
offs between unfairness and the privacy budget. Finally, carefully integrating fair-
ness constraints within the framework would be an ultimate step towards the holy
grail: building accurate, fair, interpretable and differentially private models.

Others.

Learning interpretable models from non-interpretable features. As mentioned
in Section 1.4.4, one important challenge for the development of interpretable ma-
chine learning is its use in contexts in which the examples’ attributes are not in-
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terpretable values. One then has to first learn an interpretable representation that
can be used in a second step to compute an interpretable model. This may be
done using disentanglement techniques, which consists in learning a latent repre-
sentation whose dimensions encode semantically separated concepts. In addition,
this technique was shown to have a positive effect on the resulting models’ fair-
ness [Locatello et al. 2019].

When the interpretable model training is done using declarative programming
approaches, it may be directly integrated within a deep learning pipeline extract-
ing the disentangled representation, thanks to the recent advances in end-to-end
predict-and-optimize approaches [Berthet et al. 2020, Elmachtoub & Grigas 2022].
More precisely, these methods include the optimization models directly as a neu-
ral network layer and use different techniques to derive useful gradients from them
(although these layers have no parameters to be updated). This yields the advan-
tage that the upstream layers can be updated with respect to the overall pipeline
decision, rather than only on intermediate representations accuracy.

Personalizing explanations while preserving fairness and privacy of the user. As
discussed in Section 1.4.2, one important challenge for explainability is that it needs
to be assessed with respect to the recipient of the explanations (e.g., depending
on its level of expertise). One possible solution is to ask information to the user
to produce an appropriate explanation: the concept of personalized explanations
was proposed [Schneider & Handali 2019] in recent years. However, while it can
be useful to adapt the produced explanation, the collected additional information
may also endanger the privacy of the user. Furthermore, it could be used in a
discriminatory manner and result in unfair explanation mechanisms. Producing
personalized explanations while tackling these two challenges is then an interesting
direction.

Leveraging declarative programming to search among a set of good interpretable
models without explicit enumeration. Recent works propose to build Rashomon
sets, which are sets of good models. For instance, this was done for rule list mod-
els [Mata et al. 2022] as well as for decision trees [Xin et al. 2022]. It was also
shown possible in the context of fair learning [Coston et al. 2021]. Such tools can
then be leveraged to compute a set of near-optimal models and pick the preferred
one according to some trustworthiness desiderata. For instance, one could select the
good model with the lowest theoretical information leak (the later being quantified
as described in Chapter 4).

Furthermore, other notions, such as fairness, can be characterized over an entire
Rashomon set through declarative programming approaches when the learning task
is formulated using them (e.g., the ILP model described in Section 1.3.5). This
yields two main advantages. First, the approach is generic enough to consider any
metric that can be encoded within the considered framework. Second, one does
not need to actually enumerate all good models within the Rashomon set to find
extreme values for the chosen metric (as the solver handles the search and can
guarantee optimality under some conditions).
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APPENDIX A
Summary of the Identified
Interplays

In this appendix section, we provide a graphical summary of the key interplays
identified between fairness, interpretability and privacy in machine learning. More
precisely, we report compatibilities and synergies in Figure A.1, while we overview
tensions in Figure A.2.
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Fairness

Section 2.1.1

o Interpretability and explainability ease model audit

o Fairness can act as a regularizer

Section 3.1.2
o Differential privacy and approximate group fairness
can be jointly enforced with some trade-offs

e The fairness cost of differential privacy
can be theoretically bounded

e Individual fairness and differential privacy
are both robustness definitions

e Privacy and statistical fairness can enhance
each other for particular setups

Section 4.1.1
[Interpretablhty)_ o Interpretability eases model audit and can

be leveraged for privacy purposes

o Interpretability can be conciliated with privacy
with some trade-offs

e Post-Hoc Explainability can be conciliated
with privacy with some trade-offs

Figure A.1: Summary of the identified compatibilities and synergies between fair-
ness, interpretability and privacy in machine learning.
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Section 2.1.2

Tensions between Fairness and Simplicity - Section 2.1.2.1
e Simplicity and fairness intrinsically conflict

o Empirical trade-offs are complex

Combining Fairness and Interpretability is Challenging - Section 2.1.2.2

e Learning optimal interpretable models under fairness
constraints is computationally challenging

e Explanations may not preserve fairness properties of a model

e Fairness-enhancing methods may require non-interpretable
transformations, hence harming interpretability

Other Unfair Effects of Explainability Methods - Section 2.1.2.3
¢ Post-hoc explanations affect individuals’ privacy in a disparate manner

e Post-hoc explanation frameworks can introduce unfairness by providing
lower-quality explanations to minority groups

o Counterfactual explanation frameworks can harm subgroups of the
population by consistently providing higher-cost recourse

e Post-hoc explanations can be manipulated

\

Section 3.1.1

e Group fairness and differential privacy
are theoretically incompatible

the quality of post-hoc explanations

o Enforcing fairness increases privacy vulnerabilities
o Differential privacy disproportionately affects utility

e Differential privacy disproportionately affects

Section 4.1.2

o Interpretability /Explainability and Privacy
conceptually have opposite goals

o FExplainability tools can be used with the purpose
of designing attacks against machine learning models

[Interpretability}

e Post-Hoc explanations can be exploited to perform
or improve inference attacks

e Interpretable models inherently leak information
regarding their training data

e Providing useful yet privacy-protective explanations
remains an open challenge

Figure A.2: Summary of the identified tensions between fairness, interpretability

and privacy in machine learning.






APPENDIX B

ILP-Based Pruning for
FairCORELS: Additional Results

In this appendix section, we provide additional results regarding the experiments
described in Section 2.4, on the use of Integer Linear Programming based pruning
techniques to enhance the exploration of FairCORELS’s search space.

In Figure B.1, we first provide a detailed version of Figure 2.3, illustrating the
results of the evaluation of our different pruning strategies using the Statistical
Parity fairness metric. More precisely, Figure B.1 additionally includes the three
best-first searches guided by CORELS’s objective, which consistently provide worst
results than the Breadth First Searches with equivalent pruning strategies, as men-
tioned in Section 2.4.1. We then report detailed results for all other considered
fairness metrics (¢f. Table 2.1) in Figures B.2, B.3, and B.4. Interestingly, we
see that the effect of the fairness constraints on the exploration is related to the
amount of bias to be mitigated, which depends on the considered datasets and
fairness metrics. For instance, when dealing with the statistical parity metric with
the COMPAS dataset (Figure B.1a, left), an unfairness tolerance ¢ = 0.10 already
prevents the original FairCORELS from reaching and proving optimality, whatever
search heuristic is used. On the contrary, for the experiments using the predictive
equality metric on the same dataset (Figure B.2a, left), the BFS-guided original
FairCORELS is able to reach and prove optimality for all runs with unfairness toler-
ance € = 0.10. Indeed, this metric, which takes into account the true labels for its
computation (hence correcting a bias of the learning algorithm rather than a bias
of the data as for the statistical parity), conflicts less with accuracy.

Finally, we report in Figure B.5 a summary of our experiments using the Adult
Income dataset, including the ILP-Guided approach. As for Figure 2.4, the left plot
(CPU time as a function of the proportion of instances solved to optimality) omits
the experiments not using our proposed permutation map, as they never reach
optimality. As mentioned in Section 2.4.3, the ILP-Guided strategy consistently
provides the worst results among the proposed pruning methods.
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Figure B.1: Experimental evaluation of our pruning strategies for FairCORELS (left:
COMPAS dataset, right: German Credit dataset) for the Statistical Parity metric.
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Figure B.2: Experimental evaluation of our pruning strategies for FairCORELS (left:
COMPAS dataset, right: German Credit dataset) for the Predictive Equality met-

I1cC.
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(¢c) Solving time as a function of the objective function quality normalized score.

Figure B.3: Experimental evaluation of our pruning strategies for FairCORELS (left:
COMPAS dataset, right: German Credit dataset) for the Equal Opportunity metric.
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(¢) Solving time as a function of the objective function quality normalized score.

Figure B.4: Experimental evaluation of our pruning strategies for FairCORELS (left:
COMPAS dataset, right: German Credit dataset) for the Equalized Odds metric.
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Figure B.5: Experimental evaluation of our pruning strategies for FairCORELS on
the Adult Income dataset (left: CPU time as a function of the proportion of in-
stances solved to optimality, right: CPU time as a function of the objective function

score).



APPENDIX C
Computing Fairness
Sample-Robustness

We introduced in Section 2.5.3 our sample-based robustness notion for statistical
fairness. More precisely, we defined SR(h,D,¢) as the largest Jaccard distance
around the training dataset D such that a classifier h satisfies the fairness constraints
over all subsets of D within this distance. In this appendix section, we show how
SR(h,D,e) can be exactly computed by solving a simple integer programming
model.

As mentioned in Section 2.2, we assume throughout Chapter 2 that D is par-
titioned into two groups: a protected group DP and an unprotected group DY,
based on the value of the sensitive feature(s). All considered fairness metrics are
summarized in Table 2.1. One can note that they are all of the form:

A

<e
GD ~ GP

where for s € {p,u}, FP counts the number of examples satisfying some criterion
among a subset of group s whose cardinality is GP. For instance, consider the Equal
Opportunity fairness metric. Recall that its expression, provided in Table 2.1, is:

‘ TP{;’p TPgu .

D N DF|  |DvNDH

Equal Opportunity aims at equalizing the true positive rates accross the different
protected groups. Then, the subset it considers for group s € {p,u} gathers the
positive examples, and so we have: GP = |D*ND*|. Among such subset, F counts
the number of positively predicted examples: FE = TPZ%,S.

Recall that the Jaccard distance between two sets is computed as the ratio be-
tween the cardinalities of their intersection and their union (Definition 2). Then,
the Jaccard distance between a set and any of its subsets only depends on the sub-
set’s cardinality. In order to estimate SR(h, D, ¢), we will try to find the closest (in
terms of Jaccard distance) subset of D on which the fairness constraint is violated.
We then propose to consider a simple constrained optimization problem, denoted
by ZPSR(h,D,¢), to compute the minimal number of examples that need to be
removed from D to build a subset of examples such that h is not e-fair over it.

Definition 10. (The integer program for quantifying sample-robustness
for fairness) A solution of ITPSR(h,D,¢) is a tuple (fp, fu, Ip, Gu), in which these
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four decision variables represent the number of examples to be removed from D to
form a subset on which the unfairness constraint is violated.

More precisely, fs represents the number of examples of group s satisfying the
given criterion (hence counted within both FP and GP), while gs represents the
number of examples of group s not satisfying the given criterion (hence counted
only within GP). The optimal solution of TPSR(h,D,¢) is the one minimizing the
total number of examples to be removed (C.2) to build the closest (in the Jaccard
sense) subset of D.

TPSR(h,D,e) : (C.1)
min fp+fu+gp + gu (02)
forfu9psgu

| FPD_fP _ FuD_fu |> e
G;P_fp_gp GP—fu—gu

0< fp <EY
0< fu <FP

s.t. (C.3)
(C.4)
(C.5)
0<g, <GP —FP (C.6)
(C.7)
(C.8)
(C.9)

0<g, <GP —FP
fo+9p <GP
fu+gu<GE-

Constraint (C.3) encodes the fact that the fairness constraint must be violated
on the resulting subset. Constraints (C.4) to (C.7) capture the variables’ domains.
Finally, constraints (C.8) and (C.9) enforce that at least one example of each group
is kept (otherwise unfairness is undefined).

Tllustration of TPSR(h,D,e) for an example metric: For the Equal Op-
portunity metric, recall that FsD is the number of positively labeled examples be-
longing to group s that are positively predicted by h (true positives). For this
metric, GSD is the total number of positively labeled examples belonging to group
s. Then, fs represents the number of examples removed from D that belong to
group s and are positively labeled and positively predicted by h. Removing fs such
examples decrements both FP and GP. On the other side, gs is the number of
examples removed from D that belong to group s and are positively labeled and
negatively predicted by h. Removing g, such examples decrements only GP.

In the next proposition, we show that ZPSR(h,D,e) can be used to exactly
compute a classifier’s fairness sample-robustness SR(h, D, ¢).

Proposition 5. (Quantifying Sample-Robustness for fairness using
IPSR(h,D,¢)) Let (f;, fi 95, 9) be the optimal solution of IPSR(h,D,€). Then:

G+ fitete

SR(h,D,¢) D
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Proof. To prove this equality, we will need to prove the two conditions of Defini-
tion 4.
Let 2* = f; + fu + g, + g, be the value of the objective function of the optimal

solution of ZPSR(h,D,c). We define 7" = %' = W. Then:

1. Consider D, the subset of D formed by removing f,; (respectively fr) ex-
amples of group p (respectively u) satisfying the statistical criterion, and
g, (respectively g;) examples of group p (respectively u) not satisfying the
statistical criterion. The bounds of the decision variables of Problem (C.1)
enforce that D* exists. We have: J(D,D*) = W = 7. Addi-
tionally, we know that unf(h,D*) > ¢, because (fy, fy,9y,9s) is a solution
of ZPSR(h,D,e) and then necessarily satisfies Constraint (C.3). Hence,

Vr > 7*,3D' = D* € B(D, 1) such that unf(h,D’) > ¢.

2. Assume that 3D” € B(D,7) with 7 < 7* such that unf(h,D”) > e. Then,
D" is formed by removing z” < z* examples from D. In addition, D" is a
solution to Problem (C.1) as unf(h,D”) > e. This contradicts the fact that
z* is the optimal objective value of Problem (C.1). Hence, V7 < 7*,VD' €
B(D,7),unf(h,D') <e.

Finally, by (1) and (2), 7* = SR(h, D, ¢). O

Finally, one can compute SR(h,D,¢), the fairness sample-robustness of any
fixed classifier h on dataset D for a chosen unfairness metric and tolerance value
g, solving ZPSR(h,D,e). In all our experiments, this simple integer program is
solved within fractions of seconds using the OR-Tools[Perron & Furnon 2019] CP-
SAT solver!. As mentioned in Section 2.5.3, we also proposed in [Ferry et al. 2023b]
a simple, linear-time greedy algorithm upper-bounding SR(h, D, ¢). In a nutshell,
the intuition behind this algorithm is to start from the entire training set D, and
iteratively remove the example maximizing the unfairness violation increase until
the chosen fairness violation level is reached (or there is no more example to remove).
Importantly, at each step, the algorithm needs only consider the four possible moves
corresponding to the four decision variables of ZPSR(h, D, ¢).

"https://github.com/google/or-tools






APPENDIX D
Reconstruction Correction

Models for Multi-Valued
Sensitive Attributes

In this appendix section, we discuss the most general setting in which the sensi-
tive attribute is multi-valued and takes one of |S| values (hence effectively defining
|S| protected groups). One may also observe that this general setting covers the
intersectional fairness notions [Kearns et al. 2018] (also called subgroup fairness)
in which protected groups are defined with respect to combinations of values of
several sensitive attributes. Indeed, the intersectional fairness case can be cast to
the scenario in which we have a single, multi-valued sensitive attribute, by creat-
ing one sensitive attribute value per combination of the attributes considered for
intersectional fairness.

Hereafter, we explain how both models can be extended to handle multi-valued
sensitive attributes reconstruction and discuss the complexity cost induced by this
extension. We begin with the general reconstruction correction model, which is
suitable to encode any constraint on the protected attributes. We then treat the
efficient model, which can be used to encode any rate constraints on the protected
attributes (such as, but not restricted to, statistical fairness constraints).

D.1 General Reconstruction Correction Model

The general reconstruction correction model RC (S , P, f’, €) uses exactly one deci-
sion variable to encode each training example’s sensitive attribute. Extension to the
general multi-valued sensitive attributes case hence requires modifying the domains
of such variables to match that of the sensitive attributes (with |S| different possible
values). The N decision variables now have domain of cardinality |S|. The objec-
tive function sums the (weighted) changes in the adversary’s sensitive attributes
guess, as was done in the binary case in (3.1). |S| constraints ensure that there
is at least one example from each protected group (as was done with (3.2) for the
binary sensitive attribute setting). Finally, one fairness constraint is declared for
each protected group (sensitive attribute value), ensuring that its positive predic-
tion rate is no further than e from that of the entire dataset (as was done with (3.3)
and (3.4) for the binary sensitive attribute setting).

Overall, the size of the search space of RC(S, P,Y,¢) is O(|S|"), which gener-
alizes the binary sensitive attribute case for which it was O(2").
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D.2 Efficient Model for Statistical Fairness

The efficient reconstruction correction model RCg(S ,P,Y, €) uses one decision vari-
able to count the number of changes from one sensitive attribute value to another,
for each pair of sensitive attributes values. Extension to the general multi-valued
sensitive attributes case hence requires declaring O(|S|?) variables. To ensure that
each example is counted only once, O(|S|) constraints must be declared. Fur-
thermore, to quantify the total cost of the performed changes, O(|S|?) element
constraints have to be summed in the objective function, as was performed in (3.5)
in the binary sensitive attributes case. |S| constraints ensure that there is at least
one example from each protected group (as was done with (3.6) and (3.7) for the
binary sensitive attribute setting). Finally, one fairness constraint is declared for
each protected group (sensitive attribute value), ensuring that its positive predic-
tion rate is no further than e from that of the entire dataset (as was done with (3.8)
and (3.9) for the binary sensitive attribute setting).

Overall, the size of the search space of RCg(S, P,Y, g) is O(N“g'z), which gen-
eralizes the binary sensitive attribute case for which it was O(N%).



APPENDIX E

Sensitive Attributes

Reconstruction Correction:
Additional Experiments

In this appendix section, we provide results for additional experiments using a pre-
processing method for fairness: the CorrelationRemover method, implemented in
the Fairlearn library [Bird et al. 2020]. In a nutshell, the CorrelationRemover
transforms the training set unsensitive attributes in order to remove their correla-
tions with the sensitive ones. A traditional machine learning algorithm is then used
on the sanitized data (pre-processed unsensitive attributes) to produce a fair model.
When using this model for inference on unseen data, the transformation learnt by
the CorrelationRemover has to be performed (on the unsensitive attributes) first.

The CorrelationRemover does not optimize statistical fairness metrics explicitly.
Indeed, bias against sensitive attributes is removed before training the model, in
the data pre-processing step. Hence, in order to perform sensitive attributes recon-
struction correction, one has to infer some fairness information. To do so, we use
the strategy described in Section 3.4.2: the attacker measures the target model’s
unfairness on its own attack set, and chooses the metric with the smallest value.
The experimental setup is similar to that of Section 3.3.3. However, because the
CorrelationRemover method does not optimize a particular fairness metric nor a
particular tolerance value, we only perform one experiment for each dataset (re-
peated 100 times with different random seeds).

The results presented in Table E.1 show that even in this context, the reconstruc-
tion correction step still provides significant reconstruction accuracy improvements.
In all situations, the attacker was able to infer a valid fairness constraint and to
leverage it to improve the initial sensitive attributes reconstruction. Finally, these
additional experiments confirm that the type of fairness intervention does not in-
fluence the performances of our proposed reconstruction correction step. The key
factor for allowing reconstruction correction is that the predictions of the target
model should be more fair than the original data. In this situation, the original
attacker’s reconstruction will likely be more biased than the (fair) target model’s
predictions, which will allow some reconstruction correction.
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Table E.1: Summary of the results of our sensitive attributes reconstruction correc-
tion experiments using a pre-processing method for fairness, with the attacker infer-
ring the fairness information. We report the accuracy performances of the trained
(target) model, the results of the fairness constraint estimation process (inferred
metrics and average inferred tolerance), and the reconstruction performances.

Target model h Reconstruction Accuracy

Estimated Constraint

(under attack) Baseline Corrected

Train Test Estimated FEstimated , ,

Ace. Ace. Metric Tolerance A A A A
UCI Adult Income dataset

0.860 0.848 PE (68%), 0.023 0.808 0.806 0.828 0.827

£0.003 £0.003 | EO (32%) +0.013 +0.005 £0.005 | £0.013 £0.014
ACSPublicCoverage dataset

0.862 0.852 PE (92%), 0.006 0.861 0.860 0.863 0.872
+0.001  £0.002 SP (8%) +0.004 +0.005 +£0.006 | +£0.005 4+0.010
ACSIncome dataset
0.798 0.785 PE (100%) 0.056 0.690 0.685 0.704 0.763

£0.002  £0.003 +0.016 +0.007 +£0.008 | £0.014 +0.009




APPENDIX F

Dataset Reconstruction from
Interpretable Models:
Additional Results

We observed in Section 4.5.2 that optimal models (either decision trees or rule
lists) usually contain more information than greedily-built ones of the same size.
However, when related to the models’ utility (accuracy on the training data), this
trend is reversed, and optimal models leak less information regarding their training
data than greedily-built ones for the same performances level. This was explained
by the fact that greedy learning algorithms iteratively make local choices that are
sub-optimal, overall adding unnecessary information to the resulting model (e.g.,
performing more splits than necessary within decision trees).

In this appendix section, we relate the amount of information an interpretable
model carries to the size constraints that were enforced to build it. More precisely,
we report in Figures F.la and F.2a the resulting model size as a function of the
maximum depth constraint, for the different minimum support constraints. Again,
the model size is quantified as the number of internal nodes for a decision tree, or as
the number of rules for width-1 rule lists. We also report in Figures F.1b and F.2b
the overall entropy reduction ratio, as a function of the maximum depth constraint.

One can observe in Figure F.1a that, as expected, the number of internal nodes
within the built decision trees grows with the maximum depth value. Enforcing
large values of the (relative) minimum leaf support quickly prevents the trees from
expanding, as no split can be performed while satisfying the minimum support
constraint. Hence, as expected, lowering the minimum support value leads to the
computation of larger decision trees. Comparing greedily-built and optimal decision
trees, one can note that the models learnt by sklearn_ DT contain more nodes
than the optimal ones built using DL8.5, for the same provided parameters (i.e.,
minimum leaf support and maximum depth values). This can be explained by
the fact that sklearn_DT often adds non-necessary splits as it iteratively performs
local, sub-optimal choices. Meanwhile, many branches do not reach the enforced
maximum depth within the optimal decision trees thanks to the performed global
optimization which considers a split only if it is necessary. As a consequence, we
observe in Figure F.1b (left) that, for fixed parameters, the decision trees produced
by sklearn_DT on the Adult Income dataset contain more information than those
learnt by DL8.5. For the COMPAS dataset (Figure F.1b (right)), we observe the
opposite trend. This can be explained by two observations. First, the size difference
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(a) Experiments relating the actual models’ sizes to the size constraints enforced during
learning. We report tree size (number of splits/internal nodes) as a function of the maximum
depth constraint.
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(b) Experiments relating the entropy reduction ratio to the size constraints enforced during
learning. We report the entropy reduction as a function of the maximum depth constraint.

—— DL8.5 e min support 0.01 min support 0.03 e min support 0.05
--e-- sklearn_DT min support 0.02 e min support 0.04

Figure F.1: Results of our experiments comparing optimal and greedily-built de-
cision trees (learnt respectively with DL8.5 and sklearn_DT), for different (rela-
tive) minimum leaf support values. Left: Adult Income dataset, Right: COMPAS
dataset.

between optimal and greedily-built decision trees is smaller on the COMPAS dataset
(Figure F.la (right)) than on the Adult dataset (Figure F.la (left)). Then, in
average, we saw within Section 4.5.2 (Figure 4.2a) that, for equivalent sizes, the
optimal decision trees carry more information than the greedily-built ones.

Figure F.2a shows that, as expected, the number of rules within the built rule
lists grows with the enforced maximum depth value. As for the decision trees,
largest values of the enforced minimum rule support prevent expansion of the rule
lists, when no rule satisfying the minimum support constraint can be found. This
is particularly true for the greedy learning algorithm. Indeed, at each iteration,
the algorithm selects a rule maximizing a given criterion (i.e., minimizing Gini
Impurity). Then, the examples not captured by the rules fall into the rest of the
rule list, and are used for the next iterations. If the algorithm selects rules with large
supports during the first iterations, there may be too few remaining examples to be
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(a) Experiments relating the actual models’ sizes to the size constraints enforced during
learning. We report rule list size (number of rules) as a function of the maximum depth
constraint.
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(b) Experiments relating the entropy reduction ratio to the size constraints enforced during
learning. We report the entropy reduction as a function of the maximum depth constraint.

—+— CORELS e min support 0.01 min support 0.03 * min support 0.05
--e-- GreedyRL min support 0.02 e min support 0.04

Figure F.2: Results of our experiments comparing optimal and greedily-built rule
lists (learnt respectively with the CORELS and GreedyRL algorithms), for different

(relative) minimum rule support values. Left: Adult Income dataset, Right: COM-
PAS dataset.

able to add new rules. This drawback is not observed with CORELS, as it performs
global optimization. As a direct consequence, one can see in Figure F.2b that, for
fixed parameters (i.e., minimum rule support and maximum depth values), the rule
lists built using CORELS contain more information than those produced by GreedyRL.
This trend is related to the observed size difference, but is also exacerbated by the
fact that, as observed in Section 4.5.2 (Figure 4.3a), optimal rule lists usually encode
more information that greedily-built ones of equivalent size.
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