The Coffee Machine

1 Behaviour of the coffee machine

The coffee machine in the example provides the user with a cup of coffee or a cup of hot water (for
tea), given that the customer has inserted the required amount of money. The coffee machine can
handle coins of the values 5 and 10, where 5 is the price for a cup of tea while a cup of coffee costs
10. The following holds:

— If a coin with the value of 10 is inserted and the Coffee button is pressed, the customer
receives a cup of coffee.

— If a coin with the value of 10 is inserted and the Tea button is pressed, the customer receives
a cup of hot water plus change.

— If a coin with the value of 5 is inserted and the Coffee button is pressed, the money is
returned.

— If a coin with the value of 5 is inserted and the Tea button is pressed, the customer receives a
cup of hot water.

2 Model and Diagrams

2.1 General

A diagram is a view of a UML model showing a set of elements and their relations. In this tutorial you
will use the capabilities of the tool to work both directly in the model and through diagrams. You will
work with different diagrams where each of these diagrams present a certain view of the model.
When a new entity, for example a class, is drawn in a diagram, it becomes part of the model. To
present different views, the same class may be drawn again in the same diagram or in a different
diagram. The information stored in the model is the sum of all descriptions made of an entity.

2.2 Deleting entities

The distinction between the model and the diagrams must be kept in mind when designing in
Tau/Modeler. As stated above, an entity, for example a class, is included in the model as soon as it is
added to a diagram. Deleting a class from a diagram does not mean that the class is removed from
the model! The reason for this is that the same class could be used in other diagrams. It is however
possible to delete an entity from the model. By right- clicking an entity there will appear a context-
sensitive shortcut menu. From this menu Delete from Model can be clicked instead of Delete.

2.3 Diagram element creation toolbar

The Diagram element toolbar is only active when the diagram is used. Click in the diagram to activate
the toolbar. Buttons in the Diagram element creation toolbar are normally handled so that you click
on the toolbar button, then click the diagram to position the entity controlled by the button. Toolbar
quick-buttons are in sometimes context-sensitive, so the result may depend on selections in the
current diagram and the relation between the selection and the button entity. It is often possible to
access a shortcut menu (right-click) to get assistance from the model semantics. An example of this is
when you draw messages in sequence diagrams, you click on the Message Line button, click on the

sender lifeline and then right-click on the receiver lifeline and the shortcut menu will have a drop-
down box with all signals in the current scope.

3 User Interface

3.1 General

The Tau/Modeler user interface main areas:

1. the Workspace window
the Desktop
the Output window

In this tutorial you will sometimes have other areas active, for example watch windows during
testing. It is also possible to drag an area to alter its position within the window or even to position it
outside the main window of the user interface.

T am
O e Gt ke i . |
L IR E e LI 4 Y| J1& [ewora|

I =i O =1}

3.2 Workspace window

The Workspace window presents the entities contained in a model. Different views are available for
displaying different kinds of information. The File View shows all elements that are represented as
files. The Model View contains all UML elements. This is the view to select when adding diagrams or

working directly in the model.

3.3 Desktop
The Desktop is the area where diagrams and documents appear when opened. This is where you
work with your model as it is viewed from different diagrams.

3.4 Shortcut bar
The Shortcut bar, which is optional, gives you the possibility to put any frequently used toolbar in a
special area, or to create shortcuts to your own scripts.

3.5 Output window
The Output window is used for logging events and displaying errors and warnings.

3.6 Shortcut menu
By right-clicking an entity you will get a shortcut menu. This menu will frequently contain context-
sensitive commands.

4 Workspace

4.1 General

A workspace is your personal working area, where you can work in separate projects but also include
files that are not related to a specific project. You can define more than one workspace, but you can
only work in one workspace at a time. You cannot share a workspace with other users. The
information contained in a workspace is stored in a text file with the extension *.ttw.

4.2 Creating a workspace
You will now create a workspace for the development of the coffee machine example. Do the
following:

Start Tau/Modeler.
On the File menu, click New... The dialog that appears contains four tabs: File, Project,
Template and Workspace.

3. Select the Workspace tab.

4. Name the workspace “Tutorial” and select the location where the work- space file
(Tutorial.ttw) will be stored. Click OK. Your new workspace appears in the File View of the
Workspace window.

The next step is to add a project.

5 Projects

5.1 General

Using projects is a way of grouping the contents within your workspace. You can for example let your
workspace “Tutorial” contain several different examples, one being this coffee machine, using one
project for each example. Diagrams and documents can be moved between projects. A project is not
individual and can therefore be shared between users. The information contained in a project is
stored in a text file with the extension *.ttp.

5.2 Creating a project
You will now create a project for the coffee machine example. Do the following:

1. Onthe File menu, click New... Select the Project tab.

A dialog with a number of choices for creating various types of applications appear. Select
UML for Modelling.

Name the project “CMdesign” and select the location where the project files will be stored.
Select Add to current workspace and click OK.

A second dialog appears, suggesting a name for the file representing your model and a
location for this file. Make sure that Project with one file and one package is selected and
click Next.

A third dialog appears, displaying the name of the file representing the project and the name
of the file representing the model. Click Finish. Your project appears in the Workspace
window.

Expand® the tree structures. The File View displays the created files and the Model View
displays an empty package. In the Model View you will also find information from the
internal structures of the Tau/Modeler representation of UML. This information is found in
the packages called Library and Predefined.

6 Use Case Diagrams

6.1 General
Use case diagrams describe the relationships between use cases and actors for a system. In a use

case diagram it is possible to group use cases with a subject frame.

6.2 Creating use case diagrams
You will now create a use case diagram for the use cases for the coffee ma- chine example. These

cases were described earlier, see 1.

1.

Make sure that the Workspace window displays the Model View.

Select your package CMdesign in the Model View (not CMDesign.ttp). Right-click and from
the shortcut menu point to New Diagram and then click Use case Diagram. Name the use
case diagram UserDrinks. An icon for the use case diagram appears in the Model View. The
diagram is now open on the Desktop. Click in the diagram to make it active. The available
symbols are now high-lighted in a toolbar. When resting the mouse pointer on a symbol a
tooltip appears, indicating the name of the symbol.

A symbol is inserted in a diagram by clicking the quick-button representing the symbol, then
clicking the diagram on the Desktop. Place an actor in the diagram. Give the actor the class
Customer (for this the class name shall be preceded by a colon according to the syntax). It is
possible to give the actor a name, but it is not necessary. The class Customer will not be
bound at this stage in the design. This can be observed in two ways. First the type name is
underlined with a red wave line indicating a name binding error; secondly there will be some
error messages in the Output window (Autocheck tab).

A plus sign (+) to the left of an icon in the Workspace window indicates that the icon is collapsed, i.e. more
information can be displayed. To expand the structure for this icon, click the plus sign. An entire substructure
can be expanded by selecting a collapsed icon in the Workspace window and pressing the multiplication key (*)
on your numeric key pad. To collapse a substructure click on the minus (-) sign for its root icon.

4.

Click on the Use case symbol and place it in the diagram. Name the use case MakeCoffee.
Select the use case and create an association line to the actor. To do this drag the leftmost
(Association line) of the three line handles from the use case symbol to the actor.

Click on the subject symbol and place it in the diagram. Name the subject C/V.

Save your work. You have now completed a use case diagram containing one of the possible
use cases for this system. You will add some more use cases to this diagram later when
working with sequence diagrams.

package CMDesign ‘ UserDrinks {1/1}

CM

a

)X\// \l\llakeCoffee//\l

:Customer

7 Class Diagrams

7.1 Class diagram
Class diagrams describe the types of objects that a system consists of, and the relationships between

them. They also show attributes and operators of the classes.

7.2 Creating class diagrams
You will now use class diagrams for modelling the coffee machine example.

1.

5.

Make sure that the Workspace window displays the Model View.

Select your package CMdesign in the Model View. Right-click and from the shortcut menu
point to New Diagram and then click Class diagram.

An icon for the class diagram appears in the Model View. The diagram is now open on the
Desktop. Name the diagram “DomainModel”.

Drag Customer actor and CM subject from Model View and drop it in the DomainModel
diagram in the Desktop. They appear as stereotype of class.

Name the class of CM “CoffeeMachine”.

7.3 Decomposing a class
You will now refine your model by adding two new classes representing the controller part and the

hardware part of the coffee machine. Controller will contain the logic for the system, while Hardware

will simulate the hardware behaviour. When adding these classes, different methods will be used.

You will add the classes directly to the model and then use some modelling features of the editor. Do

the following:

In the Model View of the Workspace window, locate package CMdesign. Right-click package
CMdesign. On the shortcut menu, point to New and click Class. A class icon appears in the

Right-click package CMdesign. On the shortcut menu, point to New Model Element and click

1.
Model View.
2. Name the class Controller.
3. Inthe Model View, select package CMdesign.
4,
Class. A class icon appears in the Model View.
5. Name the class Hardware.
package CMDesign / DomainModel {2/2%}
<<subject>> <<actor>>
CoffeeMachine Customer

Controller

Hardware

package CMDesign)

i

<<actor>>
: Customer

UserDrinks {1/2

A m

=
{_ MakeCoffee)

CM : CoffeeMachine

.
N

— /,

8 Paquetage

8.1 General

UML packages are used to manage model components.

8.2 Create packages

1.

o vk w

Make sure that the Workspace window displays the Model View.

Select your package CMdesign in the Model View. Right-click and from the shortcut menu

point to New Model Element and then click Package.

Name the package Service
Drag and drop all parts concerned with Service
Create a second package named Structure

Drag and drop all parts concerned with Structure

Note that one error appears in the use case diagram: CoffeeMachine is unknown!

1.

vk W

Select your package CMdesign in the Model View. Right-click and from the shortcut menu

point to New Diagram and then click Package diagram.

Name the diagram GeneralPackage

Drag and drop the packages Service and Structure

Add an import relation from Service to Structure

The use case diagram error disappears!

& CMDesign.ttw - IBM Rational Tau - [GeneralPackage]

[Elbe Edt Yew Lk Project Buid Toos Window Help

i (S S A X u N k> IcMDesianttp =[Defaut =[5 ApplcationBulder | 7 % &= 1 Pot ol b o 4 -
I 1l=[Tahoma s E[m|& |E HEE

8 Domainodel | () EamdPackogeI 3 UseiDrinks |

‘Workspace 3 =%
[standard View =l

‘ =[] CMDesign.ttp oL . . oo . . o ‘
= Model =
=3 CMDesign . . .o . - Lo X . o
" G .. package CMDesign) GeneralPackage {1/1}
2 Sarin
[+ Dependencies N . . . D .. B
=4 UserDrinks
Bl & :Structure::Customer | | -
) MakeCoffee
] CM: Coffeetachine
| performance (- >MakeCoffee)
=3 Structure
H) DomainModel

[controller) 1 1

0

E el , <<import>>
L L , Service | > Structure
B Library

Flles
B Dependencies
Applied Stereotypes

9 Signals, Interfaces and Ports

9.1 General

UML has a specific class symbol for defining signals. This symbol is one of the predefined stereotypes,
indicated by the <<signal>> heading. All signals used in the UML model must be defined. A signal
defined on a certain level can be seen and used by all entities on lower levels.

9.2 Defining signals
You will now define all signals needed to implement the behaviour of the coffee machine. You will
use a class diagram to draw the signal definitions in. Do the following:

Create a new package named Communication
Select your package Communication in the Model View. Add a class diagram by right-clicking
and from the shortcut menu point to New Diagram and then click Class diagram. The
diagram appears in the Model View of the Work- space window.

3. Name the diagram Signals and Interfaces. The diagram is now open on the Desktop.

4. From the toolbar, select a Signal symbol and place it in the diagram. Define the signals (one
Signal symbol per signal) from the table below.

Interfaces To Customer From Customer To Hardware From Hardware
CupOfCoffee Coffee FillCoffee CoffeeOK
Signals CupOfWater Tea HeatWater Warm

ReturnChange Coin (Value : Integer) - -

5. Signal Coin will carry one signal data of type integer. This signal data will hold the value of the
inserted coin(s). Add the parameter Value of type Integer in the middle compartment of the
symbol representing signal Coin.

6. Save your work.

Note A colouring of an entity, for example on a signal name or a type, indicates that Tau/Modeler
has found the matching definition. This is called name resolution and appears on all levels when

designing in Tau/Modeler. Integer is one of the predefined types in UML. If no definition is present
the name will be underlined with red.

9.3 Defining interfaces
You will now create interfaces containing the signals for the interaction with the environment. Do the
following:

1. Open the class diagram Signals and Interfaces.
2. From the toolbar, use the Interface symbol and define the following two interfaces:
a. FromUser
b. ToUser
3. Inthe Model View drag the signals to the interfaces
a. Signals Coin, Coffee and Tea should go to the interface FromUser.
b. Signals ReturnChange, CupOfCoffee and CupOfWater should go to the interface
ToUser.
4. Save your work.

Note To view the signals in the interface symbols you can right-click and on the shortcut menu point
to Show all operations. This will also let you modify signal parameters.

9.4 Ports

All signals going to or from an instance of a class pass through a port. Separate ports can be used for
each entity with which the part communicates. You will now add ports to classes in your model to
enable communication, starting with ports for external communication. Do the following:

1. Go to the diagram DomainModel. Select class CoffeeMachine. Hold down SHIFT and in
the toolbar select the Port symbol. A port appears on the border. This port represents
the communication to and from the class. Name the port P1.

2. Make sure that the port P1 is selected.

a. Add a realized interface to P1 by clicking the toolbar button. Name the interface
FromUser.
b. Add arequired interface name ToUser.

3. Select the class Controller, add a port “P2”. Add required and realized interfaces to port

P2 in the same way as for P1. Observe that the signals must go in the same direction.

package Communication) Signals and interfaces {1/2}
<<signal>> <<signal>> <<signal>> <<signal>>
CoffeeOK Tea() HeatWater ReturnChange()
<<signal>> <<signal>> <<signal>>
Coin(Integer) Coffee() Warm
Value : Integer
<<signal>> <<signal>> <<signal>>
CupOfTea() CupOfCoffee() | | FillCoffee
package Communication) Signals and interfaces 2 {2/2}
<<interface>> <<interface>>
<<interface>> <<interface>> hiomUsery eC=ET
FromUser ToUser signal Coffee () signal ReturnChange ()
signal Coin (Value : Integer) signal CupOfCoffee ()
signal Tea () signal CupOfTea ()

10 Sequence Diagrams

10.1 General

A sequence diagram describes the behaviour of use cases. A sequence diagram is commonly built

up with instances of active classes in your system and messages (signal instances) between them.

10.2 Creating sequence diagrams
You will now create a sequence diagram for the use case MakeCoffee. Make sure that the

Workspace window displays the Model View.

4.
5.

Locate the package Services in the Model View. Right-click the use case MakeCoffee, from
the shortcut menu point to New and click Sequence diagram.

The diagram is now open and an icon for the sequence diagram appears inside in the Model
View. The sequence diagram is contained in an Interaction which can contain one or more
diagrams describing the use case.

Locate the class Customer in the Model View and drag it to the sequence diagram. The class
appears as a lifeline.

Drag the class Controller to the sequence diagram.

Drag the class Hardware to the sequence diagram.

In the following instructions you will create a synchronous and an asynchronous messages in the

sequence diagram, the Message line and Method Call buttons in the element toolbar are the

starting points.

6.

M Sequence diagraml {1/1} package Structure DomainModel {1/1}

<<actor>>
<<subject>>
S : Controller : Hardware P1 v E Customer
: Customer CoffeeMachine

Draw a message from Customer to Controller. Drag the signal Coin onto the message line.
The signal name appears with parameter list containing the types of the parameters, in this
case one integer parameter. Replace the parameter type information with the integer value
10.

Add on Hardware class, the method FillWater as shown in the figure. From the element
toolbar select the Method Call button. Click on Controller and then on Hardware. Drag the
method FillWater on the Method Call.

Add Action Symbol and Text Symbol to complete the diagram as depicted in figure bellow.

Integer Value ;
Boolean WaterOK ; FromUser

ToUser

Value= 10;

Coin(Value)

Coffee()

FromUser

Hardware

Controller ToUser + FiIIWaterii : Boolean

10.3 Sequence diagrams with references and alt frames

1.

2.

Add the use case MakeTea in the usecase diagram. Add an include use case ChooseTea with
a include line of MakeTea use case.
Create a new sequence diagram named GeneralScenario.

In this sequence diagram, 2 references and 1 alternative are used.

3.
4.

From the toolbar, select the Inline Frame Symbol and click in the desktop.

Write alt in the left top of the frame. To add alternatives, use the Separator Line (the black
square) on the right of the frame, a new compartment appears in the frame.

From the toolbar, select the Reference Symbol and click in the desktop.

Drag from the model view the use case MakeTea and drop in the appropriated Reference
Symbol.

Repeat this operation for the MakeCoffee use case.

CM : CoffeeMachine

I MakeCoffee

<actor>

<<include>>
: Customer MakeTea)— — — — — = >(_ChooseTea

interaction GeneralScenario Sequence diagram {1/1}

Integer Value;
<<actor>> <<subject=>>
: Customer : CoffeeMachine

Coin(Value)

1

Tea()

MakeTea

MakeCoffee

ref ‘

To add some /oop frames, the steps are similar to the al/t frames (see Lecture for example!).

11 State Machine Diagrams

11.1 General

A state machine diagram describes the behaviour of an active class. A state machine has one or

more possible states and a change of state is triggered by a signal reception. In UML, the state

machine concept has been extended with data handling, meaning that signal data and other

variables can be declared and handled. Two different notations are supported: transition-

oriented syntax and state-oriented syntax. Both syntaxes can be used for describing the

behaviour of a state machine, but the state-oriented syntax is more suitable for getting an

overview of a large design. The transition-oriented syntax is suitable for detailed design.

11.2 State machine diagram for class Hardware

11.2.1 Transition-oriented syntax
When using transition-oriented syntax, have in mind the following:

— To add a symbol, click the corresponding quick-button in the toolbar, then click the desktop.

— To connect two symbols, select the first symbol. Two handles appear below the symbol. Grab
the handle represented by a square and drag a line to the second symbol. Click the symbol.

— Autoflow: Select a symbol in the flow and hold down SHIFT, then click on one of the symbols
in the toolbar. The new symbol is automatically connected to the selected symbol.

11.2.2 Composite state
It is possible to have composite states in a UML state machine. This is a way of defining a sub-
state with a state machine of its own. A composite state can be used for example when a set of
actions tend to al- ways lead back to one identifiable state. This can be identified in the state
machine for Hardware. When producing tea or coffee the signal exchange between Controller
and Hardware is very similar but there is one signal exchange more when the user requires a cup
of coffee. This signal exchange can then be put in a composite state.

You will now describe the behaviour of class Hardware in a state machine. Do the following:

1. Add a state machine to class Hardware. Right-click and from the shortcut menu point to New
and then click State machine diagram. Name the state machine “HandlingWater”. The state
machine is contained in a state machine implementation in turn contained in a state
machine, by default named to initialize.

2. Implement the behaviour as depicted in the figure

You will now use the transition-oriented syntax to describe the behaviour in the composite state.

Open the state machine “HandlingWater” in class Hardware.
Double-click on state Water. The Create Presentation dialog opens. Go to tab New diagram,
point to State machine diagram. A new diagram opens in the desktop.

3. Draw the sub-state definition as depicted below.

initialize J Handlingwater {1/1}

Boolean waterOK;
state water J State {171}

machine
diagram

WaitFill

11.3 State machine diagram for class controller
You will now describe the behaviour of class Controller in a state machine, using the transition-
oriented syntax. To add a state machine, do the following:

1. In the Model View of the Workspace window, select the icon representing class Controller
and create a new state machine diagram for Controller.

2. Rename the state machine diagram to “NewOrder” to indicate that this diagram will describe
the behaviour when a new coffee or tea order is received.

3. Implement the behaviour as depicted in the following figure.

¢

NorOfCoffess=0
horQiTea=00;

Integer NbrOfCofies,
Indeger NbrOfTea,

Infeger Value,

MakingTea

| —

The state machine describes the reception of a coin, the reception of a coffee or tea order
and the start of the hardware communication. Two variables are used for counting the
number of cups of coffee or tea that have been served. Another variable is needed for
holding the value of the coin.

4. To get more drawing space, you can now extend the state machine for the rest of the
behaviour. In the Model View, select the icon representing the state machine
implementation and create another state machine page for Controller.

5. Name the new state machine page “MakingBeverage”.

6. Implement the rest of the behaviour according to figure.

MakingBeverage statemachine initialize {2/2}

F

MakingCoffee] [WaterFurCufleE]

¥ 1
WaterOK CotfeeOK <
— 1
FillCoffes() HeatWater() > |Cup01Coffee() >

[WaterForCotfee] [CoffeeAndN&ter J ‘ NbrOfCoffes =sNbrOfCoffes + 1; |

CupOfvater()

[WaterForTea] | MbrOfTea =hNbrOfTea + 1; ‘

12 Composite Structure Diagrams

12.1 General

The next step is to add a composite structure diagram. A composite structure diagram displays
instances of active classes, and the communication between them. This is the diagram for showing
how your objects from your model should be instantiated and built together to form a system. The
instances are called parts. A part communicates with other parts or with the environment through
ports. Ports are connected through interfaces or connectors.

12.2 Creating a composite structure diagram

You will now instantiate your classes and describe the communication be- tween the customer, the
controller and the hardware in a composite structure diagram. To add a composite structure
diagram, do the following:

In the Model View, select the icon representing class CoffeeMachine.
Right-click on class CoffeeMachine and select New and then Composite structure diagram.

3. The composite structure diagram appears in the Model View. Name the diagram
“Communication”.

12.2.1 Parts
A part is an instantiation of an active class.

Add the parts by doing the following:

1. Make sure that the diagram Communication is open on your desktop. From the toolbar,
select the symbol representing a part and place it in the diagram.

2. Click inside the symbol to activate the text area. Name the instance Ctrl:Controller, where
Ctrl is the name of the part and Controller is the name of the class it instantiates.

3. Add a part representing the instantiation of class Hardware. Name the part Hw:Hardware.

Note It is also possible to drag-and-drop the active classes to the composite structure diagram.

12.2.2 Ports
You will now add some more ports to your model to enable communication, starting with the port

representing the customer. Do the following:

1.

Select the part Ctrl. Hold down SHIFT and in the toolbar, select the Port symbol. A port
appears on the border. Name the port “P3”. This port rep- resent the communication with
the Hw part.

Select the Hw part. Add one port and name it “P4”. This port represents the communication
with the Ctrl part.

Add required and realized signals for the ports P3 and P4. Observe that the signals in the
ports must correspond to the direction of the connection line. The following signals can be
received by Ctrl: — CoffeeOK, WaterOK, Warm

The following signals can be received by Hw: — HeatWater, FillWater, FillCoffee

12.2.3 Connectors

A connector is a signal path which can be bidirectional or unidirectional. Connectors connect the

ports in the composite structure diagram. You will now add a connector to your model.

Do the following:

1.

Add a connector between ports P3 and P4. This is done by selecting one of the ports, then
dragging the handle to the other. Three text fields ap- pear. Name the connector “CtrlbiHw".
Right-click on the connector line and select Show all signals from the shortcut menu. For
each of the connectors the signals corresponding to the Realizes and Requires properties will
be filled in. Your composite structure diagram should now look as depicted in figure.

Communication active class CoffeeMachine {1/1)

ctrl f'z-#}'[rmler

CoffeeOl, WaterOK , Warm

ClyloiHw

FillCottee, Filater, Heatvvater

L4
Hw * Harchware

Your composite structure diagram is now complete. Ports and parts have been added to the model

as you have edited the diagram.

12.2.4 Ports and interfaces
You will now add your ports to the classes in the component diagram.

1.
2.
3.

Open your component diagram (ControlComponents).
Drag and drop port P3 to Controller.
Drag and drop port P4 to Hardware. The interfaces and signal lists will be shown as in figure

ControlComponents

Controller_L
P2

FillCoffee, FillVater, HeatVWater
FillCoffee, FilMater, HeatWater

CoffeeQK, WaterOK, Warm
CofferOK, WaterOK, Warm

]

=Xl

Hardware

