POP23 - Future Trends in Polynomial Optimization

November 13–17, 2023
LAAS-CNRS, Toulouse

Pure states for polynomial nonnegativity certificates in the presence of zeros

Markus Schweighofer (Universität Konstanz)
(joint work with Luis Felipe Vargas)
Definition 1 \[R[x] := R[x_1, \ldots, x_n] \] polynomial ring

Let \(M \subseteq R[x] \).
Definition 1 \[R[x] := R[x_1, \ldots, x_n] \] polynomial ring

Let \(M \leq R[x] \).

We call \(S(M) := \{ a \in \mathbb{R}^n \mid \forall \rho \in M : \rho(a) \geq 0 \} \) the nonnegativity set of \(M \).
Definition 1 \(R[x] := R[x_1, \ldots, x_n] \) polynomial ring

Let \(M \subseteq R[x] \).

We call \(S(M) := \{ a \in R^n \mid \forall \rho \in M : \rho(a) \geq 0 \} \) the nonnegativity set of \(M \).

\(M \) is called a **quadratic module** of \(R[x] \) if \(\forall \in M, M + M \subseteq M \) and \(R[x]^2 M \subseteq M \).
Definition 1 \(R[x] := R[x_1, \ldots, x_n] \) polynomial ring

Let \(M \leq R[x] \).

We call \(S(M) := \{ a \in R^n \mid \forall \rho \in M : \rho(a) \geq 0 \} \) the nonnegativity set of \(M \).

\(M \) is called a **quadratic module** of \(R[x] \) if \(\lambda \in M, M + M \leq M \) and \(R[x]^2 M \leq M \).

A quadratic module \(M \) of \(R[x] \) is called **Archimedean** if \(M + \mathbb{Z} = R[x] \).
Proposition 2 Let M be a quadratic module of $\mathbb{R}[x]$.

M Archimedean $\iff \exists N \in \mathbb{N}: N - \sum_{i=1}^{n} x_i^2 \in M$
Proposition 2 Let M be a quadratic module of $\mathbb{R}[x]$.

M Archimedean \iff \(\exists \, N \in \mathbb{N} \, : \, N - \sum_{i=1}^{n} x_i^2 \in M \)

Example 3

\[S^{n-1} := \{ x \in \mathbb{R}^n \mid \| x \| = 1 \} \] \quad \text{sphere}

\[B^n := \{ x \in \mathbb{R}^n \mid \| x \| \leq 1 \} \] \quad \text{ball}
Proposition 2 Let M be a quadratic module of $\mathbb{R}[x]$.

M Archimedean $\iff \exists N \in \mathbb{N}: N - \sum_{i=1}^{n} x_i^2 \in M$

Example 3

$S^{n-1} := \{ x \in \mathbb{R}^n \mid \|x\| = 1 \}$ sphere

$B^n := \{ x \in \mathbb{R}^n \mid \|x\| \leq 1 \}$ ball

$M_{S^{n-1}} := \sum \mathbb{R}[x]^2 + \mathbb{R}[x] \left(1 - \sum_{i=1}^{n} x_i^2 \right)$ is an Archimedean quadratic module with $S(M_{S^{n-1}}) = S^{n-1}$.
Proposition 2 Let M be a quadratic module of $\mathbb{R}[x]$.

M Archimedean $\iff \exists N \in \mathbb{N} : N - \sum_{i=1}^{n} x_i^2 \in M$

Example 3

$S^{n-1} := \{ x \in \mathbb{R}^n \mid \| x \| = 1 \}$ sphere

$B^n := \{ x \in \mathbb{R}^n \mid \| x \| \leq 1 \}$ ball

$M_{S^{n-1}} := \sum \mathbb{R}[x]^2 + \mathbb{R}[x] (1 - \sum_{i=1}^{n} x_i^2)$ is an Archimedean quadratic module with $S(M_{S^{n-1}}) = S^{n-1}$.

$M_{B^n} := \sum \mathbb{R}[x]^2 + \sum \mathbb{R}[x]^2 (1 - \sum_{i=1}^{n} x_i^2)$ is an Archimedean quadratic module with $S(M_{B^n}) = B^n$.
Theorem 4 (Putinar, 1993) Let M be an Archimedean quadratic module and $p \in \mathbb{R}[x]$. Then

\[p > 0 \text{ on } S(M) \implies p \in M. \]

What if $p \geq 0$ on $S(M)$?
Theorem 4 (Putinar, 1993) Let M be an Archimedean quadratic module and $p \in \mathbb{R}[x]$. Then

$p > 0 \text{ on } S(M) \implies p \in M$.

Example 5

$p := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2)
\in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \quad \text{Horn form}$

What if $p \geq 0 \text{ on } S(M)$?
Theorem 4 (Putinar, 1993) Let M be an Archimedean quadratic module and $p \in \mathbb{R}[x]$. Then
\[p > 0 \text{ on } S(M) \implies p \in M. \]

Example 5
\[p := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2) \in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \text{ Horn form} \]
\[p \geq 0 \text{ on } \mathbb{R}^5 \]

What if $p \geq 0$ on $S(M)$?
Theorem 4 (Putinar, 1993) Let \(M \) be an Archimedean quadratic module and \(p \in \mathbb{R}[x] \). Then
\[
p > 0 \text{ on } S(M) \implies p \in M.
\]

Example 5 \(p := \left(x_1^2 + \ldots + x_5^2\right)^2 - 4\left(x_1^2 x_3^2 + x_1 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2\right) \in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \) Horn form
\[
p \geq 0 \text{ on } \mathbb{R}^5
\]
\[
p(x_1, 0, x_3, x_4, 0) = (x_1^2 + x_2^2 + x_3^2) - 4(x_1^2 x_3^2 + x_1 x_4^2) = (x_1^2 - x_3^2 - x_4^2)^2
\]
\(p \) has infinitely many zeros on \(S^4 \).

What if \(p \geq 0 \text{ on } S(M) \)?
Theorem 4 (Putinar, 1993) Let M be an Archimedean quadratic module and $p \in \mathbb{R}[x]$. Then $p > 0$ on $S(M) \implies p \in M$.

Example 5 $p := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1 x_3^2 + x_2 x_4^2 + x_2 x_4^2 + x_2^2 x_5^2 + x_3 x_5^2)
\in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5]$ Horn form

$p \geq 0$ on \mathbb{R}^5
$p(x_1, 0, x_3, x_4, 0) = (x_1^2 + x_2^2 + x_3^2) - 4(x_1 x_3^2 + x_2 x_4^2) = (x_1^2 - x_3^2 - x_4^2)^2$

p has infinitely many zeros on S^4.

$p \in M_{S^4}$, $p \notin M_{B^5}$

What if $p \geq 0$ on $S(M)$?
What if $p \geq 0$ on $S(M)$?

Many partial answers but mainly in the case where p has only finitely many zeros on $S(M)$.

Marshall 2006 \& Annales de la Faculté des sciences de Toulouse

Nie 2014
What if $p \geq 0$ on $S(M)$?

Many partial answers but mainly in the case where p has only finitely many zeros on $S(M)$.

Marshall 2006 ← Annales de la Faculté des sciences de Toulouse
Nie 2014

new approach via pure states:
Burgdorf, Scheiderer and S. 2012
What if $p \geq 0$ on $S(M)$?

Many partial answers but mainly in the case where p has only finitely many zeros on $S(M)$.

Marshall 2006 \leftarrow Annales de la Faculté des sciences de Toulouse
Nie 2014

new approach via pure states:
Burgdorf, Scheiderer and S. 2012

I don't tell you what is a pure state since we have introduced test states.
What if $p \geq 0$ on $S(M)$?

Many partial answers but mainly in the case where p has only finitely many zeros on $S(M)$.

Marshall 2006 ← Annales de la Faculté des sciences de Toulouse
Nie 2014

new approach via pure states:
Burgdorf, Scheiderer and S. 2012

Here we will deal with the case of infinitely many zeros!

I don’t tell you what is a pure state since we have introduced test states.
Definition 6

Let I be an ideal and M be a quadratic module of $R[x]$. Let $v \in I$ and $a \in R^n$. We call $\psi : I \to R$ a test state on I for M at a with respect to v if

- $\psi(v) = 1$,
- $\psi(I \cap M) \subseteq R_{\geq 0}$,
- $\forall p, q \in I : \psi(p+q) = \psi(p) + \psi(q)$ and
- $\forall p \in R[x] : \forall q \in I : \psi(pq) = p(a) \psi(q)$.

https://arxiv.org/abs/2310.12853
Definition 6 Let I be an ideal and M be a quadratic module of $\mathbb{R}[x]$. Let $\nu \in I$ and $\alpha \in \mathbb{R}^n$. We call $\psi : I \to \mathbb{R}$ a test state on I for M at ν wrt. α if
- $\psi(\nu) = 1$,
- $\psi(I \cap M) \subseteq \mathbb{R}_{\geq 0}$,
- $\forall p, q \in I : \psi(p+q) = \psi(p) + \psi(q)$ and
- $\forall p \in R[x] : \forall q \in I : \psi(pq) = p(\alpha) \psi(q)$.

Example 7

$n = 1$, $\mathbb{R}[x] = \mathbb{R}[x_1]$
$I = \mathbb{R}[x]$
$M = M_{_{\beta}}$
$\alpha = 0$
$\nu = 1$

If $\psi : I \to \mathbb{R}$ is a test state for M at ν, then $\psi(p) = \psi(p\nu) = p(0) \psi(\nu) = p(0)$ for all $p \in R[x]$. Conversely, this defines a test state. Evaluation at zero is the only test state!
Definition 6 Let I be an ideal and M be a quadratic module of $\mathbb{R}[x]$. Let $u \in I$ and $a \in \mathbb{R}^n$. We call $\gamma : I \to \mathbb{R}$ a test state on I for M at u if:
- $\gamma(u) = 1$,
- $\gamma(I \cap M) \subseteq \mathbb{R}_{\geq 0}$,
- $\forall p, q \in I : \gamma(p+q) = \gamma(p) + \gamma(q)$ and
- $\forall p \in \mathbb{R}[x] : \forall q \in I : \gamma(pq) = p(a) \gamma(q)$.

Example 8

$n = 1$, $\mathbb{R}[x] = \mathbb{R}[x_1]$

$I = \mathbb{R}[x] \times\{x\} \times\{a\}$

$M = M_{\mathbb{R}^n}$

$a = 0$

$u = x$

If $\gamma : I \to \mathbb{R}$ is a test state for M at u, then $\gamma(x) = \gamma(px) = p(0) \gamma(u) = p(0)$ for all $p \in \mathbb{R}[x]$. Conversely, this defines a test state, derivative at zero is the only test state!
Definition 6 Let I be an ideal and M be a quadratic module of $\mathbb{R}[x]$. Let $v \in I$ and $a \in \mathbb{R}^n$. We call $\Psi : I \rightarrow \mathbb{R}$ a \textit{test state} on I for M at a wrt. v if

- $\Psi(v) = 1$,
- $\Psi(I \cap M) \subseteq \mathbb{R}_{\geq 0}$,
- $\forall p, q \in I : \Psi(p + q) = \Psi(p) + \Psi(q)$ and
- $\forall p \in \mathbb{R}[x] : \forall q \in I : \Psi(pq) = \Psi(p) \Psi(q)$.

Example 9

n arbitrary

$I = \sum_{i,j=1}^{n} \mathbb{R}[x] x_i x_j$

$M = M_{\mathbb{R}}^n$

$a = 0$

$U = x_1^2 + \ldots + x_n^2$

If $\Psi : I \rightarrow \mathbb{R}$ is a test state, then

$$A := (\Psi(x_i x_j))_{1 \leq i, j \leq n}$$

is psd and

$$\Psi(p) = \text{tr} \left((\nabla^2 f(0)) A \right)$$

for all $p \in \mathbb{R}[x]$. Up to a positive constant, the test states are exactly the non-zero conic combinations of second directional derivatives at 0.
Definition 6 Let I be an ideal and M be a quadratic module of $\mathbb{R}[x]$. Let $v \in I$ and $a \in \mathbb{R}^n$. We call $\mathcal{Y} : I \rightarrow \mathbb{R}$ a test state on I for M at a wrt. v if

- $\mathcal{Y}(v) = 1$,
- $\mathcal{Y}(I \cap M) \subseteq \mathbb{R}_{\geq 0}$,
- $\forall p, q \in I : \mathcal{Y}(p+q) = \mathcal{Y}(p) + \mathcal{Y}(q)$ and
- $\forall p \in \mathbb{R}[x] : \forall q \in I : \mathcal{Y}(pq) = p(a) \mathcal{Y}(q)$.

Warning 10 We do not think that test states always have a nice geometric interpretation. Although they are associated with a point $a \in \mathbb{R}^n$, we think that they are of algebraic nature in general.
Theorem 11

Let \(F \subseteq R[x] \) generate the ideal \(I \).

Let \(M \) be an Archimedean quadratic module of \(R[x] \) and \(f, v \in I \). Suppose that

In particular, \(f \in M \).
Theorem 11

Let $F \subseteq \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$

In particular, $f \in M$.
Theorem 11

Let $F \subseteq R[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$

(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$

(c) $\cup M \subseteq M$

In particular, $f \in M$.
Theorem 11. Let $F \subseteq \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$

In particular, $f \in M$.
Theorem 11

Let \(F \subseteq R[x] \) generate the ideal \(I \).

Let \(M \) be an Archimedean quadratic module of \(R[x] \)
and \(f, v \in I \). Suppose that

(a) \(f \geq 0 \) on \(S(M) \)

(b) \(\forall a \in S(M) : (f(a) = 0 \Rightarrow v(a) = 0) \)

(c) \(uM \subseteq M \)

(d) \(u \) is \(F \)-stably contained in \(M \),
i.e., \(\forall f \in F : \exists \epsilon > 0 : u + \epsilon f \in M \)

(e) \(\forall(f) > 0 \) for all zeros \(a \) of \(f \) on \(S(M) \)
and all test states \(\forall \) on \(I \) for \(M \) at \(a \) wrt. \(v \).

In particular, \(f \in M \).
Let $F \subseteq R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$

(b) $\forall a \in S(M) : (f(a) = 0 \implies u(a) = 0)$

(c) $uM \subseteq M$

(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$

(e) $\mathcal{V}(f) > 0$ for all zeros a of f on $S(M)$ and all test states \mathcal{V} on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Theorem 11
Theorem 11

Let $F \subseteq R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$

(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$

(c) $uM \subseteq M$

(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \epsilon > 0 : u \pm \epsilon f \in M$

(e) $\forall (f) > 0$ for all zeros a of f on $S(M)$ and all test states Ψ on I for M at a wrt. u

Then, there is $\epsilon > 0$ such that $f - \epsilon u \in M$. In particular, $f \in M$.

$F := \{1\}$

$u := 1$
Theorem 11. Let $F \subseteq R[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

(a) $f > 0$ on $S(M)$

(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$

(c) $uM \subseteq M$

(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$

(e) $\forall (f) > 0$ for all zeros a of f on $S(M)$ and all test states φ on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

$F := \{1\}$

$u := 1$
Let $F \subseteq R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that:

- $f \gg 0$ on $S(M)$
- $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
- $uM \subseteq M$
- u is F-stably contained in M, i.e., $\forall f \in F: \exists \varepsilon > 0: u \neq f \neq \varepsilon f \in M$
- $Q(f) > 0$ for all zeros a of f on $S(M)$ and all test states Q on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

$F := \{1\}$ \hspace{1cm} $u := 1$
Theorem 11

Let \(F \subseteq R[x] \) generate the ideal \(I \).

Let \(M \) be an Archimedean quadratic module of \(R[x] \) and \(f, u \in I \). Suppose that

(a) \(f \geq 0 \) on \(S(M) \)
(b) \(\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0) \)
(c) \(uM \subseteq M \)
(d) \(u \) is \(F \)-stably contained in \(M \), i.e., \(\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M \)
(e) \(\forall f \) \(\forall \varepsilon > 0 \) for all zeros \(a \) of \(f \) on \(S(M) \) and all test states \(\varepsilon \) on \(I \) for \(M \) at \(a \) wrt. \(u \).

Then, there is \(\varepsilon > 0 \) such that \(f - \varepsilon u \in M \). In particular, \(f \in M \).
Then, there is $\varepsilon > 0$ such that $f - \varepsilon \in \mathcal{W}$. In particular, $f \in \mathcal{W}$. And all test states y on I for M are w.r.t. u for all zeros a of f on $\text{S}(\mathcal{W})$.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$. Suppose that $f \in \mathcal{W}$.

Theorem 4 (Artin, 1953): Let M be an Archimedean quadratic module of $\mathbb{R}[x]$.
Theorem 11

Let $F \subseteq R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, v \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \iff v(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in W$
(e) $\Psi(f) > 0$ for all zeros a of f on $S(M)$ and all test states Ψ on I for M at a wrt. v.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon v \in M$. In particular, $f \in M$. Under these hypotheses, one can show that actually, even more:

$\exists \varepsilon > 0 : u - \varepsilon f, f - \varepsilon v \in M$ and hence ≥ 0 on $S(M)$.
\[\exists \varepsilon > 0: (f - \varepsilon u \geq 0 \text{ on } S(M) \quad \text{and} \quad u - \varepsilon f \geq 0 \text{ on } S(M)) \]

means that not only that \(f \) and \(u \) have the same zeros on \(S(M) \) but also that they behave similarly near these zeros...
Theorem 11 Let $F \subseteq \mathbb{R}[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a)=0 \Rightarrow u(a)=0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$
(e) $\Phi(f) > 0$ for all zeros a of f on $S(M)$ and all test states Φ on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f-\varepsilon u \in M$. In particular, $f \in M$.

Step-by-step strategy
Theorem 11. Let $F \subseteq \mathbb{R}[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F: \exists \varepsilon > 0: u + \varepsilon f \in M$
(e) $\varphi(f) > 0$ for all zeros a of f on $S(M)$ and all test states φ on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f \in \mathbb{R}[x]$ with $f \geq 0$ on $S(M)$. Want to prove $f \in M$.

Step-by-step strategy
Let $F \subseteq \mathbb{R}[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u + \varepsilon f \in M$
(e) $\forall f > 0$ for all zeros a of f on $S(M)$ and all test states Ψ on I for M at a w.r.t. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Let M be a
Archimedean quadratic module
of $\mathbb{R}[x]$ and $f \in \mathbb{R}[x]$ with $f \geq 0$ on $S(M)$. Want to prove $f \in M$.

Step-by-step strategy

Step 1. Find "role-model element" u of M with (b) having the same zeros as f on $S(M)$ and behaving similarly near them.
Theorem 11. Let $F \subseteq R[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that:

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$
(e) $\Psi(f) > 0$ for all zeros a of f on $S(M)$ and all test states Ψ on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Step 1. Find "role-model" u of M with (b) having the same zeros as f on $S(M)$ and behaving similarly near them.

Step 2. Identify $F = R[x]$ (the bigger the better) such that $f, u \in I$ such that (d) holds.
Let $F \subseteq \mathbb{R}[x]$ generate the ideal I.

Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u + \varepsilon f \in M$
(e) $\forall (f) > 0$ for all zeros a of f on $S(M)$ and all test states Ψ on I for M at a wrt. v.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Step 1. Find "role-model" u of M with (b) having the same zeros as f on $S(M)$ and behaving similarly near them.

Step 2. Identify $F \subseteq \mathbb{R}[x]$ (the bigger the better) such that $f, u \in I$ such that (d) holds.

Step 3. Prove (e) by using geometric arguments or algebraic identities inside the ideal I or both.
Example 5 \[f := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2) \]

\[\in R[x] = R[x_1, \ldots, x_5] \quad \text{Horn form} \]

\(f \geq 0 \) on \(\mathbb{R}^5 \)

\(f \) has infinitely many zeros on \(S^4 \).

\(f \in M_{S^4}, f \notin M_{B^5} \)
Example 5 \[f := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_2^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2) \]

\[f \in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \quad \text{Horn form} \]

\[f \geq 0 \text{ on } \mathbb{R}^5 \]

\[f \text{ has infinitely many zeros on } S^4. \]

\[f \in M_{S^4}, f \notin M_{B^5} \]

Theorem 12 Let \(d_1, \ldots, d_5 \in \mathbb{R}_{>0}. \) Then \(f \in \sum \mathbb{R}[x]^2 + \mathbb{R}[x](\sum_{i=1}^{5} d_i x_i^2 - 1). \)
Example 5 \[f := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2) \]
\[\in R[x] = R[x_1, \ldots, x_5] \quad \text{Horn form} \]
\(f \geq 0 \) on \(\mathbb{R}^5 \)
\(f \) has infinitely many zeros on \(S^4 \).
\(f \in M_{S^4}, f \notin M_{B^5} \)

Theorem 12 Let \(d_1, \ldots, d_5 \in \mathbb{R}_{>0} \). Then \(f \in \sum R[x]^2 + R[x](\sum_{i=1}^{5} d_i x_i^2 - 1) \).
Example 5 \[f := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_3^2 + x_2^2 x_5^2 + x_3^2 x_5^2) \]
\[\in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \quad \text{Horn form} \]
\[f \geq 0 \text{ on } \mathbb{R}^5 \]
\[f \text{ has infinitely many zeros on } S^4. \]
\[f \in M_{S^4}, f \notin M_{\mathbb{B}^5} \]

Theorem 12 Let \(d_1, \ldots, d_5 \in \mathbb{R}_{>0} \). Then \(f \in \sum \mathbb{R}[x]^2 + \mathbb{R}[x] (\sum_{i=1}^5 d_i x_i^2 - 1). \)

Proof Step 1. \(u := (\sum_{i=1}^5 x_i^2) f \in \sum \mathbb{R}[x]^2 \)
\[=: M \]
Example 5 \(f := (x_1^2 + \ldots + x_5^2)^2 - 4(x_1^2x_3^2 + x_1^2x_4^2 + x_1^2x_5^2 + x_2^2x_5^2 + x_3^2x_5^2) \)
\(\in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \) Horn form

\(f \geq 0 \) on \(\mathbb{R}^5 \)

\(f \) has infinitely many zeros on \(S^4 \).

\(f \in M_{S^4} \), \(f \notin M_{B^5} \)

Theorem 12 Let \(d_1, \ldots, d_5 \in \mathbb{R}_{>0} \). Then \(f \in \sum_{i} \mathbb{R}[x]^2 + \mathbb{R}[x](\sum_{i=1}^{5} d_i x_i^2 - 1) \).

Proof

Step 1. \(u := (\sum_{i=n}^{5} x_i^2) f \in \sum_{i} \mathbb{R}[x]^2 \) \(\equiv M \)

Step 2. \(F := \{ f \} \) (works by results of Laurent and Vargas)
Example 5 \(f := \left(x_1^2 + \ldots + x_5^2 \right)^2 - 4 \left(x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_4^2 + x_2^2 x_5^2 + x_3^2 x_5^2 \right) \in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_5] \) Horn form

- \(f \geq 0 \) on \(\mathbb{R}^5 \)
- \(f \) has infinitely many zeros on \(S^4 \).
- \(f \in M_{S^4}, f \notin M_{B^5} \)

Theorem 12
Let \(d_1, \ldots, d_5 \in \mathbb{R} > 0 \). Then \(f \in \sum \mathbb{R}[x]^2 + \mathbb{R}[x] \left(\sum_{i=1}^{5} d_i x_i^2 - 1 \right) \).

Proof

Step 1. \(u := \left(\sum_{i=1}^{5} x_i^2 \right) f \in \sum \mathbb{R}[x]^2 \) \(\mathbb{R} \)

Step 2. \(F := \{ f \} \) (works by results of Laurent and Vargas)

Step 3. Let \(\gamma \) be a test state on \(I := \mathbb{R}[x]f \) for \(M \) at a zero \(a \) of \(f \) on the ellipsoid. Then \(\lambda = \gamma(u) = \left(\sum_{i=1}^{5} a_i^2 \right) \gamma(f) \). Hence \(\gamma(f) > 0 \). \(\square \)
Theorem 12 was the missing stone to show that each copositive matrix of size 5 is Reznick-certifiable.
Theorem 12 was the missing stone to show that each copositive matrix of size 5 is Reznick-certifiable.

\[S_n := \text{vector space of real symmetric matrices of size } n \]
\[C_n := \{ A \in S_n | \forall a \in \mathbb{R}^{\geq 0}^n : a^T A a \geq 0 \} \text{ copositive matrices} \]
Theorem 12 was the missing stone to show that each copositive matrix of size 5 is Reznick-certifiable.

\[S_n := \text{vector space of real symmetric matrices of size } n \]

\[C_n := \{ A \in S_n \mid \forall a \in \mathbb{R}_{\geq 0}^n : a^T A a \geq 0 \} \]

We call \(A \in C_n \) Reznick-certifiable if there exists \(r \in \mathbb{N}_0 \) such that \((x_1^2 + \ldots + x_n^2)^r (x_1^2 \ldots x_n^2) A \begin{pmatrix} x_1^2 \\ \vdots \\ x_n^2 \end{pmatrix} \in \Sigma \mathbb{R}[x]^2\). Even quartic psd form
Theorem 12 was the missing stone to show that each copositive matrix of size 5 is Reznick-certifiable.

\[
S_n := \text{vector space of real symmetric matrices of size } n
\]

\[
C_n := \{ A \in S_n \mid \forall a \in \mathbb{R}^{n \times 1} : a^T A a \geq 0 \} \quad \text{copositive matrices}
\]

We call \(A \in C_n \) Reznick-certifiable if there exists \(r \in \mathbb{N}_0 \) such that

\[
(x_1^2 + \ldots + x_n^2)^r \begin{pmatrix} x_1^2 & \ldots & x_n^2 \\ \vdots & \ddots & \vdots \\ x_1^2 & \ldots & x_n^2 \end{pmatrix} A \begin{pmatrix} x_1^2 \\ \vdots \\ x_n^2 \end{pmatrix} \in \Sigma \mathbb{R}[x]^2
\]

even quartic psd form

Theorem 13 (Reznick, 1995) Let \(f \in \mathbb{R}[x]^2 \) be a pd form.

Then there is \(r \in \mathbb{N}_0 \) such that

\[
(x_1^2 + \ldots + x_n^2)^r f \in \Sigma \mathbb{R}[x]^2
\]
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form \(p \in \mathbb{R}[x] \) of even degree,

\[
\rho \in M_{2n-1} \iff \exists r \in \mathbb{N}_0 : \ \left(\sum_{i=1}^{n} x_i^2 \right)^r \rho \in \sum_{r} \mathbb{R}[x]^2.
\]
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form $p \in \mathbb{R}[x]$ of even degree,

\[p \in \mathbb{M}_{n-1} \iff \exists r \in \mathbb{N}_0 : \left(\sum_{i=1}^{n} x_i^2 \right)^r \rho \in \sum \mathbb{R}[x]^2. \]
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form $p \in \mathbb{R}[x]$ of even degree,

$\rho \in M_{Sn-1} \iff \exists r \in \mathbb{N}_0 : (\sum_{i=1}^{n} x_i^2)^r \rho \in \sum \mathbb{R}[x]^2$.
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form \(p \in \mathbb{R}[x] \) of even degree, \(p \in M_{n-1} \) \(\iff \exists r \in \mathbb{N}_0 : (\sum_{i=1}^{n} x_i^2)^r p \in \sum \mathbb{R}[x]^2 \).

Thm. 12 says exactly that all positive diagonal scalings of the Horn form are in \(M_{n-1} \).
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form $p \in \mathbb{R}[x]$ of even degree,

$$p \in M_{n-1} \iff \exists r \in \mathbb{N}_0 : \left(\sum_{i=1}^{n} x_i^2\right)^r p \in \sum \mathbb{R}[x]^2.$$

Thm. 12 says exactly that all positive diagonal scalings of the Horn form are in M_{n-1}. Taking into account Prop. 14, it says that DHD is Reznick-certifiable for all pd diagonal $D \in \mathbb{S}_5$.
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form $p \in \mathbb{R}[x]$ of even degree,

$$p \in M_{3n-1} \iff \exists r \in \mathbb{N}_0 : \left(\sum_{i=1}^{n} x_i^2 \right)^r p \in \sum \mathbb{R}[x]^2.$$

Thm. 12 says exactly that all positive diagonal scalings of the Horn form are in M_{3n-1}. Taking into account Prop. 14, it says that DHD is Reznick-certifiable for all pd diagonal $

\begin{pmatrix}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 & 1
\end{pmatrix}$

is the Horn matrix.
Proposition 14 (de Klerk, Laurent, Parrilo 2005)

For every form \(p \in \mathbb{R}[x] \) of even degree,

\[
p \in M_{\frac{n(n-1)}{2}} \iff \exists r \in \mathbb{N}_0 : (\sum_{i=1}^{n} x_i^2)^r \cdot p \in \Sigma \mathbb{R}[x]^2.
\]

Thm. 12 says exactly that all positive diagonal scalings of the Horn form are in \(M_{\frac{n(n-1)}{2}} \). Taking into account Prop. 14, it says that DHD is Reznick-certifiable for all pd diagonal \(D \in S_5 \). Here,

\[
H := \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1
\end{pmatrix}
\]

is the Horn matrix.

Hildebrand classified in 2012 the extreme rays of \(C_5 \) and these DHD span those extreme rays that Laurent and Vargas could not handle. ...
Theorem 15 Every copositive matrix of size 5 is Renick-certifiable.
Theorem 15 Every copositive matrix of size 5 is Reznick-certifiable. As seen, the Reznick exponent r cannot be bounded uniformly for \mathbb{S}_5.
Theorem 15 Every copositive matrix of size 5 is Reznick-certifiable.

As seen, the Reznick exponent r cannot be bounded uniformly for C_5. Bodirsky, Kummer and Thom showed recently much more:

C_5 is not a projection of a spectrahedron.
Theorem 15 Every copositive matrix of size 5 is Reznick-certifiable.

As seen, the Reznick exponent r cannot be bounded uniformly for C_5. Bodirsky, Kummer and Thom showed recently much more: C_5 is not a projection of a spectrahedron. For size <5, the same holds with $r=0$.
Theorem 15 Every copositive matrix of size 5 is Reznick-certifiable.

As seen, the Reznick exponent r cannot be bounded uniformly for C_5. Bodirsky, Kummer and Thom showed recently much more: C_5 is not a projection of a spectrahedron. For size < 5, the same holds with $r = 0$.

For size > 5, the same holds for certain matrices associated to graphs: If G is a graph, A_G its adjacency matrix and $\kappa(G)$ its stability number, set $M_G := \kappa(G)(I+A_G) - J$.

[Identity matrix] [All ones matrix]
Theorem 15: Every copositive matrix of size 5 is Reznick-certifiable.

As seen, the Reznick exponent r cannot be bounded uniformly for C_5. Bodirsky, Kummer and Thom showed recently much more: C_5 is not a projection of a spectrahedron.

For size < 5, the same holds with $r = 0$.

For size > 5, the same holds for certain matrices associated to graphs: If G is a graph, A_G its adjacency matrix and $\kappa(G)$ its stability number, set $M_G := \kappa(G)(I + A_G) - J$.

$H = M$ identity matrix all ones matrix
Computing the stability number of a graph is NP-hard. Already Motzkin and Straus in 1965 knew that
\[\alpha(G) = \min \{ t \in \mathbb{R} | t(I + A_G) - J \in C_n \} \]
for any graph G on $n \geq 1$ vertices.
Computing the stability number of a graph is \(\text{NP}- \text{hard.} \) Already Motzkin and Straus in 1965 knew that

\[
\alpha(G) = \min \{ t \in \mathbb{R} \mid t(I + A_G) - J \in C_n \}
\]

for any graph \(G \) on \(n \geq 1 \) vertices. By Reznick’s Thm. 13, this gives rise to a convergent semidefinite hierarchy for computing the stability number. De Klerk and Pasechnik proposed and investigated this hierarchy and conjectured that it converges after \(\alpha(G) - 1 \) steps.
Computing the stability number of a graph is NP-hard. Already Motzkin and Straus in 1965 knew that
\[\alpha(G) = \min \{ t \in \mathbb{R} \mid t(I + A_G) - J \in \mathbb{C}^n \} \]
for any graph \(G \) on \(n \geq 1 \) vertices. By Reznick’s Thm. 13, this gives rise to a convergent semidefinite hierarchy for computing the stability number. De Klerk and Pasechnik proposed and investigated this hierarchy and conjectured that it converges after \(\alpha(G) - 1 \) steps. We show at least finite convergence:

Theorem 16 For any graph \(G \), \(M_G \) is Reznick-certifiable.
Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.
Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.

So let G be a graph on $n-1$ vertices and let H be the graph arising from G by adding an isolated n-th vertex.
Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.

So let G be a graph on $n-1$ vertices and let H be the graph arising from G by adding an isolated n-th vertex. Suppose that M_G is Reznick-certifiable. We show that M_H also is.
Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.

So let G be a graph on $n-1$ vertices and let H be the graph arising from G by adding an isolated n-th vertex.

Suppose that M_G is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_1^2, \ldots, x_n^2)M_H \begin{pmatrix} x_1^2 \\ \vdots \\ x_n^2 \end{pmatrix}.$$
Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.

So let G be a graph on $n-1$ vertices and let H be the graph arising from G by adding an isolated n-th vertex.

Suppose that M_G is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_0^2 \ldots x_n^2) M_H \begin{pmatrix} x_0^2 \\ \vdots \\ x_n^2 \\ x_{n-1}^2 \end{pmatrix}.$$

Choose $r \in \mathbb{N}_0$ such that $(x_0^2 + \ldots + x_{n-1}^2)^r g \in \Sigma_{Rxy}^2$

where $g := (x_0^2 \ldots x_{n-1}^2) M_G \begin{pmatrix} x_0^2 \\ \vdots \\ x_{n-1}^2 \end{pmatrix}$.

Laurent and Vargas reduced the proof of Thm. 16 to showing that Reznick-certifiability is preserved by adding an isolated node to the graph.

So let G be a graph on $n-1$ vertices and let H be the graph arising from G by adding an isolated n-th vertex. Suppose that M_G is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_1^2, \ldots, x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right),$$

choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \cdots + x_{n-1}^2)^r g \in \Sigma \mathcal{R}(x^2)$

where $g := (x_1^2, \ldots, x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right)$. It turns out that $h = p^2 + cg$ for some $p \in \mathcal{R}(x)$ and $c > 0$.
Suppose that M_G is Reznick-certifiable. We show that M_H also is. By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_1^2 \ldots x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right).$$

Choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \ldots + x_{n-1}^2)^r g \in \Sigma^{\mathbb{R}G}_{j^2}$ where

$$g := (x_1^2 \ldots x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right).$$

It turns out that $h = r^2 + cg$ for some $p \in \mathbb{R}[x]$ and $c > 0$.
where \(g = (x_2, \ldots, x_n)M \). It turns out that
\[
 h = (x_2, \ldots, x_n)M \quad (x_2, \ldots, x_n) \quad \text{for some } p \in R[x]\text{ and } c > 0.
\]

Choose \(r \in M \), such that \((x^2 + \cdots + x_n^2)g \in 2R[x] \).

\[
 h := (x_2, \ldots, x_n)M \quad (x_2, \ldots, x_n)
\]

By Prop. \(\ref{prop} \), this means we have to show \(h \in M_{n-1} \), where

Suppose that \(M \) is Reznick-certifiable. We show that \(M \) also is.

Then, there is \(\varepsilon > 0 \) such that \(f \in \text{EVEN} \). In particular, \(f \in \text{EVEN} \).
Suppose that M_G is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_1^2, \ldots, x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right).$$

Choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \ldots + x_{n-1}^2)^r g \in \Sigma_{\mathbb{R}[x]}$. It turns out that $h = p^2 + cg$ for some $p \in \mathbb{R}[x]$ and $c > 0$.

Theorem 14

Let $F \subseteq \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$

(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$

(c) $u M \subseteq M$

(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \epsilon > 0 : u \pm \epsilon f \in M$

(e) $y(f) > 0$ for all zeros a of f on $S(M)$ and all test states y on I for M at a wrt. u.

Then, there is $\epsilon > 0$ such that $f - \epsilon u \in M$, in particular, $f \in M$.

Suppose that M_G is Reznick-certifiable. We show that M_H also is.
Let \(F \subseteq R[x] \) generate the ideal \(I \).

Let \(M \) be an Archimedean quadratic module of \(R[x] \) and \(f, u \in I \). Suppose that

(a) \(f \geq 0 \) on \(S(M) \)
(b) \(\forall a \in S(M) : (f(a) = 0 \implies u(a) = 0) \)
(c) \(u \in M \)
(d) \(u \) is \(F \)-stably contained in \(M \), i.e., \(\forall f \in F : \exists \epsilon > 0 : u \pm \epsilon f \in M \)
(e) \(\forall f \geq 0 \) for all zeros \(a \) of \(f \) on \(S(M) \) and all test states \(y \) on \(I \) for \(M \) at \(a \) wrt. \(u \).

Then, there is \(\epsilon > 0 \) such that \(f - f \epsilon u \in M \), in particular, \(f \in M \).

\[f := h, \ M := M_{S_{n-1}} \]

Step 1. \(u := p^2 + c \left(x_1^2 + \ldots + x_{n-1}^2\right)^{2r} g \in \sum R[x]^2 \]

Suppose that \(M_G \) is Reznick-certifiable. We show that \(M_H \) also is.

By Prop. 14, this means we have to show \(h \in M_{S_{n-1}} \) where

\[h := (x_1^2 \ldots x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right) \]

Choose \(r \in \mathbb{N}_0 \) such that \((x_1^2 + \ldots + x_{n-1}^2)^r g \in \sum R[x]^2 \)

where \(g := (x_1^2 \ldots x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right) \).

It turns out that \(h = p^2 + c g \) for some \(p \in R[x] \) and \(c > 0 \).
Let $F \subseteq R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

- $f \geq 0$ on $S(M)$
- $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
- $uM \subseteq M$
- u is F-stably contained in M, i.e., $\forall f \in F : \exists \epsilon > 0 : u \not\in \epsilon f \in M$
- $\forall (f) > 0$ for all zeros a of f on $S(M)$ and all test states y on I for M at a w.r.t. u.

Then, there is $\epsilon > 0$ such that $f - \epsilon u \in M$, in particular, $f \in M$.

Suppose that M_G is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h = (x_1^2 \ldots x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right)$$

Choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \ldots + x_{n-1}^2)^r g \in \Sigma R[x]^2$

where $g = (x_1^2 \ldots x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right)$. It turns out that $h = p^2 + cg$ for some $p \in R[x]$ and $c > 0$.

Theorem 11. Let $f \in \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that:

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $u M \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F: \exists e > 0: u \pm e f \in M$
(e) $y(f) > 0$ for all zeros a of f on $S(M)$ and all test states y on I for M at a with u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Step 1. $u := p^2 + c (x_1^2 + \ldots + x_{n-1}^2)^2 g \in \sum \mathbb{R}[x]^2$
Step 2. $F := \{ p^2, g \}$ (very tricky, two pages)
Step 3. Let Ψ be a test state on $I := \mathbb{R}[x] p^2 + \mathbb{R}[x] g$ for M at an S^{n-1} wrt. u.

Suppose that M_Ψ is Reznick-certifiable. We show that M_H also is.

By Prop. 14, this means we have to show $h \in M_{S^{n-1}}$ where

$$h := (x_1^2 \ldots x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right),$$

$$g := (x_1^2 \ldots x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right).$$

Choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \ldots + x_{n-1}^2)^r g \in \sum \mathbb{R}[x]^2$.

It turns out that $h = p^2 + c g$ for some $p \in \mathbb{R}[x]$ and $c > 0$.

Let \(F \subseteq \mathbb{R}[x] \) generate the ideal \(I \).
Let \(M \) be an Archimedean quadratic module of \(\mathbb{R}[x] \) and \(f, u \in I \). Suppose that
(a) \(f \geq 0 \) on \(S(M) \)
(b) \(\forall a \in S(M) : (f(a) = 0 \implies u(a) = 0) \)
(c) \(uM \subseteq M \)
(d) \(u \) is \(F \)-stably contained in \(M \), i.e., \(\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M \)
(e) \(\psi(f) > 0 \) for all zeros \(a \) of \(f \) on \(S(M) \) and all test states \(\psi \) on \(I \) for \(M \) at \(a \) wrt. \(u \).

Then, there is \(\varepsilon > 0 \) such that \(f - \varepsilon u \in M \), in particular, \(f \in M \).

Then \(\lambda = \psi(u) = \psi(p^2) + c(a_1^2 + \ldots + a_n^2)^{2r} \psi(g) \).

By Prop. 14, this means we have to show \(h \in M_{S^{n-1}} \) where

\[
h := (x_1^2 \ldots x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_n^2 \end{array} \right),
\]

Choose \(r \in \mathbb{N}_0 \) such that \((x_1^2 + \ldots + x_{n-1}^2)^r g \in \Sigma R[x]^2 \)

where \(g := (x_1^2 \ldots x_{n-1}^2) M_G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right) \). It turns out that \(h = p^2 + cg \) for some \(p \in \mathbb{R}[x] \) and \(c > 0 \).
Theorem 11. Let $F \in \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is F-stably contained in M, i.e., $\forall f \in F: \exists \varepsilon > 0: u \pm \varepsilon f \in M$
(e) $\gamma(f) > 0$ for all zeros a of f on $S(M)$ and all test states γ on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \subseteq M$, in particular, $f \in M$.

Let $f := h$, $M := M_{\mathbb{R}^{n-1}}$

Step 1. $u := p^2 + c \left(x_1^2 + \ldots + x_n^2 \right)^{2r} g \in \Sigma \mathbb{R}[x]^2$

Step 2. $F := \{ p^2, g \}$ (very tricky, two pages)

Step 3. Let γ be a test state on $I := \mathbb{R}[x] p^2 + \mathbb{R}[x] g$ for M at a zero a of f on S^{n-1} wrt. u.

Then $\lambda = \gamma(u) = \gamma(p^2) + c \left(x_1^2 + \ldots + x_n^2 \right)^{2r} \gamma(g)$.

at least one of these two positive!

$h := (x_1^2, \ldots, x_n^2) M_H \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \vdots \\ x_n^2 \end{array} \right)$.

Choose $r \in \mathbb{N}$ so that $(x_1^2 + \ldots + x_n^2)^r g \in \Sigma \mathbb{R}[x]^2$

where $g := (x_1^2, \ldots, x_n^2) M_G \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \vdots \\ x_n^2 \end{array} \right)$.

It turns out that $h = p^2 + cg$ for some $p \in \mathbb{R}[x]$ and $c > 0$.
Theorem 11. Let $f \in R[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $R[x]$ and $f, u \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M): (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $uM \subseteq M$
(d) u is f-stably contained in M, i.e., $\forall f \in F: \exists \varepsilon > 0: u \pm \varepsilon f \in M$
(e) $\forall f \geq 0$ for all zeros a of f on $S(M)$ and all test states u on I for M at a wrt. u.

Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Let $f = h$, $M = M_{S^{n-1}}^n$.

Step 1. $u = p^2 + c (x_{n-1}^2 + \ldots + x_n^2)^2 \in \sum R[x]^2$

Step 2. $F = \{ p^2, g \}$ (very tricky, two pages)

Step 3. Let Y be a test state on $I = R[x]p^2 + R[x]g$ for M at a zero a of f on S^{n-1} wrt. u.

Then, $\lambda = \Phi(u) = \Phi(p^2) + c (a_1^2 + \ldots + a_n^2) \geq 0 \Phi(g)$.

Moreover, $0 \leq \Phi((x_1^2 + \ldots + x_{n-1}^2)^2g) = (a_1^2 + \ldots + a_{n-1}^2)^2 \Phi(g)$.

Choose $r \in \mathbb{N}_0$ such that $(x_1^2 + \ldots + x_{n-1}^2)^r g \in \sum R[x]^2$.

where $g = (x_n^2 \ldots x_{n-1}^2) M G \left(\begin{array}{c} x_1^2 \\ \vdots \\ x_{n-1}^2 \end{array} \right)$. It turns out that $h = p^2 + cg$ for some $p \in R[x]$ and $c > 0$.

at least one of these two positive!
Theorem 11 Let \(f \in R[x] \) generate the ideal \(I \).
Let \(M \) be an Archimedean quadratic module of \(R[x] \)
and \(f, g \in I \). Suppose that
\[
\begin{align*}
(a) & \quad f \geq 0 \text{ on } S(M) \\
(b) & \quad \forall a \in S(M) : (f(a) = 0 \Rightarrow g(a) = 0) \\
(c) & \quad \forall M \in M \\
(d) & \quad u \text{ is } F\text{-stably contained in } M, \text{ i.e., } \forall f \in F : \exists e > 0 : u \pm ef \in M \\
(e) & \quad \forall (f) > 0 \text{ for all zeros } a \text{ of } f \text{ on } S(M) \\
\end{align*}
\]
and all test states \(\psi \) on \(I \) for \(M \) at \(u \).

Then, there is \(\varepsilon > 0 \) such that \(f \pm \varepsilon u \in M \).
In particular, \(f \notin M \).

Let \(I = I_f = R[x]p^2 + R[x]g \) for \(M \) at a zero \(a \) of \(f \) on \(S^{n-1} \) wrt. \(u \).

Thus \(\eta = \psi(u) = \psi(p^2) + \left(a_1^2 + \ldots + a_{n-1}^2 \right)^{2r} \psi(g) \).

Moreover \(0 \leq \psi((x_1^2 + \ldots + x_{n-1}^2)g) \leq \left(a_1^2 + \ldots + a_{n-1}^2 \right)^{2r} \psi(g) \).

Choose \(r \in \mathbb{N} _ \) such that \((x_1^2 + \ldots + x_{n-1}^2)^r g \in \Sigma R[x] \).

It turns out that \(h = p^2 + cg \) for some \(p \in R[x] \) and \(c > 0 \).
Let $f \in \mathbb{R}[x]$ generate the ideal I. Let M be an Archimedean quadratic module of $\mathbb{R}[x]$ and $u,v \in I$. Suppose that

(a) $f \geq 0$ on $S(M)$
(b) $\forall a \in S(M) : (f(a) = 0 \Rightarrow u(a) = 0)$
(c) $u,M \in M$
(d) u is F-stably contained in M, i.e., $\forall f \in F : \exists \varepsilon > 0 : u \pm \varepsilon f \in M$
(e) $\varphi(f) > 0$ for all zeros a of f on $S(M)$ and all test states φ on M at a w.r.t. u. Then, there is $\varepsilon > 0$ such that $f - \varepsilon u \in M$. In particular, $f \in M$.

Then \(\lambda = \varphi(u) = \varphi(p^2 + c(a_n^2 + \ldots + a_{n-1}^2)) > 0 \).

Moreover, \(0 \leq \varphi((x_1^2 + \ldots + x_{n-1}^2)g) = (a_n^2 + \ldots + a_{n-1}^2)^{2r} \varphi(g) \).

Finally, \(\varphi(f) = \varphi(h) = \varphi(p^2 + c \varphi(g)) > 0 \).

It turns out that $h = p^2 + cg$ for some $p \in \mathbb{R}[x]$ and $c > 0$.

\(\text{Step 1. } u := p^2 + c(x_1^2 + \ldots + x_{n-1}^2)^{2r} g \in \Sigma \mathbb{R}[x]^2 \\
\text{Step 2. } F := \{p^2, g\} \text{ (very tricky, two pages)} \\
\text{Step 3. } \text{Let } \varphi \text{ be a test state on } \mathbb{R}[x]^2 \text{ for } M \text{ at a zero } a \text{ of } f \text{ on } S^{n-1} \text{ wrt. } u. \)
Theorem 14. Let \(f \in \mathbb{R}[x] \) generate the ideal \(I \).

Let \(M \) be an Archimedean quadratic module of \(\mathbb{R}[x] \) and \(f, u \in I \). Suppose that

(a) \(f \geq 0 \) on \(S(M) \)
(b) \(\forall a \in S(M) : (f(a) = 0 \implies u(a) = 0) \)
(c) \(uM \subseteq M \)
(d) \(u \) is \(F \)-stably contained in \(M \), i.e., \(\forall f \in F : \exists \varepsilon > 0 : u + \varepsilon f \in M \)
(e) \(\forall f \) such that \(f \) is a zero of \(f \) on \(S(M) \) and all test states \(Y \) on \(I \) for \(M \) at \(u \).

Then there is \(\varepsilon > 0 \) such that \(f - \varepsilon u \in M \), in particular, \(f \in \mathbb{R}[x] \).

Then \(\lambda = \mathcal{Y}(u) = \mathcal{Y}(p^2) + c(\alpha_1^2 + \ldots + \alpha_{n-1}^2)^{2r} \mathcal{Y}(g) \).

Moreover \(0 \leq \mathcal{Y}(\sum(x_1^2 + \ldots + x_{n-1}^2)g) = (\alpha_1^2 + \ldots + \alpha_{n-1}^2)^{2r} \mathcal{Y}(g) \). Hence \(\mathcal{Y}(p^2) \geq 0 \) and \(\mathcal{Y}(g) \geq 0 \).

Finally, \(\mathcal{Y}(f) = \mathcal{Y}(h) = \mathcal{Y}(p^2) + c \mathcal{Y}(g) > 0 \).

It turns out that \(h = p^2 + cg \) for some \(p \in \mathbb{R}[x] \) and \(c > 0 \).