AAS 24ème Congrès Annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision ROADEF 2023 Rennes

Exploiting Fairness to Enhance Sensitive Attributes Reconstruction

Julien Ferry¹, Ulrich Aïvodji², Sébastien Gambs³, Marie-José Huguet¹ and Mohamed Siala¹

¹LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France ²École de Technologie Supérieure, Montréal, Canada ³Université du Québec à Montréal, Montréal, Canada

February 23, 2023

Background

2 Leveraging Fairness for Sensitive Attributes Reconstruction

3 Experimental Evaluation

4 Conclusion

Background

- Notations
- Fairness in Machine Learning
- Sensitive Attributes Reconstruction Attack

2 Leveraging Fairness for Sensitive Attributes Reconstruction

3 Experimental Evaluation

4 Conclusion

Classification

- Consider some high-stakes decision making task, such as college admissions
- Consider a labeled dataset $D = (X, S, Y) \in (\mathcal{X} \times \mathcal{S} \times \mathcal{Y})^N$ such that:
 - X is a set of unsensitive attributes, which can be used for decision making (e.g., high school grades)
 - S is a set of sensitive attributes, which should not be used for decision making (e.g., gender)
 - ▶ Y is the ground truth label (e.g., admission decision (yes/no))

Statistical Fairness Metrics: Principle

- Several protected subgroups defined by the different values of the sensitive attributes
- Statistical/Group Fairness: Ensure that some statistical measure M of a classifier's h
 outputs differs by no more than a given tolerance ε between the different protected
 groups and the overall dataset

Fair Learning Problem

A fair learning procedure *L* aims to produce a fair classifier *h* : *X* → *Y* minimizing some objective function obj(.) over some hypothesis space *H*

arg min $h \in \mathcal{H}$ obj(h, D) Statistical measure (e.g., positive prediction rate for the Statistical Parity fairness metric) s.t. $\forall s \in S$, $|\mathcal{M}(h, \{e \in D\}) - \mathcal{M}(h, \{e \in D \mid s_e = s\})| \leq \epsilon \leftarrow$ Unfairness tolerance

Reconstruction Attacks

- *Reconstruction Attacks* are a type of *inference attack* first proposed against database access mechanisms [Dinur and Nissim, 2003]
 - An adversary knows an entire database except one private column, and tries to reconstruct it

Sensitive Attributes Reconstruction Attack

- An adversary with some auxiliary knowledge (e.g., (X, Y)) has black-box access to fair model h trained on D
- The adversary wants to reconstruct the training set sensitive attributes column S (which h does not use for decision-making)

Background

2 Leveraging Fairness for Sensitive Attributes Reconstruction

- Proposed Framework
- General Reconstruction Corrector Model
- Efficient Reconstruction Corrector Model

3 Experimental Evaluation

4 Conclusion

Proposed Framework

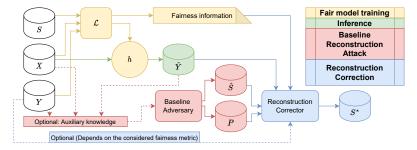


Figure: The proposed attack framework.

- **(1)** A model h is learnt by the fair learning procedure \mathcal{L} and used for inference
- 2 A Baseline Adversary tries to reconstruct the sensitive attributes S of h's training set
- **③** Our proposed *Reconstruction Corrector* component takes as input the Baseline Adversary's reconstruction \hat{S} and corrects it to comply with the fairness information

The Integer Programming Model $\mathcal{RC}(\hat{S}, P, \hat{Y}, \epsilon)$

Inputs:

- $\hat{s}_i \in \{0, 1\}, i = 1, \dots, N$ (baseline adversary's reconstruction)
- $p_i \in \{0, 1\}, i = 1, \dots, N$ (adversary's confidence for \hat{s}_i)
- $\hat{y}_i \in \{0, 1\}, i = 1, \dots, N \text{ (target model h's predictions)}$
- Fairness information: h satisfies fairness constraints for some metric (e.g., SP) and some tolerance ϵ

Decision variables:

s^{*}_i ∈ {0,1}, i = 1,..., N (corrected sensitive attributes reconstruction)

Confidence-weighted #changes to
$$\hat{S} \xrightarrow{\text{min}} \sum_{i=1}^{N} (p_i \cdot (1 - \hat{s}_i) \cdot s_i^*) + \sum_{i=1}^{N} (p_i \cdot \hat{s}_i \cdot (1 - s_i^*))$$
 (1)

At least one example in each group $\xrightarrow{s.t.:} 0 < \sum_{i=1}^{N} s_i^* < N$ (2)

Group 1 fairness constraint
$$\longrightarrow -\epsilon \leq \frac{\sum_{i=1}^{N} \hat{y}_i}{N} - \frac{\sum_{i=1}^{N} \hat{y}_i \cdot s_i^*}{\sum_{i=1}^{N} s_i^*} \leq \epsilon$$
 (3)

Group 0 fairness constraint
$$\longrightarrow -\epsilon \leq \frac{\sum_{i=1}^{N} \hat{y}_i}{N} - \frac{\sum_{i=1}^{N} \hat{y}_i \cdot (\mathbf{1} - s_i^*)}{\sum_{i=1}^{N} (\mathbf{1} - s_i^*)} \leq \epsilon$$
 (4)

Pros and Cons

- ullet (+) Can encode any constraint over the sensitive attributes
- (-) Exponential search space (w.r.t. the number of examples N): not scalable
 - For statistical fairness constraints: don't need such granularity as only counts (per protected group/per prediction/per label) matter

The Constraint Programming Model $\mathcal{RC}_{\mathcal{E}}(\hat{S}, P, \hat{Y}, \epsilon)$

- Inputs:
 - Baseline reconstruction cardinalities n_1^+ , n_0^+ , n_1^- and n_0^-
 - Arrays of sorted and cumulated adversary's confidences for each example's baseline reconstruction: T_{1^+} , T_{0^+} , T_{1^-} and T_{0^-}
 - Fairness information: h satisfies fairness constraints for some metric (e.g., SP) and some tolerance ϵ
- Decision variables:
 - ▶ $s_{01}^+ \in [0, n_0^+]$: number of changes of \hat{s}_i from 0 to 1, for examples such that $\hat{y}_i = 1$
 - $s_{10}^+ \in [0, n_1^+]$: number of changes of \hat{s}_i from 1 to 0, for examples such that $\hat{y}_i = 1$
 - $s_{01} \in [0, n_0]$: number of changes of \hat{s}_i from 0 to 1, for examples such that $\hat{y}_i = 0$
 - $s_{10}^- \in [0, n_1^-]$: number of changes of \hat{s}_i from 1 to 0, for examples such that $\hat{y}_i = 0$
- For instance, consider that re-establishing fairness requires to swap five positively predicted examples' sensitive attributes from 0 to 1
 - ▶ Then, $s_{01}^+ = 5$ and $T_{0^+}[s_{01}^+]$ is the cost of changing the sensitive attribute value from 0 to 1 for five examples positively predicted

The Constraint Programming Model $\mathcal{R}C_{\mathcal{E}}(\hat{S}, P, \hat{Y}, \epsilon)$

Confidence-weighted #changes to
$$\hat{S} \xrightarrow{\text{min}} T_{0+}[s_{01}^+] + T_{1+}[s_{10}^+] + T_{0-}[s_{01}^-] + T_{1-}[s_{10}^-]$$
 (5)
At least one example in group $0 \xrightarrow{\text{min}} t = -t = -t = -t = -t$

st one example in group
$$0 \xrightarrow{s.t.} n_0^+ + n_0^- - s_{01}^+ - s_{01}^- + s_{10}^+ + s_{10}^- > 0$$
 (6)

At least one example in group
$$1 \longrightarrow n_1^+ + n_1^- - s_{10}^+ - s_{10}^- + s_{01}^+ + s_{01}^- > 0$$
 (7)

Group 1 fairness constraint
$$\longrightarrow -\epsilon \leq \frac{\sum_{i=1}^{N} \hat{y}_i}{N} - \frac{n_1^+ - s_{10}^+ + s_{01}^+}{n_1^+ + n_1^- - s_{10}^+ - s_{01}^- + s_{01}^- + s_{01}^-} \leq \epsilon$$
 (8)

Group 0 fairness constraint
$$\longrightarrow -\epsilon \leq \frac{\sum_{i=1}^{N} \hat{y}_i}{N} - \frac{n_0^+ - s_{01}^- + s_{10}^-}{n_0^+ + n_0^- - s_{01}^+ - s_{01}^- + s_{10}^-} \leq \epsilon$$
 (9)

Pros and Cons

- (+) Polynomial search space (w.r.t. the number of examples N): scalable
 - Solved to optimality in fractions of seconds in all our experiments with N > 100,000
- (-) Can only encode group-level constraints over the sensitive attributes

Background

2 Leveraging Fairness for Sensitive Attributes Reconstruction

3 Experimental Evaluation

- Experimental Setup
- Results
- Other Experiments' Takeaways

Conclusion

Setup Description: Learning Fair (Target) Models

- (Target) Fair models are learnt using the Fairlearn library [Bird et al., 2020]
- A wide range of <u>unfairness tolerances</u> with four <u>fairness metrics</u>:
 - Statistical Parity [Dwork et al., 2012]
 - Predictive Equality [Chouldechova, 2017]
 - Equal Opportunity [Hardt et al., 2016]
 - Equalized Odds [Hardt et al., 2016]
- Three biased <u>datasets</u> with diverse characteristics:

Dataset	Binary Prediction Task	#Datapoints	#Non-Sensitive Features	Sensitive Feature
UCI Adult Income [Dua and Graff, 2017]	Income above \$50K	45,222	7 categorical, 6 numerical	Gender (Male/Female)
ACSPublicCoverage [*] [Ding et al., 2021]	Coverage from public health insurance	98,928	17 categorical, 1 numerical	Age (First Quartile/Others)
ACSIncome [*] [Ding et al., 2021]	Income above \$50K	135,924	7 categorical, 2 numerical	Race Code (White/Other)
*(Texas State, 2018)				

Setup Description: Reconstruction Attack

- Baseline Adversary's Reconstruction: ML-based adversary proposed by Aalmoes et al. [2022], as informed as our Reconstruction Corrector component
 - ► ⇒ Strongest baseline possible
- Corrected Reconstruction: our proposed efficient model $\mathcal{RC}_{\mathcal{E}}(\hat{S}, P, \hat{Y}, \epsilon)$ is solved using IBM ILOG CP Optimizer and its default configuration

Results

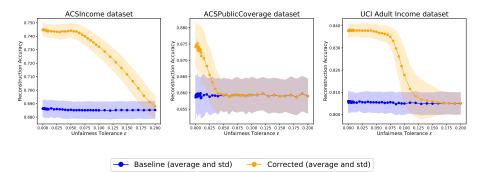


Figure: Baseline and corrected reconstruction quality, for our experiments using the Statistical Parity metric

Additional Contributions

- The attack success does not depend on the type of fairness intervention (pre-processing, in-processing, post-processing) as black-box access to the model's predictions are sufficient
- Even if it is not revealed explicitly, the fairness information can be inferred and the attack still succeeds (and sometimes, even perform better!)
- Considering a weaker baseline adversary, baseline reconstruction performances are lower but our reconstruction correction step provides accuracy improvements of comparable magnitude

Background

2 Leveraging Fairness for Sensitive Attributes Reconstruction

3 Experimental Evaluation

Summary

- We propose a novel approach to improve sensitive attributes reconstruction by a baseline adversary by incorporating user-defined constraints
- We introduce two models implementing such approach, with genericity or efficiency advantages
- Our results show that the fairness information can be leveraged to improve the success of sensitive attributes reconstruction attacks

Future Work

- Combining our attack with different baseline adversaries
- Applying our framework in the context of multi-valued sensitive attributes

Contact

- Email: jferry@laas.fr
- Homepage: https://homepages.laas.fr/jferry/

Links

- Full paper @SATML 2023 The 1st IEEE Conference on Secure and Trustworthy Machine Learning: https://openreview.net/forum?id=t0Vr0HLaFz0
- Source code:

https://github.com/ferryjul/SensitiveAttributesReconstructionCorrector/

- Aalmoes, J., Duddu, V., and Boutet, A. (2022). Dikaios: Privacy auditing of algorithmic fairness via attribute inference attacks. *arXiv preprint arXiv:2202.02242*.
- Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., and Wallach, H. M. (2018). A reductions approach to fair classification. In Dy, J. G. and Krause, A., editors, *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of Proceedings of Machine Learning Research, pages 60–69. PMLR.
- Bird, S., Dudík, M., Edgar, R., Horn, B., Lutz, R., Milan, V., Sameki, M., Wallach, H., and Walker, K. (2020). Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report MSR-TR-2020-32, Microsoft.
- Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. *Big data*, 5(2):153–163.
- Ding, F., Hardt, M., Miller, J., and Schmidt, L. (2021). Retiring adult: New datasets for fair machine learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 6478–6490.
- Dinur, I. and Nissim, K. (2003). Revealing information while preserving privacy. In Neven, F., Beeri, C., and Milo, T., editors, *Proceedings of the Twenty-Second ACM* SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA, pages 202–210. ACM.

- Dua, D. and Graff, C. (2017). UCI machine learning repository.
- Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226. ACM.
- Hardt, M., Price, E., Srebro, N., et al. (2016). Equality of opportunity in supervised learning. In *Advances in neural information processing systems*, pages 3315–3323.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.

- We know that h is fair on its training dataset D = (X, S, Y)
- $\bullet\,$ Yet, the reconstruction \hat{S} outputted by some baseline adversary may not comply with the fairness information
- Then, if *h* is not fair on (X, \hat{S}, Y) , we know that $\hat{S} \neq S$
- \implies We post-process \hat{S} to compute S^* , a corrected version complying with the fairness information and minimizing the confidence-weighted changes to \hat{S}

Setup Description: Reconstruction Attack

- (Target) Fair models are learnt using the ExponentiatedGradient [Agarwal et al., 2018] fair in-processing method (Fairlearn library [Bird et al., 2020]) with scikit-learn [Pedregosa et al., 2011] DecisionTreeClassifiers as base learners
- Baseline Adversary Original Reconstruction: ML-based adversary proposed in [Aalmoes et al., 2022], as informed as our Reconstruction Corrector component

Adversarial Knowledge:

- **★** Auxiliary attack set $D_A = (X_A, S_A, Y_A)$
- ★ Training set non-sensitive attributes vector and true labels (X, Y)
- ★ Black-box access to the target fair model h
- Description of the Attack:
 - **1** Computes $\hat{Y}_A = h(X_A)$ and $\hat{Y} = h(X)$

2 Trains a machine learning model (coined *attack model*) to predict S_A from (X_A, Y_A, \hat{Y}_A) (we tune the attack model's hyperparameters using a validation set)

- 3 Uses its trained attack model to predict (\hat{S}, P) from (X, Y, \hat{Y})
- Corrected Reconstruction: our proposed efficient model $\mathcal{RC}_{\mathcal{E}}(\hat{S}, P, \hat{Y}, \epsilon)$ is solved using the IBM ILOG CP Optimizer via the DOcplex Python Modeling API and its default configuration. It outputs a corrected reconstruction S^*

Results using an In-Processing Method for Fairness I

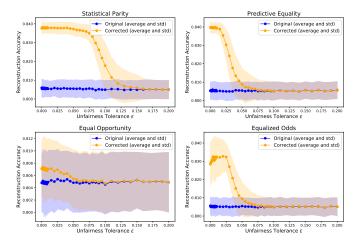


Figure: Corrected and original reconstruction quality, for our experiments using the UCI Adult Income dataset.

Results using an In-Processing Method for Fairness II

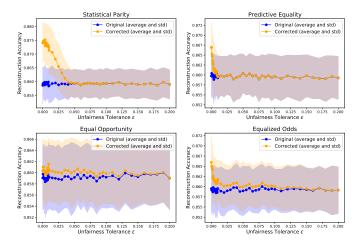


Figure: Corrected and original reconstruction quality, for our experiments using the ACSPublicCoverage dataset.

Backup Slides

Results using an In-Processing Method for Fairness III

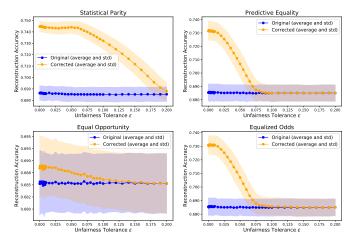


Figure: Corrected and original reconstruction quality, for our experiments using the ACSIncome dataset

Backup Slides

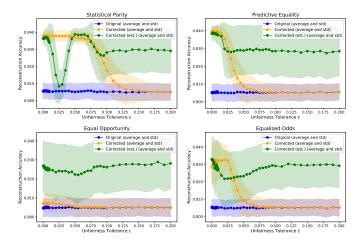


Figure: Original, corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using the UCI Adult Income dataset

Results using an In-Processing Method for Fairness (Countermeasure) II

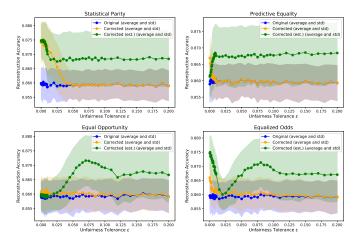


Figure: Original, corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using the ACSPublicCoverage dataset

Backup Slides

Results using an In-Processing Method for Fairness (Countermeasure) III

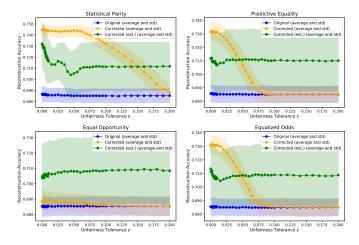


Figure: Original, corrected (from actual fairness constraint, and from estimated one (est.)) reconstruction quality, for our experiments using the ACSIncome dataset

Backup Slides

Table: Summary of the results of our experiments using the ThresholdOptimizer [Hardt et al., 2016] fair post-processing method implemented in the Fairlearn library [Bird et al., 2020]

Metric	Reconstruction Perf.		Estimated Constraint		Reconstruction Perf.		
Wiethe	Original	Corrected	Metric	Average	(Corrected from		
	Unginai	Corrected	Detect.	Tolerance	Estimated Constraint)		
UCI Adult Income dataset							
SP	0.814 ± 0.006	0.858 ± 0.005	0.95	0.004 ± 0.003	0.856 ± 0.011		
PE	0.807 ± 0.005	0.844 ± 0.004	0.97	0.003 ± 0.002	0.843 ± 0.007		
EO	0.805 ± 0.005	0.807 ± 0.005	0.26	0.018 ± 0.010	0.828 ± 0.013		
EOdds	0.807 ± 0.004	0.840 ± 0.009	0.00	0.005 ± 0.005	$\textbf{0.843} \pm \textbf{0.007}$		
ACSPublicCoverage dataset							
SP	0.860 ± 0.006	0.875 ± 0.007	1.00	0.002 ± 0.002	$\textbf{0.873} \pm \textbf{0.009}$		
PE	0.860 ± 0.005	0.870 ± 0.007	1.00	0.003 ± 0.002	0.865 ± 0.007		
EO	0.859 ± 0.006	0.861 ± 0.006	0.28	0.008 ± 0.005	0.862 ± 0.005		
EOdds	0.860 ± 0.005	0.861 ± 0.005	0.00	0.002 ± 0.002	0.869 ± 0.007		
ACSIncome dataset							
SP	0.715 ± 0.010	0.764 ± 0.006	0.80	0.003 ± 0.003	0.754 ± 0.020		
PE	0.688 ± 0.007	0.735 ± 0.006	0.86	0.003 ± 0.003	0.728 ± 0.016		
EO	0.685 ± 0.006	0.689 ± 0.006	0.73	0.008 ± 0.006	0.700 ± 0.020		
EOdds	$\textbf{0.688} \pm \textbf{0.007}$	0.735 ± 0.006	0.00	0.002 ± 0.002	0.721 ± 0.022		

Table: Summary of the results of our experiments using the CorrelationRemover fair pre-processing method implemented in the Fairlearn library [Bird et al., 2020]

Target model (under attack)		Estimated Cor	nstraint	Reconstruction Perf.			
Train	Test	Estimated	Estimated	Original	Corrected		
Acc.	Acc.	Metric	Tolerance	Onginai			
UCI Adult Income dataset							
0.860 ± 0.003	0.848 ± 0.003	PE (68%), EO (32%)	0.023 ± 0.013	0.806 ± 0.005	0.827 ± 0.014		
ACSPublicCoverage dataset							
0.862 ± 0.001	0.852 ± 0.002	PE (92%), SP (8%)	0.006 ± 0.004	0.860 ± 0.006	0.872 ± 0.010		
ACSIncome dataset							
0.798 ± 0.002	0.785 ± 0.003	PE (100%)	0.056 ± 0.016	0.685 ± 0.008	0.763 ± 0.009		