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Introduction: PhD Topics and Research Interests

Academic background: Ingénieur en Informatique et Réseaux, INSA Toulouse, France

PhD student (since 2020) at LAAS-CNRS (Toulouse, France)
PhD supervisors:
▶ Marie-José Huguet (LAAS-CNRS)
▶ Sébastien Gambs (UQAM)
▶ Mohamed Siala (LAAS-CNRS)
▶ Ulrich Aïvodji (ETS Montréal)

PhD topic: Addressing interpretability, fairness and privacy in machine learning
through combinatorial optimization methods

Fairness

Interpretability Privacy



Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

Incorporating statistical fairness constraints within a supervised learning algorithm
producing inherently interpretable models (rule lists)

Python library: https://github.com/ferryjul/fairCORELS

Preprint: “Learning fair rule lists." @ArXiV [1]

Conference (Demo) paper: “FairCORELS, an Open-Source Library for Learning Fair
Rule Lists." @CIKM ’21 (30th ACM International Conference on Information &
Knowledge Management) [2]

https://github.com/ferryjul/fairCORELS


Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

Leveraging Integer Linear Programming to enhance the exploration of FairCORELS’
search space by considering jointly accuracy and fairness

Python library: https://github.com/ferryjul/fairCORELSV2

Conference paper: “Leveraging Integer Linear Programming to Learn Optimal Fair
Rule Lists." @CPAIOR ’22 (19th International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research) [11]

https://github.com/ferryjul/fairCORELSV2


Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

Improving statistical fairness generalization through a sample-robust optimization
method
▶ New framework for quantifying fairness robustness from a sampling perspective, inspired

by Distributionally Robust Optimization (considering subsets of the training set within a
given Jaccard distance)

▶ Use of this framework to learn sample-robust fair models
▶ Design and use of an heuristic method to efficiently learn sample-robust fair models



Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

National conference paper: “Améliorer la généralisation de l’équité en apprentissage
grâce à l’Optimisation Distributionnellement Robuste" @RJCIA ’21 (Rencontres des
Jeunes Chercheurs en Intelligence Artificielle) [9]

Journal paper: “Improving Fairness Generalization Through a Sample-Robust
Optimization Method" @Machine Learning (S.I. on Safe & Fair ML) [10]



Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

Partially reconstruct a probabilistic dataset, given only access to an interpretable
model

Goal: Quantify (theoretically and empirically) the reconstruction quality, for different
hypothesis classes (decision tree, rule list, . . . )



Introduction: PhD Topics and Research Interests

Fairness

Interpretability Privacy

Leverage black-box access to a fair model to improve training set sensitive attributes
reconstruction

Intuition: Even if they do not use sensitive attributes for inference, fair models are
built to respect some fairness constraints over these attributes, hence they inherently
learn some information about them (which may be used by an adversary)
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Notations

Problem Notations
We consider the binary classification task of predicting a binary label y ∈ {0, 1} from
a set of attributes F
Let E be a dataset and c be a classifier: c : F → {0, 1}
Dataset E is partitioned into a set of positively labeled examples E+ and a set of
negatively labeled examples E−

Based on the values of some sensitive attributes (e.g., gender, age, race . . . ), E is
partitioned into a protected group Ep and an unprotected group Eu of examples

We let TPc
E,h (h ∈ {p, u}) be the number of true positive examples within Eh, given

classifier c’s predictions (e.g., the number of examples within Eh ∩ E+ that are
positively classified by c). We similarly define FPc

E,h, TN
c
E,h and FNc

E,h
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Quantifying Unfairness

Group/Statistical Fairness

Principle: ensure that some measure differs by no more than ϵ between several
protected subgroups

Many metrics proposed, depending on the measure to be equalized

Table: Summary of four statistical fairness metrics widely used in the literature.

Metric Statistical Measure unf(d , E)
Equal Opportunity

(EOpp) [12]
True Positive Rate

∣∣∣∣∣ TPc
E,p

|Ep ∩ E+|
−

TPc
E,u

|Eu ∩ E+|

∣∣∣∣∣ ≤ ϵ

Statistical Parity
(SP) [8]

Probability of Positive
Prediction

∣∣∣∣∣TP
c
E,p + FPc

E,p

|Ep |
−

TPc
E,u + FPc

E,u

|Eu |

∣∣∣∣∣ ≤ ϵ

Predictive Equality
(PE) [6]

False Positive Rate

∣∣∣∣∣ FPc
E,p

|Ep ∩ E−|
−

FPc
E,u

|Eu ∩ E−|

∣∣∣∣∣ ≤ ϵ

Equalized Odds (EO) [12] PE and EOpp Conjunction of PE and EOpp
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Rule Lists

Rule Lists: Definition
Rule lists [13] are classifiers formed by an ordered list of if-then rules with
antecedents in the if clauses and predictions in the then clauses.
More precisely, a rule list is a tuple d = (δd , q0) in which
δd = (r1, r2, . . . , rk) is d ’s prefix, and q0 ∈ {0, 1} is a default prediction.
A prefix is an ordered list of k distinct association rules ri = ai → qi .

Example rule list
i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]
e l s e [ h i gh ]
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Learning Fair Rule Lists

CORELS and FairCORELS

CORELS [3, 4] is a branch-and-bound algorithm proposed to learn Certifiably Optimal
sparse RulE ListS, minimizing the following objective function:

obj(d , E) = misc(d , E) + λ · Kd

where Kd is the length of rule list d , misc(d , E) is the misclassification error of d on
E , and λ an hyperparameter to balance the sparsity/accuracy tradeoff

FairCORELS [1, 2] is a bi-objective extension of CORELS, addressing the following
problem (where R is the space of rule lists):

argmin
d∈R

obj(d , E)

s.t. unf(d , E) ≤ ϵ
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Exploring the Space of Rule Lists

CORELS/FairCORELS search space

FairCORELS represents the search space of rule lists as a prefix tree (trie)

FairCORELS leverages several bounds and proposes a collection of exploration
strategies (BFS, DFS, Best-First searches...) to efficiently explore this search space

The different exploration strategies differ by the priority queue ordering

ROOT

Age>25Gender:MaleAge<=25 Gender:Female

Gender:Male Age>25 Gender:Female Age<=25 Age>25 Gender:Female Gender:FemaleAge<=25Gender:Male Gender:Male Age<=25

Age>25

Age>25

Gender:Female Gender:Male Gender:Female Gender:Male Age>25 Gender:Female Age<=25Age>25Age>25 Age>25 Gender:Female Age<=25 Age>25Age<=25 Gender:Female Age<=25 Gender:Male Gender:Female Gender:Male Age<=25 Age<=25 Age>25 Gender:Male Age>25 Age<=25 Gender:Male

Gender:Female Age>25 Gender:Female Gender:Male Gender:Male Gender:Female Age>25 Gender:FemaleAge>25 Age<=25 Age>25 Age<=25 Age<=25 Gender:Female Gender:Female Gender:Male Age<=25 Gender:Male Age>25 Age<=25 Gender:MaleAge>25 Gender:Male Age<=25

Figure: Example prefix tree with 4 attributes
Theoretical Background 5 / 25



Exploring the Space of Rule Lists

Example rule list
i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]
e l s e [ h i gh ]

ROOT

Age>25Gender:MaleAge<=25 Gender:Female

Gender:Male Age>25 Gender:Female Age<=25 Age>25 Gender:Female Gender:FemaleAge<=25Gender:Male Gender:Male Age<=25

Age>25

Age>25

Gender:Female Gender:Male Gender:Female Gender:Male Age>25 Gender:Female Age<=25Age>25Age>25 Age>25 Gender:Female Age<=25 Age>25Age<=25 Gender:Female Age<=25 Gender:Male Gender:Female Gender:Male Age<=25 Age<=25 Age>25 Gender:Male Age>25 Age<=25 Gender:Male

Gender:Female Age>25 Gender:Female Gender:Male Gender:Male Gender:Female Age>25 Gender:FemaleAge>25 Age<=25 Age>25 Age<=25 Age<=25 Gender:Female Gender:Female Gender:Male Age<=25 Gender:Male Age>25 Age<=25 Gender:MaleAge>25 Gender:Male Age<=25

Figure: Example prefix tree with 4 attributes
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Challenge: Exploring the Space of Fair Rule Lists

Limits of existing FairCORELS implementation [1, 2]

FairCORELS is mostly an incremental extension of CORELS, updating the current best
solution only if it satisfies a fairness constraint

However, the fairness constraints modify the set of acceptable solutions, and make
CORELS’ original bounds and exploration heuristics weaker

Indeed, learning optimal interpretable models under constraints (e.g., fairness
constraints) has been identified as of the main technical challenges towards
interpretable machine learning [14]
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Principle

Example prefix δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]

Example rule list d1, extension of δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]
e l s e i f [ Educat ion : Master ] then [ h i gh ]
e l s e i f [ Cap i ta l_Gain >0] then [ h i gh ]
e l s e [ low ]

Gender Age Education . . . true label
e1 Female 30 Masters . . . high
e2 Male 30 School . . . low
. . . . . . . . . . . . . . . . . .

Table: Example dataset E

Intuition
Each example can either be determined by δ1 (if a rule in δ1 captures it) or not

Any example determined by δ1 will have the same classification for any extension of
δ1 (e.g., d1)
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Principle

Example prefix δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]

Example rule list d1, extension of δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]
e l s e i f [ Educat ion : Master ] then [ h i gh ]
e l s e i f [ Cap i ta l_Gain >0] then [ h i gh ]
e l s e [ low ]

Gender Age Education . . . true label
e1 Female 30 Masters . . . high
e2 Male 30 School . . . low
. . . . . . . . . . . . . . . . . .

Table: Example dataset E

Intuition
Here, any extension of δ1 will have at least one True Positive (e1)

Similarly, it can have at most (|E| − 1) False Negatives
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Principle

Example prefix δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]

Example rule list d1, extension of δ1

i f [ Gender : Female ] then [ h i gh ]
e l s e i f [ Age<=25] then [ low ]
e l s e i f [ Educat ion : Master ] then [ h i gh ]
e l s e i f [ Cap i ta l_Gain >0] then [ h i gh ]
e l s e [ low ]

Gender Age Education . . . true label
e1 Female 30 Masters . . . high
e2 Male 30 School . . . low
. . . . . . . . . . . . . . . . . .

Table: Example dataset E

Intuition
At each node of FairCORELS’s prefix tree, we check whether it is possible that an
extension of the associated prefix simultaneously improves the current best objective
function and meets the fairness requirement, given the prefix’s predictions.

If it is not possible, we prune the entire subtree
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The ILP model for Equal Opportunity

The ILP model for Equal Opportunity: ILPEOpp(δ, E , L,U, ϵ)

Inputs: Prefix δ , dataset E , accuracy lower and upper bounds L and U, unfairness
tolerance ϵ

Variables:

xTPE,p ∈ [TPδ
E,p, |E

p ∩ E+| − FNδ
E,p], xTPE,u ∈ [TPδ

E,u, |E
u ∩ E+| − FNδ

E,u],

xFPE,p ∈ [FPδ
E,p, |E

p ∩ E−| − TNδ
E,p], xFPE,u ∈ [FPδ

E,u, |E
u ∩ E−| − TNδ

E,u].

Constraints:

L ≤ xTPE,p + xTPE,u + |Ep ∩ E−| − xFPE,p + |Eu ∩ E−| − xFPE,u ≤ U (1)

−C3 ≤ |Ep ∩ E+| × xTPE,u − |Eu ∩ E+| × xTPE,p ≤ C3 (2)

with C3 = ϵ× |Ep ∩ E+| × |Eu ∩ E+|

#well classified examples

fairness constraint

δ’s predictions define the variables’ domains

A ILP-based Pruning Approach 8 / 25



Theoretical Guarantees

Theorem: Sufficient Condition to Reject Prefixes

We define σ(δ) to be the set of all rule lists whose prefixes start with δ:
σ(δ) = {(δd , q0) | δd starts with δ}, and W d

E the number of examples in E well
classified by d .

Given a prefix δ, an unfairness tolerance ϵ ∈ [0, 1], and 0 ≤ L ≤ U ≤ |E|, if
ILPEOpp(δ, E , L,U, ϵ) is unsatisfiable then we have:

∄d ∈ σ(δ) | L ≤ W d
E ≤ U and unfEOpp(d , E) ≤ ϵ

Setting L and U

L (lower bound on #well classified examples) is set to a tight value, corresponding to
the minimum #examples that must be correctly classified to improve the current best
objective function, given δ’s length (the higher λ, the higher L)

U (upper bound on #well classified examples) is set to a tight value, corresponding
to the maximum number of examples that a classification function can classify
correctly, given δ’s errors and the inconsistencies in E

A ILP-based Pruning Approach 9 / 25



Using the ILP to Enhance Exploration

Pruning Version

We solve ILPEOpp(δ, E , L,U, ϵ) at each node of the prefix tree

If UNSAT, then we (safely) prune the entire subtree

Guiding Version

We add an objective to ILPEOpp(δ, E , L,U, ϵ):

▶ Objective: maximize xTPE,p − xFPE,p + xTPE,u − xFPE,u

If UNSAT, then we (safely) we prune the entire subtree

If SAT, we get an upper bound on the accuracy that any classification function
consistent with δ’s predictions can reach. This gives us a lower bound on
FairCORELS’s objective function, which can be used to order the priority queue and
guide exploration

∝ #well classified examples

A ILP-based Pruning Approach 10 / 25
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Implementation and Setup I

Integrating our ILP within FairCORELS

We implement and solve the ILP models in C++ using the ILOG CPLEX 20.10 solver

We consider different integrations
▶ BFS Original: original FairCORELS with existing Breadth-First Search (BFS) exploration

heuristic
▶ BFS Eager: using a BFS policy, performs the ILP-based pruning before inserting a node

into the priority queue
▶ BFS Lazy: using a BFS policy, performs the ILP-based pruning after extracting a node

from the priority queue
▶ ILP Guided: best-first search (priority queue ordered by the ILP objectives) with an

Eager pruning
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Implementation and Setup II

Experimental Setup
We compare the four approaches:

On two datasets:
▶ COMPAS [5]

⋆ Number of examples: 6150
⋆ Binary classification task: Recidivism within two years
⋆ Sensitive attribute: Race (African-American/Caucasian)
⋆ Number of binary rules: 18

▶ German Credit [7]
⋆ Number of examples: 1000
⋆ Binary classification task: Good or bad credit score
⋆ Sensitive attribute: Age (Low/High)
⋆ Number of binary rules: 49

On the four fairness metrics of Table 1 (we report results for the Equal Opportunity
metric hereafter)

Maximum memory use: 4 Gb

Maximum CPU time: 20 minutes (COMPAS), 40 minutes (German Credit)

For each dataset: 100 random different train/test splits
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Certifying Optimality I
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(b) German Credit dataset

Figure: Proportion of instances solved to optimality as a function of 1 − ϵ.
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Certifying Optimality II
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(b) German Credit dataset

Figure: CPU time as a function of the proportion of instances solved to
optimality, for high fairness requirements (unfairness tolerances ranging between
0.005 and 0.02).
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Reducing Priority Queue (Cache) Size
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(b) German Credit dataset

Figure: Relative cache size (#nodes) as a function of 1 − ϵ (experiments for the
Equal Opportunity fairness metric).
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Speeding Up Convergence
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Figure: Solving time as a function of the objective function quality normalized
score, for high fairness requirements (unfairness tolerances ranging between 0.005
and 0.02).
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Breaking Down Symmetries

CORELS’ Prefix Permutation Map

CORELS’ prefix tree contains many symmetries

A prefix permutation map ensures that only the best permutation of each set of rules
is kept

This symmetry-aware data structure considerably reduces the running time and the
memory consumption [3, 4]

It cannot be used within FairCORELS without sacrificing optimality

FairCORELS’ fairness-compatible Prefix Permutation Map

We design a weaker prefix permutation map, which can by used while maintaining
the guarantee of optimality
Our new symmetry-breaking mechanism:
▶ Considers that two prefixes are equivalent if and only if they define exactly the same

confusion matrix and their rules contain the same antecedents
▶ Pushes a new prefix into the priority queue if and only if it contains no equivalent prefix
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Implementation and Setup I

Compared Approaches

We implement and solve the ILP models in C++ using the ILOG CPLEX 20.10 solver

We consider different ILP-based pruning approaches, with (PMAP) or without (No
PMAP) the new Prefix Permutation Map
▶ BFS Original: original FairCORELS with existing Breadth-First Search (BFS) exploration

heuristic
▶ BFS Eager: using a BFS policy, performs the ILP-based pruning before inserting a node

into the priority queue
▶ BFS Lazy: using a BFS policy, performs the ILP-based pruning after extracting a node

from the priority queue

Results for the ILP-Guided approach are not reported because they are always the
worst
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Implementation and Setup II

Experimental Setup
We compare the three pruning approaches, with or without the new
PMAP:

On the Adult Income dataset [7]
▶ Number of examples: 48, 842
▶ Binary classification task: Income greater than $50, 000 per year
▶ Sensitive attribute: Gender (Female/Male)
▶ Number of binary rules: 47

On the Statistical Parity fairness metric

Maximum memory use: 8 Gb

Maximum CPU time: 120 minutes

100 random different train/test splits
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Certifying Optimality I
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Figure: Proportion of instances solved to optimality as a function of 1 − ϵ.
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Certifying Optimality II
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Figure: CPU time as a function of the proportion of instances solved to
optimality (using the new PMAP), for high fairness requirements (unfairness
tolerances ranging between 0.005 and 0.02).
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Reducing Priority Queue (Cache) Size
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Figure: Relative cache size (#nodes) as a function of 1 − ϵ (experiments for the
Equal Opportunity fairness metric).
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Speeding Up Convergence
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Figure: Solving time as a function of the objective function quality normalized
score, for high fairness requirements (unfairness tolerances ranging between 0.005
and 0.02).
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Learning Quality

BFS Original BFS Lazy BFS Eager

ϵ PMAP Train
Acc

Test
Acc

Test
Unf
viol.

Train
Acc

Test
Acc

Test
Unf
viol.

Train
Acc

Test
Acc

Test
Unf
viol.

All No .938 .942 -.004 .963 .966 -.004 .964 .967 -.004
Yes .966 .97 -.004 .998 .987 -.004 1 .989 -.004

< 0.02 No .815 .835 .0 .89 .907 .001 .892 .91 .001
Yes .897 .91 .001 .993 .96 .001 1 .968 .001

Table: Learning quality evaluation (Adult Income dataset, ϵ ∈ [0.005, 0.1]):
Proportion of instances for which each method led to the best train (resp. test)
accuracy, and average violation of the fairness constraint at test time.
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Conclusion

Our ILP-based pruning approach

Leverages jointly accuracy and fairness to prune the search space of FairCORELS

Leads to significant improvements on all evaluated criteria: reaching better objective
function values and certifying optimality using a reduced amount of memory and time

Is flexible thanks to its declarative nature and can handle multiple fairness criteria
and/or sensitive groups

Future Works
Considering other learning algorithms and machine learning models

Guiding the exploration (as attempted with the ILP-Guided approach)

Useful Links
Full paper accepted at CPAIOR 2022 (preprint available on my homepage:
https://homepages.laas.fr/jferry)

Source code available online: https://github.com/ferryjul/fairCORELSV2
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Thank you for your attention

Any questions ?

In Montreal until the 23rd of July, in UQAM until the 3rd of June =⇒ feel free to
reach out!

Contact
Homepage: https://homepages.laas.fr/jferry

Mail: jferry@laas

https://homepages.laas.fr/jferry
jferry@laas
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Leveraging the ILP to Guide Exploration

Example of the Equal Opportunity Metric

We add an objective to ILPEOpp(δ, E , L,U, ϵ):

▶ Objective: maximize xTPE,p − xFPE,p + xTPE,u − xFPE,u

On the one hand, this optimization problem may take longer to solve than the simple
feasibility problem defined earlier
On the other hand:
▶ If ILPEOpp(δ, E, L,U, ϵ) is UNSAT, we can safely prune the subtree associated to δ in the

prefix tree
▶ Otherwise, we now get an upper bound on the accuracy that any classification

function consistant with δ’s predictions can reach. This gives us a lower bound on
FairCORELS’s objective function, which can be used to order the priority queue

Finally, we can leverage the ILP to guide exploration towards the prefixes whose
predictions cause less conflict between accuracy and fairness, effectively speeding up
exploration
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ILP for the Equalized Odds Metric

The ILP model for Equalized Odds: ILPEO(δ, E , L,U, ϵ)

Inputs: Prefix δ, dataset E , accuracy lower and upper bounds L and U, unfairness
tolerance ϵ

Variables:

xTPE,p ∈ [TPδ
E,p, |E

p ∩ E+| − FNδ
E,p], xTPE,u ∈ [TPδ

E,u, |E
u ∩ E+| − FNδ

E,u],

xFPE,p ∈ [FPδ
E,p, |E

p ∩ E−| − TNδ
E,p], xFPE,u ∈ [FPδ

E,u, |E
u ∩ E−| − TNδ

E,u].

Constraints:

L ≤ xTPE,p + xTPE,u + |Ep ∩ E−| − xFPE,p + |Eu ∩ E−| − xFPE,u ≤ U (3)

−C2 ≤ |Eu ∩ E−| × xFPE,p − |Ep ∩ E−| × xFPE,u ≤ C2 (4)

−C3 ≤ |Ep ∩ E+| × xTPE,u − |Eu ∩ E+| × xTPE,p ≤ C3 (5)

with C2 = ϵ× |Eu ∩ E−| × |Ep ∩ E−| and C3 = ϵ× |Ep ∩ E+| × |Eu ∩ E+|
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Experiments Results for the Equalized Odds Metric I
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(b) German Credit dataset

Figure: Proportion of instances solved to optimality as a function of 1 − ϵ.
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Experiments Results for the Equalized Odds Metric II
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(b) German Credit dataset

Figure: CPU time as a function of the proportion of instances solved to
optimality, for high fairness requirements (unfairness tolerances ranging between
0.005 and 0.02).
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Experiments Results for the Equalized Odds Metric III
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Figure: Solving time as a function of the objective function quality normalized
score, for high fairness requirements (unfairness tolerances ranging between 0.005
and 0.02).
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Experiments Results for the Equalized Odds Metric IV
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Figure: Relative cache size (#nodes) as a function of 1 − ϵ.
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