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Notations - Classification

Let D = (X, Y) be a dataset. Each example €; jc(1..jp|] = (Xi, i) € D,
where:

@ X; is the vector of attributes

@ y; is the label associated to ¢;

Classification: Problem Formulation

Given training dataset D drawn from an (unknown) underlying distribution
P, and hypothesis class #, the objective of a supervised learning algorithm
is to build a model h € H solution to the following optimization problem:

argmin  fopi(h, D) (1)
heH

Let y; be the prediction of classifier h for example e;

Background
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The problem of dataset bias

@ Supervised learning models learn correlations contained in the training data

@ What if some correlations are undesirable or not relevant ?

Fairness in Machine Learning |

l Gender [ Education [

Age | Income >50K$ |

Male Master 25 No
Female | Master 25 No
Female | Dropout 50 No
Male Dropout 50 No
Male Master 50 Yes
Female | Master 50 No

Table: Example of biased dataset
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Group/Statistical Fairness in Machine Learning

@ Features space is partitioned into sensitive and unsensitive attributes: each example
& icf1..|p|] = (Xi, ai, yi) € D, where:

> x; is the vector of unsensitive attributes
> a; is the vector of sensitive attributes, defining e;'s membership to protected groups

> y; is the label associated a ¢;

@ Main principle: ensure that some measure differs by no more than e between several
protected groups

@ Many metrics proposed, depending on the measure to be equalized
> e.g., Statistical Parity: Equalize probability of being assigned to the positive class:

Vi,Vk: |P(y =1lla=j)— Py =1la=k)|<e
> e.g., Equal Opportunity: Equalize false negative rates:

Vj,Vk:|P(§=0ly =1,a=j) - P(y =0y =L, a=k)[<e

Background
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Supervised Fair Learning: A Bi-Objective Optimization Problem

@ Let unf(:) be an unfairness oracle. A common formulation of the Fair Learning
problem is:

arg min fobj(h, D) (2)
heH

st.  unf(h,D) <e¢

where one wants to build model h minimizing objective function f,s; and exhibiting
unfairness at most e (on training dataset D)

Background
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Distributionally Robust Optimization (DRO)

@ Instead of minimizing objective function fop; for a given distribution P, DRO aims at
minimizing f; for a worst-case distribution among a set of perturbations of
P [Sagawa et al., 2019]

@ Such neighbouring distributions define a perturbation set B(P)

@ The problem of distributionally robust supervised learning can be rewritten as:

arg min max_ fopj(h, Q 3
s oNB(P) bi(h, Q) 3)

Background
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Fairness Generalization

@ Does fairness on training data imply fairness on unseen data?

> In practice, it is often not the case, and fairness constraints overfitting can occur [Cotter
et al., 2018, 2019]

Related Work

@ Methods have been proposed recently to address this issue: [Cotter et al., 2018,
2019; Chuang and Mroueh, 2021; Huang and Vishnoi, 2019; Mandal et al., 2020;
Sagawa et al., 2019; Taskesen et al., 2020; Wang et al., 2021]

@ Such methods often present applicability and/or scalability limits

Distributionally Robust Fair Learning
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@ Each subset of D with sufficiently important size has a distribution slightly different
to that of D

@ Hence, ensuring fairness on D, but also on some of its subsets is a form of
distributionally robust optimization

Distributionally Robust Fair Learning
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Formalization

@ We consider n random binary masks, defining n random subsets of the training set

@ Each mask M; is a vector of size |D|, where each coordinate M;; € {0, 1} indicates
whether example e; belongs to the i subset

@ We define our perturbation set as:
B(D, n) = {D} U{D; icpr..n)| V& € Di,ef € DA M;; =1}

@ Our formulation of the Distributionally Robust Fair Learning problem is:

arg min fobj(h, D) (4)
heH
s.t. max unf(h,D’) <e
VD’ €B(D,d)

Distributionally Robust Fair Leal
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Distributionally Robust FairCORELS

@ Based on the source code of FairCORELS? [Aivodji et al., 2019]

@ Finds model r solution to the following problem:

arg min fobjraircorers(r, D)
reR
s.t. unf(h,D) < e
max unf(h,D’) <e¢
VD! €B(D,n)

@ Can be implemented without significant running time overhead

“https://github.com/ferryjul /fairCORELS

Experimental Evaluation
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Setup description

@ We compare:

> The original FairCORELS [Aivodji et al., 2019]
» Our Distributionally Robust FairCORELS for n = 10 masks
» Our Distributionally Robust FairCORELS for n = 30 masks

@ For each method, we generate sets of solutions with different accuracy/fairness
tradeoffs, by varying the fairness constraint

@ We repeat the experiment for:

> Five fairness metrics:
* Statistical Parity [Dwork et al., 2012]
* Predictive Parity [Chouldechova, 2017]
*  Predictive Equality [Chouldechova, 2017]
* Equal Opportunity [Hardt et al., 2016]
* Equalized Odds [Hardt et al., 2016]

> Four biased datasets:
*  Adult Income dataset [Frank and Asuncion, 2010]
* COMPAS dataset [Angwin et al., 2016]
* Default Credit dataset [Yeh and Lien, 2009]
* Bank Marketing dataset [Moro et al., 2014]
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Strategy * 10 masks + 30 masks ¢ no mask
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Figure: Results obtained on the Adult Income dataset, for the Equal Opportunity
metric
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We propose a heuristic approach to Distributionally Robust and Fair

Learning that:

@ Benefits from its simplicity in terms of

> Integrability
> Scalability
> Genericity

@ Practically improves fairness generalization

Perspectives

@ Study the effect on fairness generalization of:

> the number of masks n
> the size of the random subsets

@ Integration into other existing fair learning algorithms

Conclusion
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Figure: Results obtained on the Default Credit dataset, for the Predictive

Equality metric
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Figure: Results obtained on the COMPAS dataset, for the Statistical Parity

metric
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Rule Lists: Definition

Rule lists [Rivest, 1987] are classifiers formed by an ordered list of if-then
rules with antecedents in the if clauses and predictions in the then clauses.
More precisely, a rule list r = ({Px kef1.k}} {9kkef1.k}}> o) consists of
K distinct association rules px — g, in which pj is the antecedent of the
association rule and g its associated consequent, followed by a default
prediction qg.

A possible rule list for the example dataset of slide 3 (with 100% accuracy)

if [Education:Dropout] then [low]
else if [Gender:Male AND Age>45] then [high]
else [low]
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FairCORELS Problem Formulation

@ Based on the CORELS algorithm [Angelino et al., 2017a,b]

@ FairCORELS [Aivodji et al., 2019] returns rule list r* that is a solution to the
following problem:

argmin  misc(h, D) + A.K,
rerR

s.t. unf(h,D) < e

where:

v

R is the space of rule lists

D denotes the training dataset

K; is the length of rule list r

A is a regularization parameter balancing sparsity and accuracy
misc(+) is the misclassification error and unf(-) measures unfairness

vyvYyy
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FairCORELS search space

@ FairCORELS represents the search space of rule lists as a prefix tree (trie)

@ FairCORELS leverages several bounds to efficiently explore this search space
(including CORELS' original bounds)

Age<=25 (L ERYE Age>25

Gender:Malel Age>25 MGender:FemalegRA ge<—25R Age>25 AGender:FemalelGender:Male

2 GenderF

cndn:rm.l.v\m».gac-ﬂmnml. \,u—am -2 YGender Femal e~

Gender:Malc JGRMRRES der:Mal hge-2)

der:Female Age<~25XGender: Femaled Age<-25) JCRRERTEL A2 o ic JOSSREARIEL
= <=2 X Gender FemalefGender:Femal] 1 1

Figure: Example prefix tree with 4 attributes
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