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Supervised Learning

Notations - Classification
Let D = (X ,Y ) be a dataset. Each example ei ,i∈[1..|D|] = (xi , yi ) ∈ D,
where:

xi is the vector of attributes

yi is the label associated to ei

Classification: Problem Formulation
Given training dataset D drawn from an (unknown) underlying distribution
P, and hypothesis class H, the objective of a supervised learning algorithm
is to build a model h ∈ H solution to the following optimization problem:

argmin
h∈H

fobj(h,D) (1)

Let ŷi be the prediction of classifier h for example ei
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Fairness in Machine Learning I

The problem of dataset bias

Supervised learning models learn correlations contained in the training data

What if some correlations are undesirable or not relevant ?

Gender Education Age Income >50K$
Male Master 25 No
Female Master 25 No
Female Dropout 50 No
Male Dropout 50 No
Male Master 50 Yes
Female Master 50 No

Table: Example of biased dataset
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Fairness in Machine Learning II

Group/Statistical Fairness in Machine Learning

Features space is partitioned into sensitive and unsensitive attributes: each example
ei,i∈[1..|D|] = (xi , ai , yi ) ∈ D, where:
I xi is the vector of unsensitive attributes
I ai is the vector of sensitive attributes, defining ei ’s membership to protected groups
I yi is the label associated à ei

Main principle: ensure that some measure differs by no more than ε between several
protected groups
Many metrics proposed, depending on the measure to be equalized
I e.g., Statistical Parity: Equalize probability of being assigned to the positive class:

∀j ,∀k : |P(ŷ = 1|a = j)− P(ŷ = 1|a = k)|≤ ε

I e.g., Equal Opportunity: Equalize false negative rates:

∀j , ∀k : |P(ŷ = 0|y = 1, a = j)− P(ŷ = 0|y = 1, a = k)|≤ ε
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Fairness in Machine Learning III

Supervised Fair Learning: A Bi-Objective Optimization Problem

Let unf(·) be an unfairness oracle. A common formulation of the Fair Learning
problem is:

argmin
h∈H

fobj(h,D) (2)

s.t. unf(h,D) ≤ ε

where one wants to build model h minimizing objective function fobj and exhibiting
unfairness at most ε (on training dataset D)
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Distributionally Robust Optimization

Distributionally Robust Optimization (DRO)

Instead of minimizing objective function fobj for a given distribution P, DRO aims at
minimizing fobj for a worst-case distribution among a set of perturbations of
P [Sagawa et al., 2019]

Such neighbouring distributions define a perturbation set B(P)
The problem of distributionally robust supervised learning can be rewritten as:

argmin
h∈H

max
Q∼B(P)

fobj(h,Q) (3)
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Fairness Generalization - Related Work

Fairness Generalization
Does fairness on training data imply fairness on unseen data?
I In practice, it is often not the case, and fairness constraints overfitting can occur [Cotter

et al., 2018, 2019]

Related Work
Methods have been proposed recently to address this issue: [Cotter et al., 2018,
2019; Chuang and Mroueh, 2021; Huang and Vishnoi, 2019; Mandal et al., 2020;
Sagawa et al., 2019; Taskesen et al., 2020; Wang et al., 2021]

Such methods often present applicability and/or scalability limits
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Proposed Formulation I

Intuition
Each subset of D with sufficiently important size has a distribution slightly different
to that of D
Hence, ensuring fairness on D, but also on some of its subsets is a form of
distributionally robust optimization
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Proposed Formulation II

Formalization
We consider n random binary masks, defining n random subsets of the training set

Each maskMi is a vector of size |D|, where each coordinateMij ∈ {0, 1} indicates
whether example ej belongs to the i th subset

We define our perturbation set as:
B(D, n) = {D} ∪ {Di,i∈[1..n]| ∀ej ∈ Di , ej ∈ D ∧Mij = 1}
Our formulation of the Distributionally Robust Fair Learning problem is:

argmin
h∈H

fobj(h,D) (4)

s.t. max
∀D′∈B(D,d)

unf(h,D′) ≤ ε
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Integration into an Existing Method

Distributionally Robust FairCORELS

Based on the source code of FairCORELSa [Aïvodji et al., 2019]

Finds model r solution to the following problem:

argmin
r∈R

fobj FairCORELS(r ,D)

s.t. unf(h,D) ≤ ε
max

∀D′∈B(D,n)
unf(h,D′) ≤ ε

Can be implemented without significant running time overhead

ahttps://github.com/ferryjul/fairCORELS
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Experimental Setup

Setup description
We compare:
I The original FairCORELS [Aïvodji et al., 2019]
I Our Distributionally Robust FairCORELS for n = 10 masks
I Our Distributionally Robust FairCORELS for n = 30 masks

For each method, we generate sets of solutions with different accuracy/fairness
tradeoffs, by varying the fairness constraint
We repeat the experiment for:
I Five fairness metrics:

F Statistical Parity [Dwork et al., 2012]
F Predictive Parity [Chouldechova, 2017]
F Predictive Equality [Chouldechova, 2017]
F Equal Opportunity [Hardt et al., 2016]
F Equalized Odds [Hardt et al., 2016]

I Four biased datasets:
F Adult Income dataset [Frank and Asuncion, 2010]
F COMPAS dataset [Angwin et al., 2016]
F Default Credit dataset [Yeh and Lien, 2009]
F Bank Marketing dataset [Moro et al., 2014]
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Results

Strategy 10 masks 30 masks no mask
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Figure: Results obtained on the Adult Income dataset, for the Equal Opportunity
metric
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Conclusion

We propose a heuristic approach to Distributionally Robust and Fair
Learning that:

Benefits from its simplicity in terms of
I Integrability
I Scalability
I Genericity

Practically improves fairness generalization

Perspectives

Study the effect on fairness generalization of:
I the number of masks n
I the size of the random subsets

Integration into other existing fair learning algorithms
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Other Results I
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Figure: Results obtained on the Default Credit dataset, for the Predictive
Equality metric
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Other Results II

Strategy 10 masks 30 masks no mask
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Figure: Results obtained on the COMPAS dataset, for the Statistical Parity
metric
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FairCORELS I

Rule Lists: Definition
Rule lists [Rivest, 1987] are classifiers formed by an ordered list of if-then
rules with antecedents in the if clauses and predictions in the then clauses.
More precisely, a rule list r = ({pk,k∈{1..K}}, {qk,k∈{1..K}}, q0) consists of
K distinct association rules pk → qk , in which pk is the antecedent of the
association rule and qk its associated consequent, followed by a default
prediction q0.

A possible rule list for the example dataset of slide 3 (with 100% accuracy)
i f [ Educat ion : Dropout ] then [ low ]
e l s e i f [ Gender : Male AND Age>45] then [ h i gh ]
e l s e [ low ]
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FairCORELS II

FairCORELS Problem Formulation
Based on the CORELS algorithm [Angelino et al., 2017a,b]

FairCORELS [Aïvodji et al., 2019] returns rule list r∗ that is a solution to the
following problem:

argmin
r∈R

misc(h,D) + λ.Kr

s.t. unf(h,D) ≤ ε

where:
I R is the space of rule lists
I D denotes the training dataset
I Kr is the length of rule list r
I λ is a regularization parameter balancing sparsity and accuracy
I misc(·) is the misclassification error and unf(·) measures unfairness
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FairCORELS III

FairCORELS search space

FairCORELS represents the search space of rule lists as a prefix tree (trie)

FairCORELS leverages several bounds to efficiently explore this search space
(including CORELS’ original bounds)

ROOT

Age>25Gender:MaleAge<=25 Gender:Female

Gender:Male Age>25 Gender:Female Age<=25 Age>25 Gender:Female Gender:FemaleAge<=25Gender:Male Gender:Male Age<=25

Age>25

Age>25

Gender:Female Gender:Male Gender:Female Gender:Male Age>25 Gender:Female Age<=25Age>25Age>25 Age>25 Gender:Female Age<=25 Age>25Age<=25 Gender:Female Age<=25 Gender:Male Gender:Female Gender:Male Age<=25 Age<=25 Age>25 Gender:Male Age>25 Age<=25 Gender:Male

Gender:Female Age>25 Gender:Female Gender:Male Gender:Male Gender:Female Age>25 Gender:FemaleAge>25 Age<=25 Age>25 Age<=25 Age<=25 Gender:Female Gender:Female Gender:Male Age<=25 Gender:Male Age>25 Age<=25 Gender:MaleAge>25 Gender:Male Age<=25

Figure: Example prefix tree with 4 attributes
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