Optimization for Machine Learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

POP23 - Future Trends in Polynomial OPtimization

November 2023
Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities

- Need for automated processing of massive data
Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities

- Need for automated processing of massive data

- Series of “hypes”

 Big data → Data science → Machine Learning → Deep Learning → Artificial Intelligence
Machine learning for large-scale data

- Large-scale supervised machine learning: large \(d\), large \(n\)
 - \(d\): dimension of each observation (input) or number of parameters
 - \(n\): number of observations

- Examples: computer vision, advertising, bioinformatics, etc.
RÉCIT
Budget : les socialistes pointent un «retour au Moyen Age fiscal»

DÉCRYPTAGE
Macron, Robin des bois pour le Trésor, président des riches pour l’OFCE

TOP 100
1
INTERVIEW Edouard Philippe : «Si ma politique crée des tensions, c’est normal»

2
RÉCIT Burger King : «On est face à du travail partiellement dissimulé»

3
SANTE Perturbateurs endocriniens : le Parlement européen invalide la définition de la Commission

4
ECONOMIE Le CICE n’a pas vraiment aidé l’emploi
Object / action recognition in images

- car under elephant
- person in cart
- person ride dog
- person on top of traffic light

From Peyré, Laptev, Schmid and Sivic (2017)
Bioinformatics

- Predicting multiple functions and interactions of **proteins**

- **Massive data**: up to 1 millions for humans!

- **Complex data**
 - Amino-acid sequence
 - Link with DNA
 - Tri-dimensional molecule
Machine learning for large-scale data

- **Large-scale supervised machine learning:** large d, large n
 - d: dimension of each observation (input), or number of parameters
 - n: number of observations

- **Examples:** computer vision, advertising, bioinformatics, etc.

- **Ideal running-time complexity:** $O(dn)$ (single machine)
Machine learning for large-scale data

- **Large-scale supervised machine learning:** \textbf{large }d, \textbf{large }n
 - d: dimension of each observation (input), or number of parameters
 - n: number of observations

- **Examples:** computer vision, advertising, bioinformatics, etc.

- **Ideal running-time complexity:** $O(dn)$ (single machine)

- **Going back to simple methods**
 - Stochastic gradient methods (Robbins and Monro, 1951)

- **Goal:** Present classical algorithms and some recent progress
Machine learning for large-scale data

- **Large-scale supervised machine learning**: large d, large n
 - d: dimension of each observation (input), or number of parameters
 - n: number of observations

- **Examples**: computer vision, advertising, bioinformatics, etc.

- **Ideal running-time complexity**: $O(dn)$ (single machine)

- **Going back to simple methods**
 - Stochastic gradient methods (Robbins and Monro, 1951)

- **Goal**: Present classical algorithms and some recent progress
 - **Disclaimer**: Significant focus on optimization
Outline

1. Introduction/motivation: Supervised machine learning
 - Machine learning \approx optimization of finite sums
 - Batch optimization methods

2. Fast stochastic gradient methods for convex problems
 - Variance reduction: for training error
 - Single pass SGD: for testing error

3. Beyond convex problems
 - Generic algorithms with generic “guarantees”
 - Global convergence for over-parameterized neural networks
Parametric supervised machine learning

- **Data**: \(n \) observations \((x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, \ i = 1, \ldots, n\)

- **Prediction function** \(h(x, \theta) \in \mathbb{R} \) parameterized by \(\theta \in \mathbb{R}^d \)
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **Advertising**: $n > 10^9$
 - $\Phi(x) \in \{0, 1\}^d$, $d > 10^9$
 - Navigation history + ad
Parametric supervised machine learning

- **Data:** \(n \) observations \((x_i, y_i) \in X \times Y, i = 1, \ldots, n\)

- **Prediction function** \(h(x, \theta) \in \mathbb{R} \) parameterized by \(\theta \in \mathbb{R}^d \)

- **Advertising:** \(n > 10^9 \)
 - \(\Phi(x) \in \{0, 1\}^d, d > 10^9 \)
 - Navigation history + ad

- **Linear predictions**
 - \(h(x, \theta) = \theta^\top \Phi(x) \)
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in X \times Y, i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

\[
x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6
\]

\[
y_1 = 1 \quad y_2 = 1 \quad y_3 = 1 \quad y_4 = -1 \quad y_5 = -1 \quad y_6 = -1
\]
Parametric supervised machine learning

- **Data**: \(n \) observations \((x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n\)

- **Prediction function** \(h(x, \theta) \in \mathbb{R} \) parameterized by \(\theta \in \mathbb{R}^d \)

\[
\begin{align*}
x_1 & \quad x_2 & \quad x_3 & \quad x_4 & \quad x_5 & \quad x_6 \\
y_1 &= 1 & y_2 &= 1 & y_3 &= 1 & y_4 &= -1 & y_5 &= -1 & y_6 &= -1
\end{align*}
\]

- **Neural networks** \((n, d > 10^6)\): \(h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x))) \)
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)
\]

 data fitting term + regularizer
Usual losses

- **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = h(x, \theta)$
 - quadratic loss $\frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - h(x, \theta))^2$
Usual losses

- **Regression**: \(y \in \mathbb{R} \), prediction \(\hat{y} = h(x, \theta) \)
 - quadratic loss \(\frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - h(x, \theta))^2 \)

- **Classification**: \(y \in \{-1, 1\} \), prediction \(\hat{y} = \text{sign}(h(x, \theta)) \)
 - loss of the form \(\ell(y \cdot h(x, \theta)) \)
 - “True” 0-1 loss: \(\ell(y \cdot h(x, \theta)) = 1_{y \cdot h(x, \theta) < 0} \)
 - Usual convex losses:
Usual regularizers

• **Main goal**: avoid overfitting

• **(squared) Euclidean norm**: \[\|\theta\|^2_2 = \sum_{j=1}^{d} |\theta_j|^2 \]

 — Numerically well-behaved if \(h(x, \theta) = \theta^\top \Phi(x) \)

 — Representer theorem and kernel methods: \(\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i) \)

Usual regularizers

- **Main goal**: avoid overfitting

- **(squared) Euclidean norm**: $\|\theta\|_2^2 = \sum_{j=1}^{d} |\theta_j|^2$
 - Numerically well-behaved if $h(x, \theta) = \theta^\top \Phi(x)$
 - Representer theorem and kernel methods: $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$

- **Sparsity-inducing norms**
 - Main example: ℓ_1-norm $\|\theta\|_1 = \sum_{j=1}^{d} |\theta_j|$
 - Perform model selection as well as regularization
 - Non-smooth optimization and structured sparsity
 - See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)
\]

data fitting term + regularizer
Parametric supervised machine learning

- **Data**: \(n \) observations \((x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n\)

- **Prediction function** \(h(x, \theta) \in \mathbb{R} \) parameterized by \(\theta \in \mathbb{R}^d \)

- **(regularized) empirical risk minimization**: find \(\hat{\theta} \) solution of

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

\(f_i(\theta) \) is the data fitting term + regularizer
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

 data fitting term + regularizer

- **Optimization**: optimization of regularized risk training cost
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

$$
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
$$

 data fitting term + regularizer

- **Optimization**: optimization of regularized risk

- **Statistics**: guarantees on $\mathbb{E}_{p(x,y)} \ell(y, h(x, \theta))$
Smoothness and (strong) convexity

- A function $g : \mathbb{R}^d \to \mathbb{R}$ is L-smooth if and only if it is twice differentiable and

\[\forall \theta \in \mathbb{R}^d, \ |\text{eigenvalues}[g''(\theta)]| \leq L \]
Smoothness and (strong) convexity

- A function \(g : \mathbb{R}^d \to \mathbb{R} \) is \(L \)-smooth if and only if it is twice differentiable and

\[
\forall \theta \in \mathbb{R}^d, \quad \left| \text{eigenvalues} \left[g''(\theta) \right] \right| \leq L
\]

- Machine learning
 - with \(g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta)) \)
 - Smooth prediction function \(\theta \mapsto h(x_i, \theta) + \text{smooth loss} \)
 - (see next slide)
• Function $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$

• Gradient $g'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \theta^\top \Phi(x_i))\Phi(x_i)$

• Hessian $g''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \theta^\top \Phi(x_i))\Phi(x_i)\Phi(x_i)^\top$
 - Smooth loss $\Rightarrow \ell''(y_i, \theta^\top \Phi(x_i))$ bounded
Smoothness and (strong) convexity

- A twice differentiable function \(g : \mathbb{R}^d \to \mathbb{R} \) is convex if and only if
 \[
 \forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geq 0
 \]
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues } [g''(\theta)] \geq \mu$$
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ-strongly convex if and only if
 \[
 \forall \theta \in \mathbb{R}^d, \quad \text{eigenvalues} [g''(\theta)] \geq \mu
 \]
- Condition number $\kappa = L/\mu \geq 1$

(small $\kappa = L/\mu$) (large $\kappa = L/\mu$)
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is \(\mu\)-strongly convex if and only if
 \[
 \forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geq \mu
 \]

- Convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ-strongly convex if and only if
 \[\forall \theta \in \mathbb{R}^d, \text{ eigenvalues } [g''(\theta)] \geq \mu \]

- Convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$

- Relevance of convex optimization
 - Easier design and analysis of algorithms
 - Global minimum vs. local minimum vs. stationary points
 - Gradient-based algorithms only need convexity for their analysis
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ-strongly convex if and only if
 \[\forall \theta \in \mathbb{R}^d, \text{eigenvalues} \left[g''(\theta) \right] \geq \mu \]

- **Strong convexity in machine learning**
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ-strongly convex if and only if

 $$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues} [g''(\theta)] \geq \mu$$

- **Strong convexity in machine learning**
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$
 - Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i)\Phi(x_i)^\top \Rightarrow n \geq d$ (slide)
 - Even when $\mu > 0$, μ may be arbitrarily small!
• Function $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$

• Gradient $g'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \theta^\top \Phi(x_i))\Phi(x_i)$

• Hessian $g''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \theta^\top \Phi(x_i))\Phi(x_i)\Phi(x_i)^\top$

 – Smooth loss $\Rightarrow \ell''(y_i, \theta^\top \Phi(x_i))$ bounded

• Square loss $\Rightarrow \ell''(y_i, \theta^\top \Phi(x_i)) = 1$

 – Hessian proportional to $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i)\Phi(x_i)^\top$
Smoothness and (strong) convexity

- A twice differentiable function $g : \mathbb{R}^d \rightarrow \mathbb{R}$ is μ-strongly convex if and only if
 \[\forall \theta \in \mathbb{R}^d, \text{ eigenvalues} [g''(\theta)] \geq \mu \]

- **Strong** convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$
 - Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^\top \Rightarrow n \geq d$ (slide)
 - Even when $\mu > 0$, μ may be arbitrarily small!

- **Adding regularization by** $\frac{\mu}{2} \| \theta \|^2$
 - creates additional bias unless μ is small, but reduces variance
 - Typically $\sqrt{n} \leq \kappa = \frac{L}{\mu} \leq n$
Iterative methods for minimizing smooth functions

- **Assumption**: g convex and L-smooth on \mathbb{R}^d

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1})$ (*line search*)

$(\text{small } \kappa = L/\mu)$

$(\text{large } \kappa = L/\mu)$
Iterative methods for minimizing smooth functions

- **Assumption**: g convex and L-smooth on \mathbb{R}^d

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma_t g'(.\theta_{t-1})$ (line search)

 $$g(\theta_t) - g(\theta_*) \leq O\left(\frac{1}{t}\right)$$
 $$g(\theta_t) - g(\theta_*) \leq O\left((1-\mu/L)^t\right) = O\left(e^{-t(\mu/L)}\right) \text{ if } \mu\text{-strongly convex}$$

(small $\kappa = L/\mu$) \hspace{2cm} (large $\kappa = L/\mu$)
Iterative methods for minimizing smooth functions

- **Assumption**: g convex and L-smooth on \mathbb{R}^d

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1})$

 - $O(1/t)$ convergence rate for convex functions
 - $O(e^{-t/\kappa})$ *linear* if strongly-convex
Iterative methods for minimizing smooth functions

- **Assumption:** \(g \) convex and \(L \)-smooth on \(\mathbb{R}^d \)

- **Gradient descent:** \(\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) \)
 - \(O(1/t) \) convergence rate for convex functions
 - \(O(e^{-t/k}) \) **linear** if strongly-convex \(\iff O(\kappa \log \frac{1}{\varepsilon}) \) iterations

- **Newton method:** \(\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1} g'(\theta_{t-1}) \)
 - \(O(e^{-\rho^2 t}) \) **quadratic** rate \(\iff O(\log \log \frac{1}{\varepsilon}) \) iterations
Iterative methods for minimizing smooth functions

• **Assumption:** g convex and L-smooth on \mathbb{R}^d

• **Gradient descent:** $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1})$

 – $O(1/t)$ convergence rate for convex functions

 – $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity $= O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

• **Newton method:** $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 – $O(e^{-\rho^2 t})$ quadratic rate \Leftrightarrow complexity $= O((nd^2 + d^3) \cdot \log \log \frac{1}{\varepsilon})$
Iterative methods for minimizing smooth functions

- **Assumption**: g convex and L-smooth on \mathbb{R}^d

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1})$
 - $O(1/t)$ convergence rate for convex functions
 - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity $= O(nd \cdot \kappa \log \frac{1}{\epsilon})$

- **Newton method**: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1} g'(\theta_{t-1})$
 - $O(e^{-\rho^2 t})$ quadratic rate \Leftrightarrow complexity $= O((nd^2 + d^3) \cdot \log \log \frac{1}{\epsilon})$

- **Key insights for machine learning** (Bottou and Bousquet, 2008)
 1. No need to optimize below statistical error
 2. Cost functions are averages
 3. Testing error is more important than training error
Iterative methods for minimizing smooth functions

- **Assumption**: g convex and L-smooth on \mathbb{R}^d

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1})$
 - $O(1/t)$ convergence rate for convex functions
 - $O(e^{-t/\kappa})$ linear if strongly-convex \iff complexity $= O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

- **Newton method**: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1} g'(\theta_{t-1})$
 - $O(e^{-\rho^2 t})$ quadratic rate \iff complexity $= O((nd^2 + d^3) \cdot \log \log \frac{1}{\varepsilon})$

- **Key insights for machine learning** (Bottou and Bousquet, 2008)
 1. No need to optimize below statistical error
 2. Cost functions are averages
 3. Testing error is more important than training error
Outline

1. Introduction/motivation: Supervised machine learning
 - Machine learning \approx optimization of finite sums
 - Batch optimization methods

2. Fast stochastic gradient methods for convex problems
 - Variance reduction: for training error
 - Single pass SGD: for testing error

3. Beyond convex problems
 - Generic algorithms with generic “guarantees”
 - Global convergence for over-parameterized neural networks
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

$$
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
$$

 data fitting term + regularizer

- **Optimization**: optimization of regularized risk training cost

- **Statistics**: guarantees on $\mathbb{E}_{p(x,y)} \ell(y, h(x, \theta))$ testing cost
Stochastic gradient descent (SGD) for finite sums

\[
\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

- **Iteration:** \(\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})\)
 - Sampling with replacement: \(i(t)\) random element of \(\{1, \ldots, n\}\)
 - Polyak-Ruppert averaging: \(\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^{t} \theta_u\)
Stochastic gradient descent (SGD) for finite sums

\[
\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

- **Iteration**: \(\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1}) \)
 - Sampling with replacement: \(i(t) \) random element of \(\{1, \ldots, n\} \)
 - Polyak-Ruppert averaging: \(\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^{t} \theta_u \)

- **Convergence rate** if each \(f_i \) is convex \(L \)-smooth and \(g \) \(\mu \)-strongly-convex:

\[
\mathbb{E} g(\bar{\theta}_t) - g(\theta^*) \leq \begin{cases}
O\left(\frac{1}{\sqrt{t}}\right) & \text{if } \gamma_t = 1/(L\sqrt{t}) \\
O\left(\frac{L}{\mu t}\right) = O\left(\frac{\kappa}{t}\right) & \text{if } \gamma_t = 1/(\mu t)
\end{cases}
\]

 - No adaptivity to strong-convexity in general
 - Running-time complexity: \(O(d \cdot \kappa/\varepsilon) \)
Deterministic and stochastic methods

- Minimize $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$
Deterministic and stochastic methods

- Minimize \(g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \) with \(f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \)

- **Gradient descent**: \(\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma}{n} \sum_{i=1}^{n} \nabla f_i(\theta_{t-1}) \)
 (Cauchy, 1847)
Deterministic and stochastic methods

- Minimize $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- **Gradient descent**: $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma}{n} \sum_{i=1}^{n} \nabla f_i(\theta_{t-1})$
 (Cauchy, 1847)

- **Stochastic gradient descent**: $\theta_t = \theta_{t-1} - \gamma \nabla f_i(t)(\theta_{t-1})$
 (Robbins and Monro, 1951)
Stochastic gradient with exponential convergence

- Variance reduction
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

\[
\theta_t = \theta_{t-1} - \gamma \nabla f_i(t)(\theta_{t-1})
\]
Stochastic gradient with exponential convergence

• Variance reduction
 – SAG (Le Roux, Schmidt, and Bach, 2012)
 – SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 – SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

\[
\theta_t = \theta_{t-1} - \gamma \left[\nabla f_i(t)(\theta_{t-1}) + \frac{1}{n} \sum_{i=1}^{n} y_{i(t)}^{t-1} - y_{i(t)}^{t-1} \right]
\]
Stochastic gradient with exponential convergence

- Variance reduction
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

- Number of individual gradient computations to reach error ε
 (convex objectives with condition number κ)

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient descent</td>
<td>$n\kappa \times \log \frac{1}{\varepsilon}$</td>
</tr>
<tr>
<td>Stochastic gradient descent</td>
<td>$\kappa \times \frac{1}{\varepsilon}$</td>
</tr>
<tr>
<td>Variance reduction</td>
<td>$(n + \kappa) \times \log \frac{1}{\varepsilon}$</td>
</tr>
</tbody>
</table>
Stochastic gradient with exponential convergence

- Variance reduction
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

- Number of individual gradient computations to reach error ε (convex objectives with condition number κ)

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient descent</td>
<td>$n\kappa \times \log \frac{1}{\varepsilon}$</td>
</tr>
<tr>
<td>Stochastic gradient descent</td>
<td>$\kappa \times \frac{1}{\varepsilon}$</td>
</tr>
<tr>
<td>Variance reduction</td>
<td>$(n + \kappa) \times \log \frac{1}{\varepsilon}$</td>
</tr>
</tbody>
</table>

- Empirical behavior close to complexity bounds
Exponentially convergent SGD for finite sums
From theory to practice and vice-versa

- Empirical performance “matches” theoretical guarantees
Exponentially convergent SGD for finite sums
From theory to practice and vice-versa

- Empirical performance “matches” theoretical guarantees

- Theoretical analysis suggests practical improvements
 - Non-uniform sampling, acceleration
 - Matching upper and lower bounds
From training to testing errors

- rcv1 dataset \((n = 697,641, d = 47,236)\)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight
From training to testing errors

- *rcv1 dataset* \((n = 697641, \ d = 47236) \)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight
SGD minimizes the testing cost!

- **Goal**: minimize \(f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x, \theta)) \)

 - Given \(n \) independent samples \((x_i, y_i), i = 1, \ldots, n\) from \(p(x, y) \)
 - Given a **single pass** of stochastic gradient descent
 - Bounds on the excess testing cost \(\mathbb{E} f(\bar{\theta}_n) - \inf_{\theta \in \mathbb{R}^d} f(\theta) \)
SGD minimizes the testing cost!

- **Goal**: minimize $f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x, \theta))$
 - Given n independent samples $(x_i, y_i), i = 1, \ldots, n$ from $p(x, y)$
 - Given a **single pass** of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E} f(\bar{\theta}_n) - \inf_{\theta \in \mathbb{R}^d} f(\theta)$

- **Optimal convergence rates**: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes
SGD minimizes the testing cost!

- **Goal:** minimize $f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x, \theta))$
 - Given n independent samples $(x_i, y_i), i = 1, \ldots, n$ from $p(x, y)$
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) - \inf_{\theta \in \mathbb{R}^d} f(\theta)$

- **Optimal convergence rates:** $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes

- **Constant-step-size SGD**
 - Convergence up to the noise level (Solodov, 1998)
 - Full convergence and robustness to ill-conditioning (Bach and Moulines, 2013)
Perspectives

- Linearly-convergent stochastic gradient methods
 - Provable and precise rates
 - Improves on two known lower-bounds (by using structure)
 - Several extensions / interpretations / accelerations
Perspectives

• Linearly-convergent stochastic gradient methods
 – Provable and precise rates
 – Improves on two known lower-bounds (by using structure)
 – Several extensions / interpretations / accelerations

• Extensions and future work
 – Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)
 – Sampling without replacement (Gurbuzbalaban et al., 2015)
Perspectives

• Linearly-convergent stochastic gradient methods
 – Provable and precise rates
 – Improves on two known lower-bounds (by using structure)
 – Several extensions / interpretations / accelerations

• Extensions and future work
 – Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)
 – Sampling without replacement (Gurbuzbalaban et al., 2015)
 – Parallelization (Leblond, Pedregosa, and Lacoste-Julien, 2016; Hendrikx, Bach, and Massoulié, 2019)
 – Non-convex problems (Reddi et al., 2016)
1. **Introduction/motivation: Supervised machine learning**
 - Machine learning \approx optimization of finite sums
 - Batch optimization methods

2. **Fast stochastic gradient methods for convex problems**
 - Variance reduction: for *training* error
 - Single pass SGD: for *testing* error

2. **Beyond convex problems**
 - Generic algorithms with generic “guarantees”
 - Global convergence for over-parameterized neural networks
Parametric supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$

- **Prediction function** $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- **(regularized) empirical risk minimization**:

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)
$$

\[\text{data fitting term} + \text{regularizer}\]

- **Actual goal**: minimize test error $\mathbb{E}_{p(x,y)} \ell(y, h(x, \theta))$
Convex optimization problems

- Convexity in machine learning
 - Convex loss and linear predictions \(h(x, \theta) = \theta^\top \Phi(x) \)
Convex optimization problems

• Convexity in machine learning
 – Convex loss and linear predictions $h(x, \theta) = \theta^\top \Phi(x)$

• (approximately) matching theory and practice
 – Fruitful discussions between theoreticians and practitioners
 – Quantitative theoretical analysis suggests practical improvements
Convex optimization problems

- **Convexity in machine learning**
 - Convex loss and linear predictions \(h(x, \theta) = \theta^\top \Phi(x) \)

- **(approximately) matching theory and practice**
 - Fruitful discussions between theoreticians and practitioners
 - Quantitative theoretical analysis suggests practical improvements

- **Golden years of convexity in machine learning** (1995 to 2020+)
 - Support vector machines and kernel methods
 - Inference in graphical models
 - Sparsity / low-rank models (statistics + optimization)
 - Convex relaxation of unsupervised learning problems
 - Optimal transport
 - Stochastic methods for large-scale learning and online learning
Convex optimization for machine learning
From theory to practice and vice-versa

- Empirical performance “matches” theoretical guarantees
- Theoretical analysis suggests practical improvements
Convex optimization for machine learning
From theory to practice and vice-versa

- Empirical performance “matches” theoretical guarantees
- Theoretical analysis suggests practical improvements
- Many other well-understood areas
 - Single pass SGD and generalization errors
 - From least-squares to convex losses
 - High-dimensional inference
 - Non-parametric regression
 - Randomized linear algebra
 - Bandit problems
 - etc...
Convex optimization for machine learning
From theory to practice and vice-versa

- Empirical performance “matches” theoretical guarantees
- Theoretical analysis suggests practical improvements
- Many other well-understood areas
 - Single pass SGD and generalization errors
 - From least-squares to convex losses
 - High-dimensional inference
 - Non-parametric regression
 - Randomized linear algebra
 - Bandit problems
 - etc...
- What about deep learning?
Theoretical analysis of deep learning

- **Multi-layer neural network** \(h(x, \theta) = \theta_m^T \sigma(\theta_{m-1}^T \sigma(\cdots \theta_2^T \sigma(\theta_1^T x))) \)

\[x \rightarrow \theta_1 \rightarrow \theta_2 \rightarrow \theta_3 \rightarrow y \]

- NB: already a simplification
Theoretical analysis of deep learning

- **Multi-layer neural network** \(h(x, \theta) = \theta_m^T \sigma(\theta_{m-1}^T \sigma(\cdots \theta_2^T \sigma(\theta_1^T x))) \)

- **Generalization guarantees**
 - See “MythBusters: A Deep Learning Edition” by Sasha Rakhlin
 - Bartlett et al. (2017); Golowich et al. (2018)
Theoretical analysis of deep learning

- **Multi-layer neural network**

 \[h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x))) \]

- **Generalization guarantees**
 - See “MythBusters: A Deep Learning Edition” by Sasha Rakhlin
 - Bartlett et al. (2017); Golowich et al. (2018)

- **Optimization**
 - Non-convex optimization problems
Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
 - Local minima
 - Stationary points
 - Plateaux
 - Bad initialization
 - etc...
Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

 – Local minima
 – Stationary points
 – Plateaux
 – Bad initialization
 – etc...

• Generic local theoretical guarantees

 – Convergence to stationary points or local minima
 – See, e.g., Lee et al. (2016); Jin et al. (2017)
Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?
 – Local minima
 – Stationary points
 – Plateaux
 – Bad initialization
 – etc...

• General **global** performance guarantees impossible to obtain
Gradient descent for a single hidden layer

- **Predictor**: \(h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^{m} \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

- **Goal**: minimize \(R(h) = \mathbb{E}_{p(x,y)} \ell(y, h(x)) \), with \(R \) convex
Gradient descent for a single hidden layer

- **Predictor:** \(h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^{m} \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

- **Family:** \(h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) \) with \(\Psi(w_i)(x) = m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)\top x] \)

- **Goal:** minimize \(R(h) = \mathbb{E}_{p(x,y)} \ell(y, h(x)) \), with \(R \) convex
Gradient descent for a single hidden layer

- **Predictor**: \(h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^{m} \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

- **Family**: \(h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) \) with \(\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

- **Goal**: minimize \(R(h) = \mathbb{E}_{p(x,y)} \ell(y, h(x)) \), with \(R \) convex

- **Main insight**

\[
- h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) = \int_{\mathcal{W}} \Psi(w) d\mu(w) \text{ with } d\mu(w) = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i}
\]
Gradient descent for a single hidden layer

- **Predictor:** \(h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

 - **Family:** \(h = \frac{1}{m} \sum_{i=1}^m \Psi(w_i) \) with \(\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x] \)

- **Goal:** minimize \(R(h) = \mathbb{E}_{p(x,y)} \ell(y, h(x)) \), with \(R \) convex

- **Main insight**

 - \(h = \frac{1}{m} \sum_{i=1}^m \Psi(w_i) = \int_{\mathcal{W}} \Psi(w) d\mu(w) \) with \(d\mu(w) = \frac{1}{m} \sum_{i=1}^m \delta_{w_i} \)

 - Overparameterized models with \(m \) large \(\approx \) measure \(\mu \) with densities

 - Barron (1993); Kurkova and Sanguineti (2001); Bengio et al. (2006); Rosset et al. (2007); Bach (2017)
Optimization on measures

• Minimize with respect to measure μ: $R \left(\int_{\mathcal{W}} \Psi(w) d\mu(w) \right)$

 – Convex optimization problem on measures
 – Frank-Wolfe techniques for incremental learning
 – Non-tractable (Bach, 2017), not what is used in practice
Optimization on measures

- Minimize with respect to measure μ: $R\left(\int_{\mathcal{W}} \Psi(w) \, d\mu(w)\right)$
 - Convex optimization problem on measures
 - Frank-Wolfe techniques for incremental learning
 - Non-tractable (Bach, 2017), not what is used in practice

- Represent μ by a finite set of “particles” $\mu = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i}$
 - Backpropagation = gradient descent on (w_1, \ldots, w_m)

- Two questions:
 - Algorithm limit when number of particles m gets large
 - Global convergence
Many particle limit and global convergence
(Chizat and Bach, 2018)

- **General framework**: minimize \(F(\mu) = R \left(\int_{\mathcal{W}} \Psi(w) d\mu(w) \right) \)

- **Algorithm**: minimizing \(F_m(w_1, \ldots, w_m) = R \left(\frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) \right) \)
Many particle limit and global convergence (Chizat and Bach, 2018)

- **General framework**: minimize $F(\mu) = R\left(\int_{\mathcal{W}} \Psi(w) d\mu(w) \right)$

 - Algorithm: minimizing $F_m(w_1, \ldots, w_m) = R\left(\frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) \right)$

 - Gradient flow $\dot{W} = -m \nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$

 - Idealization of (stochastic) gradient descent
Many particle limit and global convergence
(Chizat and Bach, 2018)

• **General framework:** minimize $F(\mu) = R\left(\int_{\mathcal{W}} \Psi(w) d\mu(w)\right)$

 – Algorithm: minimizing $F_m(w_1, \ldots, w_m) = R\left(\frac{1}{m} \sum_{i=1}^{m} \Psi(w_i)\right)$

 – Gradient flow $\dot{W} = -m \nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$

 – Idealization of (stochastic) gradient descent

• **Limit when m tends to infinity**

 – Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei, Montanari, and Nguyen, 2018; Sirignano and Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)
Many particle limit and global convergence (Chizat and Bach, 2018)

- Two ingredients: homogeneity and initialization
Many particle limit and global convergence
(Chizat and Bach, 2018)

- **Two ingredients**: homogeneity and initialization

- **Homogeneity** (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)
 - Full or partial, e.g., $\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma[\theta_1(\cdot, i)\top x]$
 - Applies to rectified linear units (but also to sigmoid activations)

- **Sufficiently spread initial measure**
 - Needs to cover the entire sphere of directions
Simple simulations with neural networks

- ReLU units with $d = 2$ (optimal predictor has 5 neurons)
Conclusions
Optimization for machine learning

• Well understood
 – Convex case with a single machine
 – Matching lower and upper bounds for variants of SGD
 – Non-convex case: SGD for local risk minimization
Conclusions
Optimization for machine learning

• Well understood
 – Convex case with a single machine
 – Matching lower and upper bounds for variants of SGD
 – Non-convex case: SGD for local risk minimization

• Not well understood: many open problems
 – Step-size schedules and acceleration, conditioning
 – Dealing with non-convexity
 (global minima vs. local minima and stationary points)
 – Going deep, convolutional, and quantitative
 – Distributed learning: multiple cores, GPUs, and cloud
 – Beyond running time
References

Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.

