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1 Context

The recent advances in artificial intelligence as well as the growing use of algorithmic systems to assist
humans or even make decisions autonomously, have been accompanied by major ethical challenges.
For instance, these challenges include the interpretability, fairness and privacy of the machine learning
models that form the basis of such systems.

This internship will focus on machine learning models that are interpretable by design [Lip18,
Rud19] while ensuring strong privacy guarantees, expressed in terms of differential privacy [NA21,
DR14].

The internship is part of an international scientific collaboration on “Operational Research for
Fairness, Privacy and Interpretability in Machine Learning” (co-funded by the LabEx CIMI1). The
internship will take place at LAAS (ROC team2) and will be supervised by:

• J. Ferry, M.-J. Huguet and M. Siala, LAAS-CNRS (Toulouse, France)

• U. Aı̈vodji, ETS (Montréal, Canada) and S. Gambs, UQAM (Montréal, Canada)

2 Proposed Subject

Background (to be completed during the internship)

Interpretability. Basic notions of interpretability for machine learning and motivations can be
found in [Lip18, Rud19]. More precisely, in this internship we will consider rule list models [Riv87].
To learn such models, we will leverage on the CORELS3 algorithm [ALSA+17, ALSA+18], which
builds Certifiably Optimal RulE ListS (in terms of accuracy and sparsity) for categorical data: https:
//corels.eecs.harvard.edu/corels/.

Pricvacy risks of machine learning models. Machine learning models have been shown to be
vulnerable to privacy and security attacks targeting the confidentiality [RG20] of the model and its
environment (e.g., training data or hyperparameters), namely membership inference [SSSS17], property
inference [AFM+13], model inversion [FJR15], training-data reconstruction [C+21] as well as model
extraction [TZJ+16]. Several frameworks implementing these attacks have been developed in recent
years, including ART4. This internship will investigate exclusively the design solutions to defend against
membership inference attacks [SSSS17], which are considered as one of the fundamental privacy attacks.

Differential privacy. To achieve a privacy-preserving learning, we will consider a standard rigorous
notion named differential privacy [NA21, DR14]. Various mechanisms (e.g., Laplace, Gaussian or
Exponential) were proposed to obtain the differential privacy property. Some of them are, for instance,
implemented in public libraries such as https://github.com/google/differential-privacy/ or
https://github.com/IBM/differential-privacy-library.

1https://cimi.univ-toulouse.fr/
2https://www.laas.fr/public/fr/roc
3https://github.com/corels/pycorels
4https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Differential privacy in machine learning. The training of machine learning models raises impor-
tant privacy risks, in particular with respect to the training data. The objective of privacy-preserving
machine learning is to reconcile two antagonist purposes: extracting useful correlations from data
without revealing private information about an individual user. Ensuring differential privacy when
learning a model is a strong protection mechanism [JLE14, GXP+20], which theoretically bounds the
amount of information that an adversary can infer from the access to the model. However, this pri-
vacy guarantee comes at a cost in terms of utility, in particular in terms of predictive accuracy. While
methods were proposed to adapt deep learning frameworks to satisfy differential privacy [ACG+16],
some recent works also considered interpretable models learning (e.g., decision trees [FI19]).

Objective(s)

• The first part of the internship will consist in familiarizing with the different background notions,
in particular;

– understanding the basics and motivations for interpretability, rule list models and the
CORELS algorithm,

– learning the concept of differential privacy and the different algorithms that ensure such
guarantee.

• The second and core part of the internship will consists in modifying the CORELS algorithm
to ensure differential privacy guarantees, using one of the previously identified mechanisms. A
theoretical study will also be conducted to prove that the modified algorithm satisfies differential
privacy. In addition, an empirical evaluation will be performed to assess the trade-offs between
DP budget and predictive accuracy (as well as eventually, sparsity or other interpretability
notions). The adaptation of decision tree learning algorithms to comply with differential privacy
guarantees [FI19] provides a good methodological example.

• Different differentially-private versions of the CORELS algorithm will also be explored, using dif-
ferent underlying DP-preserving mechanisms (e.g., the Laplace mechanism, the Gaussian mech-
anism or the Exponential mechanism . . . ). The different versions can then be compared in terms
of:

1. (Theoretical) Differential privacy guarantees.

2. (Empirical) Trade-offs between DP budget and learning accuracy (and, eventually, sparsity
or other interpretability notions).

3. (Empirical) Robustness against membership inference attacks [SSSS17] as compared to their
non-DP counterparts.
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