On the pfaffian representation of general homogeneous polynomials

Toulouse
Nov 2009
Bibliography

E.Carlini, L.Chiantini, A.Geramita.
COMPLETE INTERSECTION POINTS ON GENERAL SURFACES IN \mathbb{P}^3.
arXiv:0811.2233

L.Chiantini, D.Faenzi.
RANK 2 ARITHMETICALLY COHEN-MACAULAY BUNDLES ON A GENERAL QUINTIC SURFACE.

L.Chiantini, D.Faenzi.
ON GENERAL SURFACES DEFINED BY AN ALMOST LINEAR PFAFFIAN.

E.Carlini, L.Chiantini, A.Geramita.
COMPLETE INTERSECTIONS ON GENERAL HYPERSURFACES.
On the pfaffian representation of general homogeneous polynomials

PROBLEM: Find a representation of general forms of degree d, by means of simpler forms of smaller degree.

The interest in the problem relies also in its geometric counterpart.

EXAMPLE: write a general form in 3 variables, of degree d, as a determinant of a matrix of forms.
EXAMPLE: write a general form in 3 variables, of degree d, as a determinant of a matrix of forms.

\[F_d = \det \begin{pmatrix} F' & G' \\ L & M \end{pmatrix} \]

degrees \[\begin{pmatrix} d-1 & d-1 \\ 1 & 1 \end{pmatrix} \]

\[F_d = LF' - MG' \]

L, M linear forms

\[F_d \in \langle L, M \rangle \]

plane curve
EXAMPLE: write a general form in 3 variables, of degree d, as a determinant of a matrix of forms.

$$F_d = \det \begin{pmatrix} F' & G' \\ L & M \end{pmatrix}$$

degrees \[\begin{pmatrix} d-2 & d-2 \\ 2 & 2 \end{pmatrix} \]

$F_d = LF' - MG'$

L, M quadratic

$F_d \in \langle L, M \rangle$

4 general points
\[F_d = \det \begin{pmatrix} F' & G' \\ L & M \end{pmatrix} \]

degrees \[\begin{pmatrix} d - 3 & d - 3 \\ 3 & 3 \end{pmatrix} \]

\[F_d = LF' - MG' \]

L,M cubics

\[F_d \in \langle L, M \rangle \]

The 9 points are NOT general

(9 general points lie only in 1 cubic)

QUESTION: are there 9 points, on a general curve of degree d, which are c.i. of two cubics?
Representation of forms \quad \leftrightarrow \quad \text{Existence of certain structures (subvarieties) on a general hypersurface}

Geometric problem \quad \rightarrow \quad \text{Understand the geometry of subvarieties of a general hypersurface}

\quad \rightarrow \quad \text{Find which varieties are there inside a general hypersurface}

\text{e.g.}
\text{Find which sets of points one can find inside a general plane curve}

\text{EXAMPLE: write a general form in 3 variables, of degree } d, \text{ as a determinant of a matrix of forms.}
THEOREM For any choice of $a, b < d$, a general plane curve of degree d contains a set of points which is complete intersection of type a, b.

Idea for the proof

$F_d = LF' - MG'$

$\deg(L) = a, \deg(M) = b$

Projective space parameterizing curves of degree d

$F = \text{GENERAL FORM}$

Forms splitting in a product LF', with $\deg(L) = a$

Forms splitting in a product MG', with $\deg(M) = b$

image of $\mathbb{P}(a) \times \mathbb{P}(d - a)$ under Segre’s map + projection
THEOREM For any choice of $a, b < d$, a general plane curve of degree d contains a set of points which is complete intersection of type a, b.

Terracini's Lemma \(\text{tg space to the join} = \text{join of \text{tg spaces}} \)

QUESTION: for generic forms L, M, F', G' is \(\langle L, M, F', G' \rangle_d = \text{Ring}_d \) ?

YES! \(\text{Lefschetz Hard Theorem} \) (Stanley)
Generalization to \mathbb{P}^3

FORGET IT!

F_d cannot belong to $= \langle L, F' \rangle_d$, $\deg(L), \deg(F') < d$, because all of its curves are complete intersection of F_d

not a 2x2 determinant

$F_d = LF' - MG'$

large degree

NOETHER – LEFSCHETZ principle

Larger determinants?

Same problem
Problem: find a decomposition of type $F_d = AL + BM + CN$ with $\deg(L), \deg(M), \deg(N) < d$

for a general form of degree d in 4 variables.

$$F_d \in < L, M, N >$$

e.g.

$$\deg(L) = \deg(M) = \deg(N) = 1$$

done

On a general surface of degree > 3, there are “few curves”,
but many sets of points!
Problem: find a decomposition of type \(F_d = AL + BM + CN \) with \(\deg(L), \deg(M), \deg(N) < d \) for a general form of degree \(d \) in 4 variables.

\[\uparrow \]

Which complete intersection sets of points are there on a general surface of degree \(d \gg 0 \) in \(\mathbb{P}^3 \)?

assume \(\deg(L) \leq \deg(M) \leq \deg(N) \)

DEFINITION We say that a triple \((\deg(L), \deg(M), \deg(N)) \) is **asymptotic** if for all \(d > d_0 \) a general surface of degree \(d \) contains a complete intersection set of points of type \((\deg(L), \deg(M), \deg(N)) \)

Example \((1,1,1) \) is asymptotic
Problem: find a decomposition of type $F_d = AL + BM + CN$ with $\deg(L), \deg(M), \deg(N) < d$ for a general form of degree d in 4 variables.

Which complete intersection sets of points are there on a general surface of degree $d \gg 0$ in \mathbb{P}^3?

assume $\deg(L) \leq \deg(M) \leq \deg(N)$

Theorem (Carlini, ---, Geramita)
If $\deg(L) \leq 4$, the triple $(\deg(L), \deg(M), \deg(N))$ is asymptotic
If $\deg(L) > 6$, the triple $(\deg(L), \deg(M), \deg(N))$ is not asymptotic
If $5 \leq \deg(L) \leq 6$, the asymptotic triples are:

$\deg(L) = 5 \quad \deg(M) < 12 \quad \deg(L) = 5 \quad \deg(M) = 12 \quad \deg(N) = 12$

$\deg(L) = 6 \quad \deg(M) < 8 \quad \deg(L) = 6 \quad \deg(M) = 8 \quad \deg(N) = 8, 9$
Problem: is q DOMINANT?

BASIC CONSTRUCTION

$I = \{(F,Z): Z \subseteq F\}$

Complete intersections sets of points

$\mathbb{P}(d) \quad q$ \hspace{2cm} $F \bullet$

known from the Hilbert function of Z

q \hspace{2cm} p \hspace{2cm} $\bullet Z$

general fiber of $p = \mathbb{P}(H^0(I_Z(d)))$

if $\dim(I) < \dim(\mathbb{P}(d))$, return: NO

if $\dim(I) \geq \dim(\mathbb{P}(d))$, compute tg spaces
I = \{(F,Z): \ Z \subseteq F\}

Problem: is q DOMINANT?

GENERALIZING the BASIC CONSTRUCTION

\(\mathbb{P}(d)\)

\(F \bullet\)

\(Z \bullet\)

\(T = \text{type of variety} = \text{irreducible component of some Hilbert scheme}\)

\[\dim(I) = \dim(T) + (\dim(\mathbb{P}(d)) - H_Z(d))\]

NB: if T parameterizes objects of dim > 0, no chance of ASYMPTOTIC positive answer

Problem: is q DOMINANT? DOMINANT \(\rightarrow\) \(\dim(T) \geq H_Z(d)\)
Back to the representation of forms F having a c.i. set of points Z of type a,b,c

Indeed $(LA+MB+NC)^2$ is the determinant of a skew-symmetric matrix

$F = (LA + MB + NC)$ is a 4x4 Pfaffian
Back to the representation of forms

\[0 \to \mathcal{O}(-a - b - c) \to \mathcal{O}(-a - c) \xrightarrow{M} \mathcal{O}(-b) \to \mathcal{I}_Z \to 0 \]

\[\mathcal{O}(-b - c) \oplus \mathcal{O}(-c) \]

\[\mathcal{O}(-d) = \mathcal{O}(-d) \]

N.B. In \(\mathbb{P}^3 \) a representation is always possible, for \(a = b = c = 1 \): every surface contains one point!

\[\text{deg}(M) = \begin{pmatrix} 0 & d-1 & d-1 & d-1 \\ d-1 & 1 & 1 & 1 \\ d-1 & 1 & 1 & 1 \\ d-1 & 1 & 1 & 1 \end{pmatrix} \]

N.B. In \(\mathbb{P}^n \), \(n \geq 4 \), false in high degree.
GENERAL PFAFFIANS

\[Z = \text{arithmatically Gorenstein 0-dimensional set} \subseteq F \]

\[
\begin{array}{ccccccc}
0 & \to & \mathcal{P}_0 & \to & \mathcal{P}_1 & \xrightarrow{M} & \mathcal{P}_2 & \to & \mathcal{I}_Z & \to & 0 \\
\end{array}
\]

\[\mathcal{O}(-d) = \mathcal{O}(-d) \]

\[\to F \]

\[\mathcal{P}_0 = \text{line bundle} \quad \mathcal{P}_1 \quad \mathcal{P}_2 = \text{free} \]

\[F = \text{pfaffian of a matrix} \quad N = \begin{pmatrix}
0 \\
\begin{pmatrix} n^T \\
M
\end{pmatrix}
\end{pmatrix} \]

\[n = \text{vector of forms of degree} < d \]

Pfaffian representations of \(F \) \iff \text{Find arithmatically Gorenstein 0-dimensional sets} \subseteq F
SITUATION FOR PFAFFIAN SURFACES IN \mathbb{P}^3

A general surface F is the pfaffian of a skew-symmetric matrix when:

- **Homogeneous pfaffians** (n, M homogeneous of the same degree)
 - degree 1 (linear pfaffians)
 \[\text{deg}(F) \leq 15 \quad (\text{Adler – Beauville - Schreyer}) \]
 - degree 2 (quadratic pfaffians)
 \[\text{deg}(F) \leq 15 \quad (\text{Faenzi}) \]
 - higher degree
 \[\text{deg}(F) \leq 8 \quad (---, \text{Faenzi}) \]

$F = \text{pfaffian of a matrix} \quad N = \begin{pmatrix} 0 & n \\ n^T & M \end{pmatrix} \quad \text{t}$

Never asymptotic
SITUATION FOR PFAFFIAN SURFACES IN \mathbb{P}^3

A general surface F is the pfaffian of a skew-symmetric matrix when:

- **Quasi-homogeneous pfaffians**
 - (n, M) homogeneous of different degrees
 - $F = \text{pfaffian of a matrix } N = \begin{pmatrix} n^T & M \\ n & M \end{pmatrix}$
 - $\deg(F) \leq 8$
 - M matrix of forms of degrees $b > 1$
 - M matrix of linear forms

 \[
 \begin{array}{c|c}
 \text{Non asymptotic} & \text{Some is asymptotic (depends on } n) \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{Quasi-homogeneous pfaffians (depends on } n) \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{---, Faenzi} & \text{---, Faenzi} \\
 \end{array}
 \]
SITUATION FOR PFAFFIAN SURFACES IN \mathbb{P}^3

- Quasi-homogeneous pfaffians
 (n, M homogeneous of different degrees)
 - M matrix of linear forms
 (---, Faenzi)

$d = \alpha + 1$

d = α + 1

d = 16

$\alpha = 10$

$\alpha = 15$

Linear matrix of size $(2\alpha-3) \times (2\alpha-3)$

$\begin{pmatrix} 0 & n \\ n^T & M \end{pmatrix}$

$t = 2\alpha - 2$

Degree matrix of M

$\begin{pmatrix} d-\alpha+2 & \ldots & d-\alpha+2 \\ d-\alpha+2 & \ldots & d-\alpha+2 \\ \vdots & \ddots & \vdots \\ d-\alpha+2 & \ldots & d-\alpha+2 \end{pmatrix}$
HINT of proofs for non-existence

\[I = \{(F,Z): \ Z \subseteq F\} \]

but BEWARE: for \(d = 16 \) \(\dim(I) > \dim(\mathbb{P}(d)) \)

nevertheless \(p \) is not dominant

REASON: \(Z \) determines on \(F \) a rank 2 bundle \(E \) with \(\dim(H^0(E)) \) large, so \(Z \) moves in a high dimensional family on \(F \) and \(p \) has general fibers of large dimension
HINT of proofs for existence

\[\dim(I) \geq \dim(\mathbb{P}(d)) \]

for sparse results, compute the dimension of the tangent space to \(p(I) \), which is generated by submaximal pfaffians

For asymptotic results

Assume \(H_Z(d) = \deg(Z) \)

\[\dim(I) \geq \dim(\mathbb{P}(d)) \]

plane

\[\text{then use induction} \]

For sparse results, compute the dimension of the tangent space to \(p(I) \), which is generated by submaximal pfaffians
If the general surface is NOT pfaffian

Pfaffian rank

$P(d)$

Pfaf = \{pfaffians\}

in general $H = F_1 + \ldots + F_k$

minimum k?

e.g. $H = F + G \implies H \in \text{Secant variety}$

Sec(Pfaf) expected dimensions?

TERRACINI'S LEMMA

the tg space of the secant variety at H

is the span of the tg spaces to Pfaf at F,G
If the general surface is NOT pfaffian

Pfaffian rank

Secant varieties of Pfaff

do they have the expected dimensions?

TERRACINI'S LEMMA
the tg space of the secant variety at H
is the span of the tg spaces to Pfaf at F,G

study the Hilbert function of a union
of two arithmetically Gorenstein sets

work in progress

thank you for your attention