
HAL Id: hal-01814083
https://hal.archives-ouvertes.fr/hal-01814083

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study of Evacuation Planning for Wildfires
Christian Artigues, Emmanuel Hébrard, Yannick Pencolé, Andreas Schutt,

Peter Stuckey

To cite this version:
Christian Artigues, Emmanuel Hébrard, Yannick Pencolé, Andreas Schutt, Peter Stuckey. A Study of
Evacuation Planning for Wildfires. The Seventeenth International Workshop on Constraint Modelling
and Reformulation (ModRef 2018), 2018, Lille, France. 2018, <https://modref2018.github.io>. <hal-
01814083>

https://hal.archives-ouvertes.fr/hal-01814083
https://hal.archives-ouvertes.fr

A Study of Evacuation Planning for Wildfires

Christian Artigues1 Emmanuel Hebrard1

Yannick Pencole1 Andreas Schutt2,3 Peter Stuckey2,3

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2 Decision Sciences, Data61 CSIRO, Melbourne, Australia

3 Department of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia

Abstract

The GEO-SAFE project gathers researchers and fire emergency prac-
titioners from EU and Australia with the aim to design innovative models
and efficient response tools based on optimization methods for fighting
wildfires. In this paper, we consider an evacuation planning problem is-
sued from discussions with practitioners, where a wildfire is threatening
a region with intermediate populated centres. As in earlier approaches
in case of flood, we use a constraint optimization model involving mal-
leable tasks to represent the evacuation of a population and a cumulative
constraint per route segments. Indeed, in order to mitigate congestion
risks, the authorities may delay the start of the evacuation but they may
also affect the rate of evacuation by modulating the method used to raise
the alarm. However, we consider a different objective: we maximize the
minimum “safety margin”, weighted by the population, over every road
segment. We introduce a new heuristic and a global flow constraint propa-
gator. Moreover, we also propose an instance generator based on a random
generation of road networks and basic fire propagation models. This gen-
erator produces challenging benchmarks even with very few evacuation
tasks. Finally, we report the results of extensive computational experi-
ments done using CP Optimizer.

1 Introduction

In EU and Australia, every year thousands of square miles of forests and other
lands burn due to wildfires. These fires cause important economic and ecological
losses, and often, human casualties as for instance during the Black Saturday
bushfires across the Australian state of Victoria in February 2009 [13]. The
overall objective of the GEO-SAFE project [7] is to develop methods and tools
enabling to set up an integrated decision support system to assist authorities in
optimizing the resources during the response phase to a wildfire (fire suppres-
sion, life and goods protection). One critical and crucial part of this integrated

1

decision support is the ability to perform large-scale evacuation planning. As
detailed in [14], there are commonly three categories of evacuees: the ones that
leave early, the ones that shelter in refuge and the ones who stay at their prop-
erties and fight. This work focuses on the evacuation of this third group (late
evacuees) which is called the late evacuation planning problem.

While in practice most evacuation planning is principally designed by experts
using simple heuristic approaches or scenario simulations [16], more recently
optimization approaches to evacuation planning have been addressed, using a
variety of optimization technology [2]. The usual test case for most of this
work is flood evacuation planning [11, 5, 8]. Given accurate measurements of
rainfall and topology, flood evacuation planning can make use of very accurate
predictions of future water levels, and therefore has a very accurate model of
what infrastructure will be available at each stage of the evacuation.

Evacuation planning in case of wildfires is much harder. Wildfire propa-
gations are inherently less predictable than floods. While flood levels mostly
rely on the fixed topology of the area and rainfalls, wildfire mainly depends on
the wildland fuels [12, 1], on the slope of the burning ground and more impor-
tantly on the speed and direction of the wind that can suddenly change at any
time [17, 15]. Therefore, evacuation planning dedicated to wildfires must be
much more robust to difference future scenarios. A good evacuation plan in
case of wildfire must not only minimize the evacuation time of the population
but also maximize the spatial and temporal safety margin between the evacuees
and the actual or potential wildfire front.

In this paper, we consider that the authorities already identified the ac-
cessible routes and shelters and estimated the population of the late evacuees.
Evacuation takes place in individual vehicles and each center has a known pop-
ulation and a single predefined suggested evacuation route. All routes issued
from each center converge toward a safe place, so congestion may appear on
route segment shared by several evacuation paths. The interest of convergent
evacuation plans has been underlined by several studies such as in [4] since it
avoids congestion issued by driver slow-downs at forks. Furthermore fire propa-
gation models give a deadline on each route segment beyond which taking this
segment comes at high risk. To mitigate these risks, the authorities may delay
the evacuation start time and rate for each center. Indeed in practice, besides
the possibility of assigning a start time to each evacuated zone, the authorities
can also mobilize different levels of resources to increase the evacuation rate
(e.g. number of agents knocking on people’s door), to which people answer ac-
cording to a behavioral model abstracted by a response curve [10]. Based on
these concepts, the evacuation planning model is close to the one proposed in [5]
called the non-preemptive evacuation planning problem (NEPP) in the context
of a flood. In contrast with previously proposed models, the NEPP considers
non preemptive evacuation. Once the evacuation of a zone has started, it can-
not be interrupted. Indeed, considering preemptive evacuation would make the
problem much easier to solve but is hard to implement in practice. In case of
wildfire, this would notably cause undesirable stress on evacuees. The major
difference of the model considered in this paper with the NEPP model lies in

2

the objective function. In [5], the main objective was to maximize the number
of evacuees, and a secondary objective was to minimize the makespan, i.e. the
total evacuation time, while enforcing deadlines on route segments. In case of
wildfire, the high variability in the fire propagation makes it necessary to avoid
taking a route segment close to the expected deadline. Hence, we consider a
single objective by maximizing the minimum gap for all evacuated zones and
all route segments between the deadline and the time by which the last evacuee
leaves a route segment, weighted by the population of the evacuated zone.

2 The evacuation planning problem

We are given an a tree G = (E∪T ∪{r},A) rooted in r standing for the evacuation
routes from evacuation nodes E (leaves) to the safe node r through transit nodes
T . Every leaf/evacuation node v ∈ E is associated with a population count wv.
Every arc u, u′ has a length luu′ and a capacity non-ambiguously denoted qu as
G is a tree. Moreover the length of the path from a node u to a node u′ is also
written luu′ .

Let H = [0, H] be the time span of the evacuation. We want to associate
every leaf/evacuation node v ∈ E to a real sv representing the delay of the evac-
uation notice and to a “response curve” φv describing the evacuation flow out
of node v over time (starting from sv). Population flows out of leaf/evacuation
node v at rate φv(t) that is zero before time sv ≥ 0, and such that:∫ H

0

φv(t)dt = wv

Let p(u) denote the parent of u in G, p̂(u) its ascendants, C(u) its children,
Ĉ(u) its descendants and L(u) those of its descendants that are leaves of G. We
assume that the evacuees never stop, so the flow in the downstream arcs can
be computed by summing the flows in the incoming arcs and the flow φu(t) for
any arc ∈ E ∪ T at any time t ∈ H is

φu(t) =
∑

v∈L(u)

φv(t− luv − sv)

In this paper we consider as in [5] a simple response curve. The flow out of
an evacuation node v ∈ E is a continuous decision variable and remain constant
during the evacuation process, that is, the flow out of node v ∈ E is equal
to hv within the time interval [sv, ev], with ev = sv + wv

hv
and zero otherwise.

Therefore, the flow out of a node u ∈ E ∪ T at time t ∈ H is:

φu(t) =
∑

v∈L(u),sv+luv≤t<sv+luv+ wv
hv

hv

It follows that the considered evacuation planning problem can be formally
defined as the following constraint optimization problem.

3

Variables: We have a set of |E| non-preemptive tasks, one for every evacuation
node. For every task standing for an evacuation node v ∈ E we need two
variables, one for the constant rate hv ∈]0, qv] at which the evacuation will
proceed and one for its start time sv ∈ [0, H − wv

qv
] at which the evacuation will

start.

Constraints: We have a single type of constraints to avoid “jams”, i.e., flow
exceeding the capacity of an arc. For each node u ∈ T , we have a cumulative
resource constraint of capacity qu ensuring that φu(t) ≤ qu, which is written:∑

v∈L(u),sv+luv≤t<sv+luv+ wv
hv

hv ≤ qu, ∀u ∈ T ,∀t ∈ H

Objective: To every transit node u is associated a due date du, standing for
the time at which the next road portion becomes unsafe. The objective is to
minimize the maximum lateness of any task, i.e., the difference between the
time at which it leaves a node u and du, weighted by the population. Hence the
objective is:

min max
u∈T ,v∈L(u)

sv + hv/wv + luv − du

Dominance rules and problem formulation A first observation is that we
can simplify the objective function by retaining the transit node u minimizing
du − luv. Let dv = minu∈T {du − luv} denote this value.

The objective can therefore be rewritten as the maximum of |E| expressions:

min max
v∈E

sv + hv/wv − dv

The second following observation, also made in [5], allows to reduce the
number of cumulative constraints to consider.

Observations 1. For any two transit nodes u, u′ ∈ T , if qu ≤ qu′ and u′ ∈
Ĉ(u), then a jam in u′ entails a jam in u.

We thus only need to check jams in nodes u such that ∀v ∈ p̂(u), qv > qu.
In practice, it means that given an evacuation node v ∈ E we can explore the
nodes in the route from v to r in reverse order, and for every stretch of road
without branch, keep only the arc of minimal capacity, called the critical arc.
Let T̃ denote the reduced set of critical transit nodes to consider. The problem
can thus be formulated as follows.

minimize max
v∈E

wv{sv + hv/wv − dv} (1)

subject to:
∑

v∈L(u),sv+luv≤t<sv+luv+ wv
hv

hv ≤ qu, ∀u ∈ T̃ ,∀t ∈ H (2)

hv ∈]0, qv], sv ∈ [0, H − wv
qv

], ∀v ∈ E (3)

4

3 Baseline approach using cumulative constraints

In [5], the NEPP was modeled using standard cumulative constraints. We
consider this model for our problem as the baseline approach. Let x (resp. x)
denote the largest (resp. smallest) value in the domain of a variable x. Given
a set of tasks J with start time variable si ∈ [si, si], processing time variable
pi ∈ [pi, pi], height variable hi ∈ [hi, hi] and a resource r of constant capacity
qr, recall that cumulative((si, pi, hi)i∈J , qr) enforces the relations

∑
i∈J|si≤t<si+pi

hi ≤ qr ∀t ∈ H

Consequently, to model the problem, it suffices to associate a task v to each
evacuation node v ∈ E , with height variable hv ∈]0, qv], start time variable
sv ∈ [0, H − wv

qv
], completion time variable ev ∈ [wv

qv
, H], and to duplicate and

translate this task for each critical transit node u on its path towards the safe
node. For each critical arc u ∈ T̃ , let iuv denote the duplicate for evacuation
node v ∈ L(u). A resource is defined per critical arc u ∈ T̃ , with capacity qu.

The baseline constraint program for the evacuation planning problem is ob-
tained by replacing constraints (2) in the problem formulation by:

cumulative((siuv
, eiuv

− siuv
, hiuv

)v∈L(u), qu) ∀u ∈ T̃ (4)

wv = hv(ev − sv) ∀v ∈ E (5)

siuv = sv + luv ∀u ∈ T̃ ,∀v ∈ L(u) (6)

eiuv
= ev + luv ∀u ∈ T̃ ,∀v ∈ L(u) (7)

hiuv = hv ∀u ∈ T̃ ,∀v ∈ L(u) (8)

In the model above, the information that tasks have a fixed energy is lost
to the cumulative constraint propagator. Given a task v with energy wv start
time sv, completion time ev and rate hv, the algorithm will consider a task
of duration wv

hv
and height wv

ev−sv
. When the upper bounds on consumption

and duration are large, these values tend to 0, thus greatly hindering constraint
propagation.

Example 1. Consider a resource of capacity 4 and four tasks as shown in Ta-
ble 1. Given the total energy (second column) possible ranges for the rates, min-
imum start times and maximum completion times (3rd to 5th columns), bounds
consistency on the duration and demand variables yields the ranges shown in
the 6th and 7th columns, respectively.

Therefore, a standard cumulative constraint will use the lower bounds and
consider four tasks of durations and consumptions 2, 3

2 , 1 and 1, respectively.
The classic cumulative constraint will not adjust the domains further, as shown
in Figure 1. The set of 3 solutions illustrated in this figure shows that every

5

Table 1: Task parameters

wi qi si ei duration height
v1 6 3 0 3 [2, 3] [2, 3]
v2 6 4 1 5 [3

2 , 4] [3
2 , 4]

v3 4 4 1 5 [1, 4] [1, 4]
v4 4 4 1 5 [1, 4] [1, 4]

0 1 2 3 4 5

v1

v3

v2

v4

(a)

0 1 2 3 4 5

v1

v3

v2

v4

(b)

0 1 2 3 4 5

v1

v3v2
v4

(c)

Figure 1: Some feasible schedules

bound of every one of the eight variables (start times and height for each of the
four evacuation tasks) is consistent.1

4 The Energetic Cumulative Constraint

The standard cumulative constraint is weak for this class of problems since it
is unable to reason about total energy of each task. We can take advantage of
the knowledge that the product (duration × rate) is a constant by using a more
global constraint.

Given a set of tasks J with start time si ∈ [si, si], completion time ei ∈
[ei, ei], height hi ∈ [hi, hi], constant energy wi and a resource r of constant
capacity qr, energetic cumulative((si, ei, hi, wv)i∈J , qr) enforces the relations:

∑
i∈J|si≤t≤ei

hi ≤ qr ∀t ∈ H

wi = hi(ei − si) ∀i ∈ J

This constraint is NP-hard since the particular case where the variables hi
are fixed is a cumulative constraint. However, because of the malleable nature
of the tasks, the problem becomes easier under some assumptions. In particular,
we consider here that we do not have minimum values on the height variable hi

1Tasks v4 and v3 are symmetric so we omit the bounds for v4

6

of any task i, and we denote this particular case energetic cumulative\{h}.
We consider three further relaxations:

Let “r” denote the release dates, whose relaxation means that si = 0 for
every task i ∈ J ; “d” denote the due dates whose relaxation implies ei =
H for every task i ∈ J and some constant H; “h” denote the maximum
height whose relaxation implies hi = qr for every task i ∈ J . We write
energetic cumulative\{S} for the case where the subset of constraints S ⊆
{h, h, r, d} are relaxed.

Theorem 1. energetic cumulative\{h, x, y} is in P for any x 6= y ∈ {r, d, h}

sketch. Because of the lack of space, we give only the algorithm for energetic cumulative\{h, r, d}
as the other two are trivial: without bound on the height, we can vertically slice
the tasks as thin as possible while satisfying the capacity qr and stack them
w.r.t. to their release or due dates (depending on which was relaxed). Algo-
rithm 1 schedules the tasks so that every tasks starts at time 0 and the latest
completion time is minimum while satisfying hi ≤ hi ∀i ∈ J Thus, the constraint
is satisfiable iff this latest completion time is less than H.

Algorithm 1: UsageSorted

W.L.O.G, let J = {1, . . . , n} be such that i < j =⇒ wi
qi
≥ wj

qj
;

K ←
∑n

i=1 wi;
Q← qr;
foreach i ∈ [1, n] do

si ← 0;

hi ← min(qi,
Qwi
K

);

K ← K − wi;
Q← Q− hi;

When Algorithm 1 ends the completion time of a task i is wi

hi
. Moreover, it

can be shown that i < j =⇒ wi

hi
≥ wj

hj
(we omit that part of the proof).

Therefore 1 has the latest completion time. There are two cases, either this

completion time is w1

q1
(in which case it cannot be reduced) or it is

∑n
i=1 wi

qr
(in

which case the resource is fully used).

Theorem 2. energetic cumulative\{h, x} is NP-complete for any x ∈ {r, d, h}

Proof. Membership: checking the energy equation is trivial and checking the
resource equation is not more difficult than for the cumulative constraint.

We first prove hardness of energetic cumulative\{hd} by reduction π
from an instance x = {x1, . . . , xn} of the SubsetSum problem of deciding the
following proposition: ∃I |

∑
i∈I xi = s.

Let K =
∑n
i=1 xi. For every i ∈ [1, n] we create a task i with wi = xi, qi = 1

and ri = 0. Then, we create three tasks L,M and R with qL = wL = 2K −
s, qR = wR = s + K, qM = wM = 2K and rL = 0, rM = 1, rR = 2. Finally, we
set q = 2K and we ask if all the tasks can be scheduled with H ≤ 3.

7

We show first that a solution of x entails a solution of π(x). We set sL = 0,
sM = 1, sR = 2, hL = wL, hM = wM and hR = wR. Now, let I be the subset
of {1, . . . , n} such that

∑
i∈I xi = s. For all i ∈ I, we set si = 0 and for all

i ∈ {1, . . . , n} \ I we set si = 2 and for all v ∈ {1, . . . , n} we set hi = 1.
Now suppose that there is a solution of π(x). Observe first that in any

solution, we have sR = 2 and hR = wR because sR ≥ 2 and hR ≤ wR and
any solution such that sR > 2 or hR < wR implies eR > 3. Now, suppose
that hM < wM , since eR ≤ 3 then M and R must overlap, and therefore
hM ≤ q − wR = 2K − (s + K) = K − s. So we have pM = 2K

K−s > 1. By
contradiction, we have hM = wM and therefore sM = 1. By a similar reasoning
we have sR = 0 and hR = wR. The remaining tasks are therefore distributed
so that they exactly fill two disjoint areas of size s and K − s. The sum of the
energies of the tasks in the leftmost area is therefore equal to s.

The proof is the same for energetic cumulative\{hr} except that the con-
straints rL = 0, rM = 1 and rR = 2 are replaced by dL = 1, dM = 2 and dR = 3,
and for every other task i, we have di = 3.

The proof is the same for energetic cumulative\{hh} except that the
constraints ∀i, qi = 1 are relaxed, the constraints qL = wL, qR = wR, qM = wM
are replaced by dL = 1, dM = 2 and dR = 3, and for 1 ≤ i ≤ n, we have
di = 3.

5 Flow Global Constraints

Note that a global constraint similar to energetic cumulative, called the con-
tinuous energy constraint, has been proposed in [9]. In this variant the rate of
the activity is no longer constant and may vary over time. A flow-based propaga-
tor proposed for this constraint can be adapted for the energetic cumulative.
The propagator works by building a flow network relaxation f(D) of the prob-
lem, before it propagates, using the current domain D.

Given current domain D, let TJ = {si, ei, si, ei | i ∈ J} be the set of O(|J |)
minimum or maximum start and completion times of the tasks of J and let tq
be the q-th largest element of TJ . We partition the time line into the set of
consecutive intervals I(J) = {[tq, tq+1] | 1 ≤ q < |TJ |}

Next, we create a flow f(D) network as follows. We have source node S and
a first layer of task nodes J , the flow from S to i is wi for each i ∈ J . We create
a second layer of time interval nodes Iq = [tq, tq+1], 1 ≤ q ≤ |J | − 1. There is an
edge from i to Iq if [tq, tq+1] ⊆ [si, ei]. The edge is bounded by 0..(tq+1−tq)×hi.
If, in addition, [tq, tq+1] ⊆ [si, ei], the lower bound of the edge can be increased
to hi. We create a final layer to a sink node E. There is an edge from each
interval node Iq to E with capacity bounded by (tq+1 − tq)× qr.
Theorem 3. Any solution to energetic cumulative((si, ei, hi, wi)i∈J , qr) given
current domain D, is extendible to a solution of the flow network f(D).

Proof. Given a solution of the constraint we extend it to a solution of the flow
network f(D) as follows. The flow from S to each node i is set to wi. The flow

8

from each node i to Iq is set to (min(ei, tq+1)−max(si, tq))× hi The flow from
each node Iq to E is given by the sum of the incoming flows to Iq. We show that
these flows obey the bounds and flow balance equations. Examining each node i,
the flow in is wi and the flow out is hi×(ei−si). These must be equal by equation
(5). Examining each node Iq the flow in is

∑
i∈E((min(ei, tq+1)−max(si, tq))×hi

but by equation (4) at no time is there more than qr resource being used, hence
this is no more than (tq+1− tq)× qr, the capacity of the outgoing arc. The flow
balance at Iq holds by construction.

Example 2. If we consider the circumstances explained in Example 1, the con-
straint energetic cumulative generates the flow network shown in Figure 2.

While the standard propagator can determine nothing, the flow network is
infeasible, so the energetic cumulative propagator immediately fails.

S

v2

v1

v3

v4

[0, 1]

[1, 3]

[3, 6]

E

6

8

6

4

2..3

3..6

0..8

0..8

0..6

0..6

0..6

0..6

0..4

0..8

0..12

Figure 2: Flow network for the tasks given in Table 1.

The natural way to implement this propagation for the evacuation planning
problem at hand is to define one energetic cumulative constraint per critical
transit node u ∈ T̃ . The special structure of the evacuation planning prob-
lem allows us to consider simultaneously all energetic cumulative constraints
and to integrate the flow propagators of each critical transit nodes into a sin-
gle global flow propagator. The basic remark is that all vehicles passing in an
interval [tq, tq+1] on a transit node u of an evacuation path will appear on a
ascendant transit node u′ ∈ p̂(u) exactly luu′ time units later, i.e. in interval
[tq + luu′ , tq+1 + luu′]. Considering the evacuation tree reduced to the evacua-
tion nodes and the critical transit node, the global network flow gf(D) is built as
follows. We create the source S and one layer of nodes for the evacuation nodes
E , the flow from S to v ∈ E being wv. Let Tv = {sv, ev, sv, ev} the time events
associated to evacuation node v ∈ E and let I(v) = {[tvq , tvq+1] | 1 ≤ q < |Tv|}
the corresponding consecutive intervals. We connect node v to each interval
Ivq ∈ I(v) by an edge of capacity bounded by 0..hv × (tvq+1 − tvq) (or with a

9

lower bound of hv under the conditions described above). We assume that the
critical nodes are sorted in the topological order from direct successors of the
evacuation nodes to the direct predecessors of the safe nodes. Then, for each
critical node u ∈ T̃ taken in this order, we build recursively the set of events Tu
from the events of its parent nodes in the evacuation tree and the correspond-
ing consecutive interval set I(u): Tu = ∪u′∈p(u){tu

′

q + luu′ | 1 ≤ q < |Tu′ |} and
I(u) = {[tuq , tuq+1] | 1 ≤ q < |Tu|}. We add an edge between each interval of

the parent node Iu
′

q′ = [tu
′

q′ , t
u′

q′+1] ∈ I(u′) and each interval of the child node

Iuq = [tuq , t
u
q+1] ∈ I(u) such that tu

′

q′ + luu′ ≤ tuq and tu
′

q′+1 + luu′ ≥ tuq+1 with a
capacity bounded by 0..(tuq+1 − tuq)× qu. Finally, we build an edge of unlimited
capacity from each interval of each parent node u ∈ p(r) of the safe node to the
target E. The global flow has O(|E|+

∑
u∈T̃ L(u)) nodes. The following theo-

rem shows that is there is no feasible global flow, then energetic cumulative

fails.

Theorem 4. Any solution to the conjunction of
energetic cumulative((siuv

, eiuv
, hiuv

, wv)v∈L(u), qu) for all u ∈ T̃
given current domain D, is extendible to a solution of the flow network gf(D).

Proof. The proof uses similar arguments as in the proof of Theorem 3.

6 Heuristic Upper Bound

We propose a simple compression heuristic to find an initial upper bound. As-
sume w.l.o.g. that the evacuation rate initial domain is D(hv) = [1, qv] for all
evacuation node The heuristic is based on the assumption that scheduling all
evacuation tasks at time 0 with the minimum evacuation rate yields a feasible
solution, with a high cost. Starting from this solution (∀v ∈ E , sv := 0, ev = wv,
hv := 1), the set of minimum and maximum start end end time events Tu is
built for each transit node, as well as the corresponding consecutive intervals
I(u) as for the global flow constraint. In addition, the resource consumption
profile Γu where ρqu ∈ Γu denotes the resource consumption level right after
time tuq is also computed for each transit node u.

At each iteration, the heuristic finds the critical task v∗, i.e. the one that
sets the objective, as well as the second most critical task v′. The principle is to
left shift the end of the critical task enough so that v′ becomes the new critical
task with an absolute gap of ε below the new cost of v∗. This yields a target
completion time e∗ := cv′−ε

wv∗
− dv∗ for v∗.

However a left shift of ev∗ means an increase of its height. On a transit node
u, the evacuation task v ends at time ev∗ + luv∗ . Let Iuq+ denote the interval
starting with the evacuation completion time on u: tuq+ = ev∗ + luv∗ . Let Iuq−
denote the interval starting with the evacuation start time on u: tuq− = sv∗+luv∗ .

The maximum height ∆h increase is equal to ∆h = minq=q−,··· ,q+−1(qq − ρqu).
Left shifting the completion time of the critical task v∗ on u to the beginning of
the preceding interval tuq+−1 is possible if ww

tu
q+−1

−sv∗−luv∗
≤ hv∗+∆h. Otherwise,

10

the critical task v∗ can only be shifted to sv∗ + luv∗ + ww

hv∗+∆h
∈]tuq+−1, t

u
q+] and

the maximum left shifted end time on transit node u has been found. In the
first case, the process can be iterated by tentatively ending the task in interval
tuq+−2 till he maximum left shifted end time on u is found. Repeating this check
on each resource yields a minimum possible left shifted completion time e. If
e ≤ e∗, then the left shift to e∗ is possible and v′ becomes the new critical
task. The compression process restarts with v∗ := v′. Otherwise, the left shit
is only performed to e. v∗ is still critical and the heuristic stops. Due to the
possibility of only left shifting a task by ε at each iteration, the heuristic is
pseudo polynomial.

7 Generating a Realistic Data Set

Catastrophic wildfire requiring large population evacuation are, thankfully, rare
events. However, it means that obtaining useful data is difficult, and indeed this
a key problem within the GEO-SAFE project. A significant part of the project
revolves around simulation tools such as EXODUS [6], however, even simulated
data was hard to come by.

Therefore, we opted for taking advantage of the project environment to
contribute to this effort by generating our own “realistic” dataset. On the one
hand, this approach may introduce biases since we must use models to generate
realistic road networks and simulate wildfires. On the other hand, we believe
that it will make it much more convenient for benchmarking algorithms in the
future. As it turns out, the generated instance are challenging even though
relatively modest in size, thus being interesting from an academic viewpoint as
well.

7.1 Generation of road networks

The first step is to generate a graph standing for the road network. To this end,
we used the quadtree model described in [3]. In a nutshell, this model starts with
a single square formed by four nodes and four edges. At each iteration, a square
is chosen and five nodes are added, one in the center of the square, and one on
each edge connected by a perpendicular edge to the center node. A parameter
r controls the sprawl, that is, the preference for splitting larger squares (r < 1)
or smaller squares (r > 1). The graphs generated in this manner share many
features with real road networks: they are planar, embedded in an Euclidean
plane, have similar density distributions, path lengths are within a constant
factor of the Euclidean distance, and the number of turns is logarithmic with
high probability. An example of random quadtree network is shown in Figure 3a.
The colors on the edges correspond to road capacity. To allocate capacities, we
first compute a minimum Steiner tree spanning three randomly chosen nodes
in high density areas (“cities”) and connect these cities to the nearest corner of
the outer square. The corresponding set of edges are given the highest capacity
and are coloured in blue in Figure 3a. A second set of edges, forming a grid are

11

given an intermediate capacity, they are coloured in green.

(a) road network (b) simulated wildfire (c) evacuation plan

Figure 3: An example of generated instance

7.2 Simulating wildfire

The second step consists in determining safety due dates for every edge of the
evacuation tree, that is, a time after which the edge become unsafe. To this
purpose we use a relatively simple fire propagation model. We chose to use a
simple model based on two parameters: a constant intensity γ representing the
type of fuel material as well as the temperature, and a wind direction. Indeed,
the goal is not so much to accurately predict fire propagation, as it is to generate
safety due dates consistent with a wildfire. Of course, should the authorities
use this type of planning tools during a real event, then correctly predicting fire
propagation would be among the most important factors.

The land area is discretized into squares of fixed size (we use another pa-
rameter to control this size) which can be in three states: untouched, burning
and burned. The fire starts as a single burning square, then at each iteration,
any untouched square adjacent of a burning square catches fire with probability
γ(π−Aπ)2, where γ stands for the intensity of the fire, and A is the angle between
the wind an a vector going from the center of burning square to the center of
the untouched square. Moreover, any burning square that did not propagate
stop burning with probability γ2. Figure 3b illustrate the state of the simulated
wildfire, with burning squares in red and burned squares in black.

7.3 Generating evacuation plans

The third step consists in generating the actual evacuation plan, that is, an
embedded tree connecting a set of evacuation nodes E to a safe node r. Here
again, the goal is not to compute the best evacuation plans, however they must
be representative of what would be actual plans.

12

We first randomly pick a predefined number of evacuation nodes among the
nodes of the graph that are in the state burned or burning of the simulated fire.
Then we use the convention that the safe zone is the furthest corner from the
center of the fire. The evacuation tree is computed simply by using a shortest
paths algorithm, however with respect to an arc labeling taking into account
first the safety due date of the arc, and only then its length and its capacity.

At this point we have all the information we need to define a fire evacuation
problem as defined in Section 2. However, we use Observation 1 to remove
redundant arcs. For every evacuation path, we explore the arcs from the safe
node r to an evacuation node v. For any section of the path on which nodes have
single child, all the nodes of that section have the same set of descendant leaves
in the tree. Therefore the same set of evacuees will go through these nodes
with the same relative delay. Therefore, we conserve only the arc of minimum
capacity in that section, and only if this capacity is strictly smaller than that
of the previous section. It follows that an instance with n evacuation tasks has
at most O(n) “jam” constraints. Moreover, the objective can be stated as the
maximum of O(n) expressions as shown in Section 2.

The tools we developed as well as the benchmarks instances we used in this
paper can be accessed at anonymizedfortheblindreviewprocess.

8 Experimental Results

We generated 240 benchmark instances following the protocol described in Sec-
tion 7. They are organized into three types of road networks: Dense, Medium
and Sparse where the density refers to the number of intersections (respectively
400, 800 and 1200) in the land area. Notice that the graph has always 4 edges
per node, so this corresponds to graph size. The impact on the instance is that
larger graphs allow for more choices for the shortest paths and therefore longer
independent paths. For every type of road network, we generated 4 classes of
instances, with respectively 10, 15, 20 and 25 evacuation nodes. Finally, for
every class we simulated 20 random wildfires and the subsequent evacuation
trees. We used CPLEX to solve the flow formulation, which turned out to be
extremely costly. Therefore we did not systematically call the propagator at
each node. Instead we implemented a heuristic method to decide whether we
should solve the flow using two criteria:

The first criterion that we use is the total load Ω(r) of a resource r or capacity
qr on the tasks J :

Ω(r) =

∑
i∈J wi

qr(maxi∈J ei −mini∈J si)

We only call the flow when maxu∈T̃ Ω(u) ≥ 0.95, this value was empirically cho-
sen. Moreover, observe that when Ω(r) > 1 the constraint is trivially infeasible.
Therefore we can return an early failure in this case.

The second criterion is the size of the remaining search space. Indeed solving
the flow might not be worthwhile even it is infeasible, if brute-force search would
have been faster. Here we empirically chose 250 as minimal search space, defined

13

as the product of the ranges of all start time and height variables. That is, we
solve the flow only when:

∑
i∈E log |D(si)|+ log |D(hi)| ≥ 50.

However, even with this approach, using the global flow constraint made CP
Optimizer about one order of magnitude slower (measured by number of fails per
second). Therefore we also tested a version that never solves the flow, and only
fails when the overall load is too large for the resource’s capacity (Ω(r) > 1).

We ran every method on every instance of the dataset with a time limit of 45
minutes on 4 cluster nodes, each with 35 Intel Xeon CPU E5-2695 v4 2.10GHz
cores running Linux Ubuntu 16.04.4.

Table 2: Depth first search: upper bound and optimality ratio

DFS DFSh DFS+ DFSh+ DFSf DFShf

#s ub #s ub #s ub #s ub #s ub #s ub

dense 10 (20) 1.00 26469 1.00 26469 1.00 25485 1.00 25573 1.00 25485 1.00 25573
dense 15 (20) 1.00 179099 1.00 176391 1.00 189864 1.00 188238 1.00 194737 1.00 195631
dense 20 (20) 1.00 365596 1.00 367030 1.00 406828 1.00 407116 1.00 486971 1.00 447924
dense 25 (20) 0.95 697661 1.00 663314 0.85 1093784 1.00 759437 0.85 1201755 1.00 881494
medium 10 (20) 1.00 49294 1.00 49294 1.00 49567 1.00 49567 1.00 49567 1.00 49567
medium 15 (20) 1.00 148513 1.00 143999 1.00 153372 1.00 149243 1.00 169840 1.00 170785
medium 20 (20) 0.95 339103 1.00 339370 1.00 376395 1.00 384381 1.00 507420 1.00 427572
medium 25 (20) 0.90 1291811 1.00 659269 0.80 1461162 1.00 722167 0.75 1286011 1.00 790511
sparse 10 (20) 1.00 4474 1.00 4759 1.00 4464 1.00 5951 1.00 4464 1.00 5951
sparse 15 (20) 1.00 131229 1.00 129276 1.00 135192 1.00 134420 1.00 146487 1.00 146917
sparse 20 (20) 0.90 293930 1.00 312834 1.00 320080 1.00 323449 1.00 388194 1.00 364291
sparse 25 (20) 0.95 598501 1.00 574534 0.80 593962 1.00 732975 0.80 684041 1.00 767851

avg (240) 0.97 333506 1.00 287212 0.95 369874 1.00 323543 0.95 395298 1.00 356172

Table 2 show results of running CP Optimizer with the strategy Depth first
search (DFS). We use ‘h’ to denote the use of the heuristic upper bound described
in Section 6, ‘+’ to denote the use of the overall load check described above, and
‘f ’ for the flow propagator. The columns “#s”, gives the ratio of instances for
which the method found a feasible solution, the column “ub” the mean upper
bound, and we highlight the best outcomes using colors. We can see that DFS

does not find a feasible solution in every case, whereas our upper bound heuristic
always finds one. Moreover, starting from a good quality solution pays off and
the best solutions are significantly better than that of the baseline method.
However, the flow propagator (DFSf) and even the simple load checking rule
(DFS+) do not help and in fact decrease the performance of CP Optimizer.

In fact, the results are even more negative when using CP Optimizer’s default
strategy. Table 3 show the results in this setting, using the same conventions.
The number of feasible solution is here replaces by the number of optimality
proofs, since a feasible solution was found in every case. Here we can see that
again the extra propagation does not improve the results. Moreover, the impact
of the heuristic upper bound is milder: it helps find better solution in some
cases, but overall it is actually slightly worse than not using it.

We find the empirical results puzzling. In the case of the flow propagator,
we expect a tradeoff, not necessarily positive, between the extra pruning and
the computational overhead. However, it is much more surprising that the load

14

Table 3: Default search: upper bound and optimality ratio

CPO CPOh CPO+ CPOh+ CPOf CPOhf

ub opt ub opt ub opt ub opt ub opt ub opt

dense 10 (20) 23294 0.95 23567 0.80 23354 0.95 23681 0.85 23503 0.90 23807 0.80
dense 15 (20) 161100 0.70 161700 0.75 162856 0.60 162751 0.55 164524 0.45 165025 0.45
dense 20 (20) 311676 0.45 312501 0.45 312697 0.15 313114 0.15 317035 0.10 316596 0.00
dense 25 (20) 531016 0.00 529889 0.00 530749 0.00 530975 0.00 539192 0.00 564722 0.00
medium 10 (20) 48591 1.00 48591 0.80 48591 0.95 48591 0.75 48776 0.90 48979 0.70
medium 15 (20) 124921 0.70 125195 0.50 125559 0.60 125110 0.60 126011 0.40 127421 0.40
medium 20 (20) 276101 0.25 276094 0.25 277545 0.10 277485 0.10 279654 0.05 278723 0.10
medium 25 (20) 488282 0.10 488555 0.10 491794 0.00 491423 0.00 493682 0.00 507275 0.00
sparse 10 (20) 3747 1.00 3880 0.90 3747 1.00 3880 0.90 3946 0.85 3880 0.85
sparse 15 (20) 120173 0.65 120151 0.65 120162 0.60 119803 0.55 120895 0.55 120576 0.55
sparse 20 (20) 235771 0.35 253807 0.35 237503 0.15 236920 0.20 238300 0.20 240112 0.15
sparse 25 (20) 437618 0.00 437219 0.05 439699 0.00 438160 0.00 441707 0.00 448979 0.00

avg (240) 230191 0.51 231762 0.47 231188 0.42 230991 0.39 233102 0.37 237175 0.33

Table 4: Ratio of failures due to the propagator

method #sol
#nodes (total) #fails (flow) fails/node speed

avg avg avg avg

F/LNS 1.00 525793 2371 0.01161 5324
O/LNS 1.00 3042714 2376 0.00137 30157
LNS 1.00 3084572 0 0.00000 34508

checker and the heuristic, which are both almost computationally free do not
help at all, let alone hinders CP Optimizer. Table 4 shows the average number
of nodes required to solve an instance, the average number of fails due to the
flow, the ratio of fails per node and the “speed” in number of branches explored
per second. On the one hand, we observe that the flow propagator decreases
the speed by a factor 6, while failing in only about 1% of the calls. Recall,
however, that the flow is solved only when the remaining search space is large
enough, so these fails are likely to cut a relatively large subtree. On the other
hand, we can see that the impact of the load checker on the search speed is
rather limited, although visible, and that is does causes early failures (though
admittedly rarely).

9 Conclusion

We have introduced a variant of the flood evacuation planning problem, where
the objective function is adapted to the context of wildfires. We have designed
a generator of challenging and realistic instances for this problem. We have
introduced a new type of cumulative constraint where tasks have flexible du-
ration and height, but a constant energy. We have analysed the complexity of
this constraint, and proposed several solution approaches, including an effective
greedy upper bound and a global propagation method.

15

However, the experimental results we carried out suggests that these tech-
niques tend to degrade CP Optimizer’s performances. One possible insight that
we can draw from these experiments is that the amount of tuning, sophisti-
cated techniques, and the overall black-box nature of CP Optimizer, although
making it extremely efficient in practice is also a problem when trying to test
preliminary ideas on how to best tackle a problem. In order to improve over the
results of CP Optimizer, it is therefore probable that we will need to use more
refined algorithms and in particular dedicated flow algorithms which would be
incremental and from which we could propagate bounds.

Acknowledgement

This work is partially funded by the H2020-MSCA-RISE-2015 European project
GEO-SAFE (id 691161)

References

[1] Hal E. Anderson. Aids to determining fuel models for estimating fire behav-
ior. Technical Report 122, United States Department of Agriculture- Forest
Service, Intermountain Forest and Range Experiment Station Ogden, UT
84401, April 1982.

[2] Vedat Bayram. Optimization models for large scale network evacuation
planning and management: A literature review. Surveys in Operations Re-
search and Management Science, 2016. DOI: 10.1016/j.sorms.2016.11.001.

[3] David Eisenstat. Random road networks: the quadtree model. CoRR,
abs/1008.4916, 2010.

[4] Caroline Even, Victor Pillac, and Pascal Van Hentenryck. Convergent
plans for large-scale evacuations. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 1121–1127, 2015.

[5] Caroline Even, Andreas Schutt, and Pascal Van Hentenryck. A constraint
programming approach for non-preemptive evacuation scheduling. In Prin-
ciples and Practice of Constraint Programming - 21st International Confer-
ence, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings,
pages 574–591, 2015.

[6] Edward R. Galea, Mathew Owen, and Peter J. Lawrence. The EXODUS
Model. Fire Engineers Journal, pages 26–30, 1996.

[7] Geo-safe - geospatial based environment for optimisation systems address-
ing fire emergencies, MSCA-RISE-2015 - Marie Sk lodowska-Curie Re-
search and Innovation Staff Exchange (RISE) European projet – id 691161.
http://fseg.gre.ac.uk/fire/geo-safe.html. Accessed: June 12, 2018.

16

[8] Kanal Kumar, Julia Romanski, and Pascal Van Hentenryck. Optimizing
infrastructure enhancements for evacuation planning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., pages 3864–3870, 2016.

[9] Margaux Nattaf, Christian Artigues, and Pierre Lopez. Cumulative
scheduling with variable task profiles and concave piecewise linear pro-
cessing rate functions. Constraints, 22(4):530–547, 2017.

[10] Victor Pillac, Manuel Cebrián, and Pascal Van Hentenryck. A column-
generation approach for joint mobilization and evacuation planning. Con-
straints, 20(3):285–303, 2015.

[11] Victor Pillac, Caroline Even, and Pascal Van Hentenryck. A conflict-based
path-generation heuristic for evacuation planning. Transportation research
part B, (83):136–150, 2016.

[12] Richard C. Rothermel. A mathematical model for fire spread predictions
in wildland fuels. Technical Report 115, USDA For. Serv., lntermt. For.
and Range Exp. Stn., Ogden, Utah, USA, 1972.

[13] Shahrooz Shahparvari. Enhancing Emergency Response in Short-notice
Bushfire Evacuation. PhD thesis, RMIT University, 2016.

[14] Shahrooz Shahparvari, Prem Chhetri, Babak Abbasi, and Ahmad Abareshi.
Enhancing emergency evacuation response of late evacuees: Revisiting the
case of australian black saturday bushfire. Transportation Research Part
E: Logistics and Transportation Review, 93:148 – 176, 2016.

[15] Alexander Stepanov and James MacGregor Smith. Modeling wildfire propa-
gation with delaunay triangulation and shortest path algorithms. European
Journal of Operational Research, 218(3):775 – 788, 2012.

[16] Anand Veeraswamy, Edwin R Galea, Lazaros Filippidis, Peter J Lawrence,
and Robert J Gazzard. The simulation of urban-scale evacuation scenarios:
Swinley forest fire. In Proceedings 6th Int Symp Human Behaviour in Fire,
pages 221–232, 2015.

[17] David R. Weise and Gregory S. Biging. A qualitative comparison of
fire spread models incorporating wind and slope effects. Forest Science,
43(2):170–180, 1997.

17

