
Finding the shortest route between two points in a network

by T. A. J. Nicholson*
A new method is proposed for finding the shortest route between two points in an interconnected
network. The shortest route is found by investigating a selection of routes from both the starting
point and the terminal point. The selection of routes is decided dynamically by extending one by
one the routes which have currently covered the least distance. Once a complete through route
has been found, it has to be made certain that it is the minimum. The new method appears to be
more efficient than alternative approaches to the problem through linear or dynamic programming.
Some applications of the technique to scheduling and other problems are briefly described.

A simple calculation which is needed in some network
applications is the discovery of the shortest route between
two points of a network. It could arise for example in a
traffic routing problem. Finding the shortest route is
simple enough in concept, but in large networks the cal-
culation could become clumsy and much effort could be
wasted. The thing to avoid doing is evaluating all
alternative routes. This paper describes a simple method
of finding the shortest route with a comparatively small
amount of calculation. Afterwards a few alternative
methods are mentioned, and some applications are
suggested.

The network structure
The network consists of a set of, say n, junction points

i, (i = 1, n) and a set of distances dtj between pairs of
points (/,/). The total number of specified distances
will correspond to the number of possible routes between
adjacent pairs of points, but there will be at least n — 1
such connections, as it is assumed that no point in the
network is isolated. Also, in presenting the data for
the network, it is assumed the dtj are positive, and that
both directions dtj and d}i are given so that different
directions are distinguished. The method therefore
applies to networks with direction restrictions, or where
the distances of the forward and reverse directions may
differ, i.e. it may be that du =t= dJh

The objective and an outline of the method
The objective is to find the minimum distance route

between a starting point, say s, and a terminating point,
say t, with the least amount of calculation.

The procedure is to examine simultaneously all the
routes out of the starting point s and into the ter-
minating point t as far as their adjacent connected
points, and to extend further the route which has so far
covered the least distance. This process is repeated
stage by stage until a route out of s has a point on it
which has already occurred on a route into /, or vice
versa. It then remains to check that this complete route
is the shortest possible route between 5 and /.

Graphical illustration of the procedure
The procedure is illustrated on the network of Fig. 1.

The network has nine points and the distances between
the points are marked on the connections. It is assumed
that there are no direction restrictions. We want to
find the shortest route between the points 1 and 9. We
need to go through four steps, and the successive steps
are illustrated in Figs. 2 to 5.

Fig. 1

Step 1. We want to find the routes from point 1 to
point 9. We start by examining the routes out of point 1
and into point 9 as far as the adjacent connected points.
We can record the distances to these adjacent points in
the form (r, x) where r is the adjacent point and x is its
distance from point 1 or 9. These results are displayed
in Fig. 2.

Fig. 2

Step 2. We now look at the results in Fig. 2. Three
routes have started out of 1 and three routes into 9.
Amongst these six routes the two routes which have so
far covered the least distance are the routes 8 to 9 and
6 to 9. They have only covered a distance of 2 units.

* Applied Mathematics Group, Theoretical Physics Division, U.K.A.E.A., Atomic Energy Research Establishment, Harwell,
Didcot, Berkshire.

275

Shortest route

Therefore we extend these two routes to their adjacent
connected points, and these extensions are displayed in
Fig. 3. Note that although there is a connection from
point 8 to point 6, it is ignored, as its total distance is 3,
whereas we already have a route with a distance of 2.
In the new (/% x) values the distances are from the base
point 9.

\ ,
X 2 ' 3) (5<3)—(8'2)

/ (3 , 6) (3.4)-(6.2)

\(4.7) (4.5)/(7.5)

Fig. 3

These new extensions from the point 6 and the point 8
combined with the routes we have already evaluated in
step 1 offer two complete routes. They are the routes
1, 3, 6, 9 and 1, 4, 6, 9 and they have total distances 10
and 12 respectively. They are shown as dotted lines in
Fig. 3. But we cannot be sure that the route 1, 3, 6, 9
is the shortest route because we have not yet looked into
the possibility of a connection between the route from 1
to 2 of distance 3 (the current least distance route from
point 1) and the route from 5 to 9 of distance 3 (the
current least distance route from point 9). If there was
such a connection it might provide a complete route of
total distance 6, and as 6 < 10 we must examine further
extensions.

Step 3. Amongst all the routes coming out of point 1
or going into point 1 in Fig. 3 the route 1 to 2 has a
length of 3 units and the route 9, 8, 5 also has a length
of 3 units. These are the shortest routes, and we first
extend the route from 2 to its adjacent connected points.
This leads to a revision of the route to a point 3 as the
route via the point 2 is shorter. These changes are
illustrated in Fig. 4.

—(5,7) (5.3;-

(3,4) (3,4) (6,2;A9,o)
>.7> (7.5)/

Fig. 4

There are now three complete routes 1,2,5,8,9;
1, 2, 3, 6, 9; and 1, 4, 6, 9 with distances 10, 8, and 12
respectively. But the minimum distance of an unex-
tended route from 1 has distance 4 and the minimum
distance of an unextended route from 9 has distance 3
the minimum possible complete route has distance 7.
Therefore we must investigate further the route of 9, 8, 5.

Step 4. If we extend further the route 9, 8, 5, which
is the shortest distance route then we obtain no
additional new complete routes. The situation is illus-
trated in Fig. 5.

In this case the minimum distance unextended route
from 1 has distance 4 and the minimum distance

(fJ
4,7)-

: (3,4) ^ ^ Q)

(4 ,s) / (7,5y

Fig. 5

unextended route from 9 has distance 4. As the mini-
mum distance complete route has distance 8 it is a
shortest route. Therefore the shortest distance is 8 and
the shortest route is 1,2, 3, 6, 9.

The notation
The notation which will be used in the algorithm is

now described.
n is the number of junction points.
djj is the distance between the connected points i and/

in the direction from i to j . dti is assumed to be
positive.

If there is no connection between i andJ then set:
du = 0, for / =j
d,j = M = n Max du where S is the set of specified

(i,j) connections.
(The value of M is chosen as a suitably large number

so that it is greater than the total distance along any
route connecting two points without going through any
point more than once.)

s is the starting point
t is the terminating point
S{i) is the current minimum distance from s to i
T(i) is the current minimum distance from i to t
P{i) is the point preceding i in the current optimal

route from s to i
Q(i) is the point succeeding / in the current optimal

route from i to t
x is the current least distance from s
y is the current least distance from t

The algorithm
The algorithm will be described verbally first, followed

by a symbolic description.
The algorithm consists of two steps: the first selects a

route for extension and extends the selected route, while
the second step provides the check to see if the shortest
route has been found. The steps are repeated cyclically
until the condition in the second step is satisfied.

The necessary initialization is as follows:

for all 2

276

Shortest route

(i) Verbal description of the algorithm

Step 1. If on any iteration the next shortest route
starts from 5 rather than /, then we proceed as follows:

For each route starting at s of next shortest length,
examine all connections from its end point m. If there
is a connection from s to the point i via the point m, it
will be of length S(m) + dmi, and this replaces the
existing value of 5(0 when it is shorter. When replace-
ment occurs P(i) is set to m. If on any iteration the
shortest route starts from t rather than s then we proceed
exactly as described above substituting /, T(m) + dim,
7X0, 2(0 for s, S(m) + dmh 5(0, P(i), in the above
argument.

Step 2. If on any iteration the least value of 5 (0 + n 0
(representing a complete route) is at least as small as
the sum of the lengths of the shortest route out of s
and the shortest route out of / then a shortest complete
route has been found. The points on the shortest route
can be traced back through the values of P(i) and Q(i).

(ii) Symbolic description of the algorithm

Initially x = y = 0.

Step 1. If Min 5(0 < Min 7X0,
5(0 > x T{i) > y

then for each m for which S(m) = Min 5(0,
5(0 > x

reset 5(0 = 5(m) + dmi

P(i) = m

for alli for which 5(0 > 5(w) + dmi.

Also reset x as Min 5(0-
5(0 > x

Otherwise:

for each m for which T(m) = Min T(i)

no > y
reset T(0 = T(m) + dim

Q(i) = m

for all i for which T(i) > T{m) + dim.

Also reset y as Min 7X0

no > y
Step 2. If Min (5(0 + n 0) < Min 5(0 + Min T(i)

i 5(0 > x T(i) > y

Note: if 5(0 < x for all /", then Min 5(0 is taken
5(0 > x

to be the suitably large number M; and similarly for
Min 7X0-

no > y

Proof that the algorithm finds the shortest route
The first step of the algorithm, if repeated enough

times, ensures that the value of 5(0 will monotonically
decrease to the length of the shortest distance from s to i.
Similarly the value of T(i) will monotonically decrease
to the shortest distance from i to t. So that, after enough
iterations, if some point k lies on a shortest complete
route, then S(k) + T(k) will equal the shortest distance
between s and /. But the algorithm states that the
iterations can be stopped when the following inequality
holds:

5(/-) + T(r) = Min (5(0 +
i

Min 50") + Min T(k).
S(j) > x T(i) > y

0)
When this inequality holds many of the values of 5(0
and 7X0 w m n o t have converged to their final values.
It is necessary to show therefore that if 5'(0. 7"(0» *'
and y' are the values of 5(0, n 0 , x and y when the
inequality (1) first holds, and 5(0, 7(0 are the final
values which 5(0, n 0 would converge to if the iterations
were continued indefinitely, then

5(0 + f(0 > S'(r) + T\r) for all i

where r is denned so that

S'{f) + T'(r) = Min (5'(0 + HO)
i

< Min S'(j) + Min T'(k).
x' T'(i) > y

(2)

(3)

For each /, we need to consider four mutually exclusive
cases which depend on the values of 5'(0 an<l 7"(0,
which cover all possibilities.

Case 1. 5'(0 < *', 7"(0 < / •
In this case, as 5'(0 <

Min S'(j) and T'(i)
S'(j) > x'

< Min T'(k),
T\k) > y

5'(0 and T'(i) would not be altered in later iterations
by step 1 of the algorithm.

then the shortest distance is Min (5(0 + 7X0) = S(f) + T(r) Therefore 5(0 = S'(0 and T(i) = 7"(i).

say, and the shortest route is s,ak_t, ..., a3, a2, r, b2, b3,

• • ., 6(/_j) , t

where ax = r; a-, = P{a-,_^), i = 2, k; ak = s

and b, = r; b, = Q(bi_,), i=2,\;b,= t.

Otherwise return to step (2).

Hence 5(0 + 7X0 = S"(0 + T'(t) > S'(r) + T\r) by
(3).

Case 2. S'(j) > x', T'(i) > y'.
In this case 5(0 and T(i) may be reduced below 5'(0

and 7"(0 in later iterations. But in later iterations 5(/)

277

and T(0 wiU never be reduced below Min
S'U) > x'

and Min 7"(0 by step 1 of the algorithm.
T'U) > y'

Therefore 5 (0 + f (0 > Min S'U) + Min T'(k)
S'(j)>x' T'(k)>y

Shortest route

S'U)

by (3).
S'(r) + T'(r)

Case 3. 5'(0 < x', T'(i) > y'.

In this case 5(0 cannot be reduced below the value of
S'(i) in later iterations, but T(i) may be reduced below
the value of T'(i). The proof that in this case S(i)

+ 7X0 > S'(r) + T'(f) requires more detailed examina-
tion, so it is treated separately in the next paragraph.

Case 4. S'(i) > x', T'(i) < y'.

The proof in this case that 5(0 + T(i) > S'{r) + T'(r)
is identical to the proof for case 3 with the letters S and T
interchanged.

Therefore in all cases S(f) + T(i) > S'(r) + T'{r) and
the inequality which was stated in step 2 of the method
as the condition for stopping iterations is correct.

Proof of case 3

It remains to prove that if S'{i) < x' and T'{i) > y'
that S(i) + 7X0 > S'if) + T'if).

The proof requires the examination of the optimum
or shortest route from i to t and the use of the properties
along this route. Let the final route from i to t be:

bu b2, . . ., bv . . ., bw . . ., b,, where bx = /, b, = t.

a l o n 8 tlu's routeThe properties of 5"(0» S(7), 7"(0»
are as follows:

For ally, (1 <j<l)

S(bJ+l)<S(bJ)+dbj,bj+l (4)

(5)

as bt, b2, • • • b/ is the final route from i to t.
Also, as 7"(0 > y' this implies T(i) > y'
and as 7"(0 < y' this implies 7X0 < y'-
Further using (5), T(bj) > f(bj+l).

Therefore there is a point bw, (1 < w < /) such that

T(bw_l)>y

and T(bw) < y

i.e.

and

f(bj)>y', (l<j<w'-l)

f(bj)<y, (w<j<l).

(6)

(7)

The results (6) and (7) imply corresponding results from
T'(bj), namely:

T'ibj) >y', (1< j < w - 1) (8)

T'{bj)<y, (w<j<l). (9)

Diagrammatically the situation is as illustrated in
Fig 6.

0
t l
O

©

TRAVELLING SALESMAN PROBLEM WITH FOUR
POINTS AND POINT(I) AS THE BASE OF THE TOUR.

Fig. 6

The proof now requires the consideration of three
mutually exclusive situations which depend on the
values of S(b,).

(A) If there is a point bv, (w < v < /) such that

_ _ _

then 5(0 + 7X0 > S(bJ - S dbk, bt+l + T(bv)
k l

"
k=l

dbk, bt+l (by (4) and (5))

> S(bv) + T(bv)

> S'(be) + T'(bv), (using (9) and proof
of case 1)

> S'{r) + T'{r), (by (3)).

(B) If there is a point bv, (1 < v < w) such that

S'(be) > x',

Then 5(0 + T(i) > S{bv) + f(bD)

> Min 5'(0

(using (8) and proof of case 2)

> S'(f) + T'{r) (by (3)).

(C) S'%) <x', 1 < i < w - 1

Then 5(0 + T(i) > 5(6W_,) +
>S'(bw-l)+7\bw_l)

i) + T(bw) + dbtc_,, „„

(w i) l

(using the proof of case 1)

(as, although T'(bw-t) > y', it will have been evaluated

278

Shortest route

and will not be altered since bw^ubw is on the final
shortest route)

+ T'(r) (by (3)).

This concludes the proof.

A worked example
The example of Fig. 1 will be used to demonstrate the

procedure. First the dtj matrix is constructed, in which
M, the suitably large number for non-connected points,
is left as a blank element to improve clarity. Below the
matrix the initial values of 5, T, P, Q are shown and
their changing values over the iterations. (See Table 1.)

Table 1

to
1 2 3 4 5 6 7 8 9

d,j from

Initial

1st Iteration

2nd Iteration

3rd Iteration

so)
P(i)no
2(0

no
6(0no
6(0

5(0
p(i)

2(0

l
2
3
4
5
6
7
8
9

0
3
6
7

0
1

9

9

9

0
1

9

3
0
1

4

3
1

9

9

9

3
1

7
5

6
1
0

2

6
1

9

4
6
4
6

4
2

4
6

7

0

3
4

7
1

9

5
6
5
6

7
1

5
6

4

0

1

1

9

9
3
8

7
2

3
8

2
3

0

1
2

1
2
9

2
9
2
9

1

2
9

4

0

5

1
5
9

5
9
5
9

1

5
9

1
1

0
2

1
2
9

2
9
2
9

1

2
9

2
5
2
0

1
0
9

0
9
0
9

1

0
9

The iterations run as follows:

Iteration 1. As Min S(/) = 3 > Min T(k) =
S(j) > 0 7W > 0

r(0 an<i 2(0 a r e first reset through row 6 of du.
Then 7"(0 and g(z") are reset through row 8 of du.
y is reset to 2.

Then Min (5(0 + r(0) = 10 > Min S(j)
i S(j) > 0

+ Min T(k) = 3 + 3 .
T(k) > 2

Iteration 2. As Min S(J) = 3 < Min T(k) = 3
0 T{k) > 2

5(0 and P(i) are reset through row 2 of du.
x is reset to 3.

Then Min (5(0 + T(i)) = 8 > Min S(j)
i S(j) > 3

+ Min T(k) = 4 + 3.
T{k) > 2

Iteration 3. As Min S(j) = 4 > Min T{k) = 3
5Q) > 3 T{k) > 2

T(i) and 2(0 are reset through row 5 of d^.
y is reset to 3.

Then Min (5(0 + T(i)) = 8 < Min S(j)
i 50) > 3

+ Min T(k) = 4+4.
T{k) > 3

The shortest distance from point 1 to point 9 is there-
fore 8 units and the shortest route is built up as

P(2),2,3,6,e(6)
1,2,3,6,9.

Alternative methods of finding the shortest route
Both dynamic and linear programming have been

applied to the shortest route problem. Dynamic pro-
gramming might be better than the method described in
the paper if the intention was to find the shortest routes
between a starting point and a number of finishing
points, but on the straightforward shortest route problem
dynamic programming evaluates more information than
is necessary. In the case of linear programming, the
trans-shipment technique handles the shortest route
problem, but this serves more to emphasize the scope of
linear programming than to provide a really suitable
solution.

Three computer programs were written for the IBM
7030 computer to compare the execution times of the
dynamic and linear programming approaches against
the method described above. The results confirmed the
advantages of the method described. On a network of
100 points with 10 randomly chosen starting and ter-
minating points the average execution times were as
follows:

Method described
Dynamic programming
Linear programming

0-47 seconds
3-29 seconds

82 • 1 seconds

It is difficult to ensure that this sort of comparison by
computer program is completely objective, because one
knows how to exploit for programming the particular
features of one's own method. But it is certain that
unless the numbering of the network is specially arranged
to suit the particular case, the new method requires
many fewer comparisons than the dynamic programming

279

Shortest route

approach. The solution of the problem by linear pro-
gramming is inevitably weak because it cannot exploit
the structure of the problem. One further computa-
tional point should be mentioned. If the network is
sparse then it will be wasteful to use the whole of the
square matrix to record the distances. In this case the
distances should be stored in a list form, and a few
simple alterations to the notation adapt the procedure
to this situation.

An alternative approach might be to find a first
feasible route between s and t and then try to improve
it. Some measure would have to be found associated
with each point on the route ascertaining how far it
would be worthwhile to deviate from the route. More-
over finding the first feasible route would not be trivial.
It might be tackled by "plotting" the network, fully
unravelled, and attempting to use a sense of direction in
the network branches. But plotting would work only if
the network distances satisfied the triangle inequality in
which "distance (1,2) < distance (1,3) + distance (3,2)",
and this inequality would not hold in some applications.
A first feasible approach therefore looks burdened with
a lot of calculation compared with the "least distance"
method described above.

ASSOCIATED NETWORK OF POSSIBLE ROUTES.

Fig. 7

Applications of the shortest route problem
The most obvious application of the technique is to

traffic routing, either for setting up a system or for
dynamically controlling traffic flow, possibly taking
account of traffic densities. In the field of computing
science, program flow is beginning to be analyzed on a
network basis, so that the technique may have appli-
cations in systems design. And just as a linear pro-
gramming trans-shipment technique tackles the
shortest route problem, so, conversely, some trans-
shipment problems may be treated by a shortest route
procedure.

Sometimes it is possible to translate a problem not
apparently related to networks into a shortest route
problem. Hardgrave and Nemhauser (1963) reduced
the Akers-Friedman scheduling problem into the
problem of finding the shortest route through a network.
Also, Held and Karp (1965) converted the travelling
salesman problem and the assembly-line balancing

problem into shortest route problems, but the necessary
constructions seem to be rather awkward (see Fig. 7).

Other applications may occur in any network situation,
whether it is an electrical network or one of the network
structures now being used for management planning and
control. The technique described in this paper is an
addition to the increasing number of network pro-
cedures now collecting under the name of network
algebra.

Acknowledgements
I am very grateful to Mr. A. R. Curtis and Mr. R. G.

Garside of A.E.R.E., Harwell, for the valuable sugges-
tions and advice they have given me in designing the
technique. I would also like to thank the referee for
pointing out a number of obscurities in my original
presentation of the paper. Finally I am indebted to
Miss C. I. Powell of A.E.R.E. for her assistance with the
preparation of the computer programs.

References

HARDGRAVE, W. M., and NEMHAUSER, G. L. (1963). "A geometric model and a graphical algorithm for a sequencing problem",
JORSA, Vol. 11, p. 889.

HELD, M., and KARP, R. M. (1965). "The construction of discrete dynamic programming algorithms", IBM Systems Journal,
Vol. 4, No. 2, p. 136.

VAJDA, S. (1961). Mathematical Programming, Chap. 6, New York: Addison-Wesley.

280

