
Property-Oriented Testing based
on Simulated Annealing

Olfa Abdellatif-Kaddour, Pascale Thévenod-Fosse
and Hélène Waeselynck

LAAS-CNRS

7 Avenue du Colonel Roche

31077 Toulouse Cedex 4 – France

+33/ 5 61 33 62 97

{kaddour, thevenod, waeselyn}@laas.fr

ABSTRACT
Property-oriented testing uses the specification of a property
to drive the testing process. The aim is to validate a program
with respect to a target property, that is, to exercise the
program and observe whether the property is violated or not.
We define a test strategy for safety properties in cyclic
control systems. It consists of the stepwise construction of
test scenarios. Each step explores possible continuation of
the dangerous scenarios found at the previous step, using
heuristic search techniques. The feasibility of the strategy i s
illustrated on a steam boiler case study, the target property
being the “non explosion” of the boiler in presence of faults
in the physical devices. As a first investigation, the strategy
is instantiated with one heuristic search technique, simulated
annealing, whose efficiency is analyzed in comparison with
random sampling. The experimental results allow us to
propose a revised version of the basic simulated annealing
algorithm. Using the revised algorithm, the proposed
strategy applied to the steam boiler is promising.

Keywords
Software testing, high-level safety property, test data
generation, optimization technique, experiments.

1. INTRODUCTION
This paper investigates a strategy for property-oriented
testing of cyclic real-time control systems. Property-oriented
testing uses the specification of a property to drive the
testing process. The aim is to validate a program with respect
to a target property, that is, to exercise the program and
observe whether the property is violated or not. The type of
property we are interested in is any high level requirement
related to the most critical failure modes of the control
system, as identified in a preliminary risk analysis. Such a
high-level property is required from the whole system, rather
than from some delimited part of it. Formal verification
would need a detailed model reproducing the interactions
between the control program and its controlled environment,
accounting for the physical devices, the physical laws
governing the controlled process, as well as the possible
occurrences of physical faults in the devices. Such an exact
analysis of system behavior is generally unfeasible, and
testing may be seen as a pragmatic alternative, provided that
the testing environment is as close as possible to the
operational environment (i.e., control program run on the

target hardware and connected to a simulator of the physical
environment, with facilities for fault injection). However,
there is still the difficult issue of test data selection. To
address this issue, we propose a test strategy consisting of
the stepwise construction of test scenarios, and making use
of heuristic search techniques. Two considerations led to this
strategy.

The first one is related to the sequential (with memory)
behavior exhibited by control systems. It is expected that
property violation will occur after execution of a particular
trajectory in the input domain of the system, rather than just
a specific point of the input domain: the system will
progressively evolve towards property violation. Hence, the
test scenarios we search for are sequences of input data. There
is no way to know a priori how long it could take to reach
property violation. The proposed strategy involves several
successive steps to allow a progressive exploration of longer
test scenarios (until property violation, if possible).

The second consideration is the need for guiding exploration
at each step of the strategy. The guiding process has to favor
the choice of those test scenarios that will be the most
“stressing” with respect to the target property. Given the
intractability of a detailed analysis of system behavior, and
the large input domain to be considered at each step, we
propose to investigate the power of modern heuristic search
techniques as potential solutions to this problem.

Modern heuristic search techniques [8] have proven useful to
solve complex optimization problems. Their generality
makes them capable of very wide application, and they are
able to operate as black boxes, hence requiring little
knowledge about the problem to be solved. Two
representatives of these techniques, namely genetic
algorithms and simulated annealing, have gained recent
attention in the field of software testing. They have been
used to automate the generation of test data for a number of
testing problems: instruction and branch testing [4, 6, 7, 12],
determination of Worst-Case Execution Time [3, 12],
exception testing [11], conformance testing [10], and
robustness testing [9]. Whatever the testing problem, the
search process involves a series of program executions (e.g.,
a series of trials is necessary before finding one input data
that will cause the execution of a target program branch).
Each execution allows a candidate solution to be evaluated,
using some problem-dependent function called fitness
function in the framework of genetic algorithms and cost

function in simulated annealing algorithms. The results of
the evaluation function are used in the search algorithms to
guide the generation of new candidate solutions.

Yet, the efficiency and effectiveness of heuristic techniques
for automatic generation of test data is still a questionable
issue. It is worth noting that the literature on testing reports
examples for which heuristic search techniques did not
perform very well. In [3], genetic algorithms were applied to
WCET testing: it was observed that the search process was
effective for testing programs with very low structural
complexity (i.e., low nesting and sequencing), but became
more and more unreliable as complexity increased. In the
general literature on heuristic techniques (e.g., [2, 8]), it i s
explained that performance depends on the parameters
chosen for the implementation of the generic search
algorithms for a particular problem. Making good choices
relies on empirical studies experimenting with alternative
implementations for this particular problem. Indeed, a large
number of variants of the algorithms have been proposed,
including hybrids combining elements of different search
techniques. In this paper, as a first investigation, the
proposed test strategy is instantiated with one search
technique, namely simulated annealing.

Section 2 introduces the principles of simulated annealing,
as well as previous work applying it for software testing.
Section 3 defines the general principles of the proposed
strategy. The example used to experiment with this strategy
is the boiler case study [1], described in Section 4. The target
safety property is the non-explosion of the boiler. Sections 5
and 6 present the results we obtain by using two successive
implementations of simulated annealing. In each case, the
performance of the search process is evaluated according to
two criteria: 1) effectiveness, that is, ability to find test
scenarios that violate the target safety property;
2) efficiency, that is, ability to outperform a blind search.
Section 7 concludes on this empirical investigation.

2. BACKGROUND AND RELATED WORK
Simulated annealing is an optimization technique based on
the idea of neighborhood search. Since Kirkpatrick’s original
paper [5], a vast amount of research has been carried out to
apply it to a variety of disciplines. As regards software
testing, promising pioneering work has been recently
reported (see e.g., [10]). Section 2.1 summarizes the
motivation and the principle of simulated annealing.
Section 2.2 concentrates on previous work related to its
application to software testing.

2.1 Basic Simulated Annealing
This informal outline of simulated annealing is based on the
synthesis presented in [2].

Suppose that we have a minimization problem over a set of
feasible solutions S and a cost function f : S → ℜ which can

be calculated for all s ∈ S. Simulated annealing is a variant of
the more traditional descent methods of local optimization
or neighborhood search. In these methods, a subset of
feasible solutions is explored by repeatedly moving from the
current solution to a neighboring solution, and the only
authorized moves are in a direction of improvement (only a
neighbor giving rise to a decrease in the cost function i s
accepted as a new current solution). A main disadvantage of
such descent strategies is that the solutions obtained are

totally dependent on the starting solution(s) employed. As a
result, these strategies often yield convergence to a local
rather than a global minimum. This is the motivation of
simulated annealing, which offers a way of alleviating the
problem by allowing some uphill moves in a controlled
manner.

The simulated annealing algorithm is similar to the random
descent method in that a neighborhood structure on the
solution space is defined, and the neighborhood of the
current solution is sampled at random. It differs in that a
neighbor giving rise to an increase of the cost function may
be accepted and this acceptance depends on a control
parameter – called temperature, and on the magnitude of the
increase.

Figure 1 shows the principle of the basic simulated
annealing algorithm. The search is driven by a cost function f
with the aim of minimizing it. The algorithm works by
selecting randomly a new solution s, which is in the
neighborhood of the current solution s0. Better solutions
with respect to the objective (δ ≤ 0) are always accepted.

Moves to inferior solutions (δ > 0) are allowed but their
frequency is governed by a probability function, which
depends on the temperature t and the magnitude of the
increase δ. Starting from t0 , the temperature is gradually

reduced during the search (function α), to progressively
decrease the acceptance rate of inferior solutions. For a given
value t, a number nrep of iterations is performed. The manner
and rate at which t is reduced, called the cooling schedule, i s
governed by nrep and α .

Figure 1. Simulated annealing for a minimization problem
with solution space S, cost function f

and neighborhood structure N

A number of decisions must be made to implement the
general simulated annealing algorithm for the solution of a
particular problem. They can be divided into two categories:

• Generic decisions, which involve the parameters of the
annealing algorithm itself, that is: initial temperature t0,
cooling schedule (nrep and α) and stopping condition.

• Problem-specific decisions, which are concerned with
the solution space S, the neighborhood structure N and
the cost function f.

Select an initial solution s0;

Select an initial temperature t0 > 0;
Select a temperature reduction function α;
REPEAT

REPEAT
Randomly select s ∈ N(s0);
δ = f(s) – f(s0);
IF δ ≤ 0
THEN s0 = s
ELSE

Generate random x uniformly in range (0, 1);
IF x < exp(-δ/t) THEN s0 = s;

UNTIL iteration_count = nrep;
Set t = α(t);

UNTIL stopping condition = true.

Both types of decisions will affect the speed of the algorithm
(efficiency) and the quality of the obtained solutions
(effectiveness). Unfortunately, it is not possible to set down
a series of rules that will always define the best choices for a
given problem. However, based on a review of some
theoretical results related to the convergence properties of
the simulated annealing, the following ‘qualitative’
guidelines on the decision making process are argued in [2].

As regards the generic decisions, if the final solution is to be
independent of the starting solution, t0 must be ‘hot’ enough
to allow an almost free exchange of neighboring solutions.
Some time should be spent at high temperatures when the
rate of acceptance is high. Then a (comparatively) long time
should be spent at lower temperatures to ensure that a local
minimum has been fully explored. An appropriate rate at
which t is reduced may be achieved by using either a large
number of iterations nrep at few temperatures or a small
value of nrep at many temperatures. Finally, empirical and
theoretical results suggest that the manner of cooling
(function α) is not as important as the rate. Hence, for a new
application, it is probably better to start off with one of the
two most widely used functions: either a geometric function
α(t) = at (where 0.8 < a < 0.99), or a function α(t) = t/(1 + βt)

where β is a small value.

As regards the problem-specific decisions, some desirable
properties are outlined. The first consideration in
determining the neighborhood structure is to ensure that
every solution should be reachable from every other (this
reachability condition is sufficient to prove convergence).
Several results also demonstrate that the number of required
iterations depends on the size of the solution space, which
suggests that this should be kept as small as possible. To do
this in cases of problems with large solution spaces, a
practical way to proceed is to divide the solution space into
several subsets of smaller sizes, and associate a specific sub-
problem with each solution subspace (see Section 4.2). In
addition to this, it is also useful to aim for reasonably small
neighborhoods. This enables a neighborhood to be searched
adequately in fewer iterations, but conversely means that
there is less opportunity for dramatic improvements to occur
in a single move. Thus, there must be a compromise here but,
in general, small simple neighborhoods are preferable to
large complex ones.

In conclusion, when faced with a new problem, Dowsland’s
recommendation is to start with an implementation of the
basic algorithm following the previous guidelines, with the
most obvious neighborhood structure, a geometric cooling
rate of 0.95, and a starting temperature determined by few
experiments. If the basic algorithm fails to produce the
required results after a reasonable amount of experiments,
then – based on the analysis of the results of the first
experimentation – improvements of the basic algorithm may
be proposed to adapt it to the type of problem under study.
Indeed, a number of modifications have already been
proposed for a number of different problems [2]. We will
return to these modifications in Section 5.3, after having
analyzed first experimental results related to the
effectiveness and the efficiency of the basic algorithm
applied to property-oriented testing.

2.2 Application to Software Testing
Pioneering work based on the use of simulated annealing for
test data generation is reported by Tracey et al. [10, 11], who
defined a generalized test data generation framework. This
framework can incorporate a number of testing criteria,
including conformance testing with respect to a
specification. This is a form of property-oriented testing: the
target properties involve pre- and post-conditions, to be
locally satisfied by a procedure under test.

To introduce the approach, [10] gives the example of the
simple wrap-round increment routine shown in Figure 2. This
routine should count from 0 to 10 modulo 11. N~ refers to the
input value and N to the output value.

Procedure Wrap_Inc (N : in out Integer);
--# pre N~ ≥ 0 and N~ ≤ 10;
 …
--# post (N~ < 10 → N = N~ + 1) and (N~ = 10 → N = 0);
end Wrap-Inc

Figure 2. Specification of wrap-round increment routine

The objective is to violate this property, that is, to find a test
input data (corresponding to a point in the input domain),
which satisfies the pre-condition before execution and whose
output violates the post-condition after execution. The
objective is to obtain the pre-condition and the negated
post-condition. The first step of Tracey’s approach is to
convert the objective to DNF, which leads to two constraints
as follows:

N~ ≥ 0 ∧ N~ ≤ 10 ∧ (N~ < 10 ∧ N ≠ N~ + 1) (1)

N~ ≥ 0 ∧ N~ ≤ 10 ∧ (N~ = 10 ∧ N ≠ 0) (2)

The search process then attempts to find a solution to each
constraint in turn, using simulated annealing.

As regards the neighborhood structure, they consider the
data type of each input variable. For example, the neighbor of
an integer value is this value ± some proportion of allowed
range. As regards the cooling schedule, the framework
implements a simple geometric variation of the temperature.

The overall cost associated with each constraint is equal to
the sum of costs associated with the terms of the constraint.
For example, the cost associated with term N~ ≤ 10 is defined
as follows:

Cost = 0 if N~ ≤ 10

 (N~-10)+K if N~ > 10

k being a positive constant which penalizes the solutions
that do not fulfill the objective.

The stopping condition is to reach either a zero cost or a
predefined maximum number of iterations. Reaching a zero
cost means succeeding in finding a test input data that
violates the target property.

The first results seem to be promising. Our aim is to extend
the use of this optimization technique to sequential
problems, specifically cyclic real-time control systems, and
high-level properties.

3. PROPOSED TEST STRATEGY
We first explain how the testing problem is formulated in
terms of a search problem (Section 3.1). Compared with
Tracey’s work, this requires (1) changing the granularity of
the solution space, i.e., from input data for combinatorial
systems to sequences of input data for sequential systems;
and (2) adapting the cost function to make it appropriate to
high-level properties. Then Section 3.2 presents the stepwise
construction of test scenarios based on the search results.

Given a particular control system and a target property, the
proposed strategy is expected to be conducted in close
connection with domain experts, aiding both to formulate
the problem and to analyze the obtained scenarios.

3.1 Formulation of the Search Problem
A preliminary analysis determines the objective of the
search. In addition to the violation of the target property, a
set of dangerous situations is identified. The dangerous
situations can be elaborated based on the safety analyses that
accompany system development. They characterize
intermediate states that are of interest when exploring
progressive evolution towards property violation. So, the
heuristic algorithm will not only aim to reach a violation of
the target property, but also to reach a dangerous situation,
i.e., to get close to a violation.

The solution space S, i.e., the set of input sequences to be
sampled during the search, has also to be determined. It i s
modeled in terms of both the functional activity and some
fault hypotheses. The combination of faults with the
functional activity is likely to yield a large solution space.
Then, according to the guidelines presented in Section 2.1, i t
may be decomposed into smaller subspaces. They correspond
to classes of test sequences to be independently searched. As
an example, the decomposition can be done according to the
system operating modes. Finer analysis of system behavior
may be considered, as long as it remains tractable.

Based on the previous analyses, the testing problem can be
formulated as a collection of optimization problems, one for
each class of test sequences. In each case, the objective i s
defined as a set of sub-objectives {1,…,n} corresponding to
either the property violation during the execution of a test
sequence s, or the achievement of a dangerous situation at
the end of the execution of s. The cost function fj (fj ≥ 0)
associated with sub-objective j measures the “distance”
between the results of the execution of s and sub-objective j,
with fj(s) = 0 if and only if sub-objective j is reached. As
regards violation of the high-level property (say, sub-
objective n), a typical function fn just indicates whether it i s
reached or not (e.g., observation of boiler explosion, or not).
It is of type “all or nothing”, that is, fn : S → {0, K} where 0
means that the property is violated and K is a constant cost
associated with property satisfaction. Obviously, such a cost
function does not help much in guiding the optimization
process. Using the concept of dangerous situation, a gradual
cost function may be defined based on a “measure” of the
severity of the dangerous level reached. The overall cost
function f(s) is equal to the minimum value of the different
sub-objective cost functions: f(s) = min{f1(s), …, fn(s)}. Every
test sequence s with f(s) = 0 meets at least one of the sub-
objectives, and thus is retained as a solution to the
optimization problem.

3.2 Stepwise Construction of Scenarios
There is no way to know a priori how long it could take to
reach property violation. Retaining dangerous situations as
solutions, gives the opportunity to progressively explore
solution spaces of larger test sequences. It is the rationale for
the stepwise construction of scenarios: each step explores
possible continuation of the dangerous scenarios found at
the previous step, using simulated annealing.

The first step searches for test sequences s of predefined
maximum length L1. It involves an instantiation of the
simulated annealing algorithm for each class of test
sequences previously identified. This first step may allow us
to identify several test scenarios: some of them actually
violate the target property, while the others only lead to
dangerous situations. The latter sequences are analyzed.
Some of them may be eliminated based on their very low
probability of occurrence, or based on strong evidence that
they cannot lead to property violation. The remaining ones
require further tests to verify whether the property may be
violated, or whether the system is robust enough to recover
from the dangerous situation.

From each dangerous scenario s retained at the first step, the
second step explores possible continuation, under the form
of sequences s’ of predefined maximum length L2. Once
again, the simulated annealing algorithm is used to guide the
search for sequences s’ with the aim of violating the target
property. During the experiments, each s’ is prefixed by a test
sequence s that forces the system into the dangerous
situation under investigation. The cost function used to
evaluate the results of the execution of a complete test
sequence s.s’ is identical to the one used in the first step.

If test sequences s.s’ that lead to dangerous situations (yet,
without property violation) are still identified, a third step
will be performed, using s.s’ as the new prefix of subsequent
sequences s’’ of maximum length L3. And so on, until every
dangerous situation retained at step i, leads - after further
tests at step i+1 - to either property violation, or safe
situations.

How to formulate the search problem, and how to perform the
stepwise construction of scenarios, is exemplified in the next
three sections, using first the basic version of simulated
annealing algorithm (Section 2.1) as recommended in [2].

4. THE STEAM BOILER CASE STUDY
We have carried out a steam boiler case study [1] for which
high-level requirements, control program code, and a
software simulator of physical devices, are publicly
available [13].

4.1 The Steam Boiler Description
The physical environment comprises the boiler, four pumps
to provide the boiler with water, four pump controllers to
sense the state of the pumps (open/closed), a device to
measure the quantity of water in the boiler, and a device to
measure the quantity of steam, which comes out of the boiler.
The function of the control program is to maintain the water
level in the steam boiler between two predefined thresholds
(denoted N1 and N2) by controlling pumps. Besides this main
function, the control program must also maintain safety by
shutting the steam boiler down if its water level is either too
low (<M1<N1) or too high (>M2>N2) for more than five
seconds, otherwise, the steam boiler can be seriously

damaged (explosion). Finally, the control program must be
able to withstand some physical failures by continuing to
operate while part of the equipment is malfunctioning, until
it is repaired. The corresponding degraded operational modes
are defined in the requirements. If the control program cannot
assure its function, it must shut the system down. Our
objective is to study the capacity of the control program to
maintain safety even in presence of faults affecting some
physical devices. So, the target safety property is the “non
explosion” of the steam boiler, i.e., “The water level must not
be < M1 or > M2 during more than 5 s”, where M1 and M2 are
the safety limits of water level.

A number of formal approaches have been used to model and
verify this steam boiler problem [1]. Few of them have
considered the whole system, since most have worked on the
control program in isolation and proved the safety property
(non-explosion of the boiler) on a model of the control
program. Our aim is to verify the non-explosion property on
the whole system, including the control program and the
physical environment. To do this, we use a simulator that
mimics the behavior of the physical devices including some
physical faults. As shown in Figure 3, our input domain
includes the physical faults that can be injected via the
simulator, and the cycle numbers during which the physical
faults are injected. Recall that our goal is to reach either a
boiler explosion or a dangerous situation. Since no safety
analysis is available for this case study, we adopt a general
notion of dangerousness for control systems: a dangerous
situation is reached when the state of the environment
perceived by the control program differs from the actual
state. Such a situation is identified from the messages
exchanged between the boiler simulator and the control
program. Explosions are directly observed from the
simulator.

In the following sections, we define the parameters of the
basic simulated annealing algorithm.

Figure 3. Overview of the system under test

4.2 Test Sequences
A test sequence is defined as a sequence of faults affecting
physical devices (e.g., faults affecting pumps or pump
controllers) with the cycle numbers during which the faults
are to be injected. In this case study, we can inject up to 10
faults affecting the 10 physical devices: 4 pumps (actuators),
4 pump controllers (sensors), the water level sensor and the
steam sensor. When a pump fails, its state remains unchanged
(“do nothing”) until it is repaired. This means that if the
pump is open, it remains open until reparation, and if it i s
closed, it remains closed until reparation. A sensor failure i s
simulated by a stuck-at-previous-value before failure. The
sensor keeps on sending the value of the sensor when the

failure arises. Each of the ten possible faults is denoted by a
unique identifier, yielding Fault A .. Fault J.

According to the principles presented in Section 3.1, we
divide the problem into smaller sub-problems. This means
that we divide the search space of test sequences into
subspaces to be independently explored. For this, we account
for, (1) the mode of the boiler which can be transient when
the boiler heats or permanent when it produces steam, and (2)
the number of injection cycles which characterizes the
temporal dispersion of faults. In the absence of faults,
manual calculation indicates that the transition from
transient to permanent mode should occur at cycle 3. This
result is confirmed by preliminary test experiments coupling
the boiler simulator with the control program. The boiler
mode thus determines the first potential injection cycle (0
and 3 for transient and permanent modes, respectively). Then,
the number of injection cycles can be small, medium or large
compared to the boiler dynamics (respectively 3, 5 or 10
cycles). By combining the mode and number of injection
cycles, the six identified subspaces are:

Class 1: Sequences injecting during cycles 0..2
(transient, small);

Class 2: Sequences injecting during cycles 0..4
(transient, medium);

Class 3: Sequences injecting during cycles 0..9
(transient, large);

Class 4: Sequences injecting during cycles 3..5
(permanent, small);

Class 5: Sequences injecting during cycles 3..7
(permanent, medium);

Class 6: Sequences injecting during cycles 3..12
(permanent, large).

Whatever the class, we add a fixed number of cycles (8
cycles) after the injection cycles, during which the system
evolves. After the system evolution time, the cost of the test
sequence is evaluated from the final state reached by the
system under test (see Section 4.5). In case the boiler did not
explode, the final state is deduced from the observation of all
the messages exchanged during the previous cycles.

Figure 4 shows an example of test sequence of Class 2, where
faults may be injected during cycles 0..4. In this test
sequence, Fault C is injected during cycle 0, Fault H during
cycle 1 and Faults E and A during cycle 4. After these fault
injections, we let the system evolve for 8 cycles. After
cycle 12, the cost of the test sequence is evaluated by
accounting for the observations that have been collected
during the 13 cycles.

Injection
cycles

System
evolution

0 1 42 3 12

Fau
lt

C
Fau

lt
H

Fau
lt

E
Fau

lt
A

Figure 4. An example of test sequence (Class 2)

Control program

Physical devices
(boiler simulator)

Physical faults
+

Cycle numbers

Boiler explosion

Dangerous situation

(perceived state
≠

actual state)

. .

4.3 Initialization
Figure 5 shows the algorithm used to generate the initial test
sequence (i.e., s0 in Figure 1) and calculate its cost (using the
cost function that will be defined in Section 4.5). It is worth
noting that the initial test sequence is generated in
accordance with the considered class of sequences: the
allowable injection cycles depend on the target class.

Figure 5. Initialization of current solution (test sequence)
and current cost

4.4 Neighborhood Search
The neighborhood of a test sequence T is defined as the set of
test sequences that are obtained from T by:

• either changing the injection cycle of one fault of T
(according to the considered class of sequences);

• or adding one fault to T at an allowed injection cycle
(according to the considered class of sequences);

• or removing one fault from T.

For instance, a possible neighboring test sequence of the one
presented in Figure 4 is the one obtained by changing the
injection cycle of Fault H from 1 to 0.

The algorithm randomly chooses one of the three
alternatives. It then randomly selects one of the possible test
sequences. This defines a reasonably small neighborhood
structure. Each test sequence is theoretically reachable from
every other sequence in the same subspace, possibly at the
expense of a large number of iterations.

4.5 Cost Function
A dangerous situation is achieved when, at the end of a test
sequence, the state of the boiler simulator perceived by the
control program departs from the actual state. This difference
may be expressed in three sub-objectives: fewer failure
detections, more failure detections, and bad estimation of the
water level. The first sub-objective is fulfilled when the
control program does not identify the presence of at least one
of the injected faults. The second one is fulfilled when the
control program wrongly identifies the presence of a fault,
which indeed was not injected. The bad estimation of the
water level is reached when the water level in the simulator i s
not included within the plausibility limits (qc1, qc2)∗ that
are calculated by the control program. Figure 6 gives an
example of cost function associated with these dangerous

∗ qc1 (respectively qc2) denotes the minimal (respectively maximal)

water level limit that is calculated by the control program. The
observation of qc1 and qc2 requires a slight instrumentation of the
control program.

situations, where Nb_Inject_Fault denotes the number of
faults that are injected during the current test sequence, and
Ki are positive constants (to be calibrated, see Section 4.6).
Let us note that the three sub-objectives are not exclusive: a
test sequence can fulfill several sub-objectives at the same
time (e.g., both one injected fault not identified and bad
estimation of the water level).

Contrary to the gradual cost associated with the three sub-
objectives, the cost function associated with the boiler
explosion is an “all or nothing” cost function. If the
objective is fulfilled, it is equal to zero; otherwise, it is equal
to a constant K4 (see Figure 6).

Our aim is to find test sequences that lead to either an
explosion or a dangerous situation. In other words, we aim at
finding test sequences that fulfill at least one of the sub-
objectives presented in Figure 6. Then, the overall cost of a
test sequence equals the minimum value of the four costs
associated with the sub-objectives.

Objective Cost Function

Fewer failure
detections

If TRUE then 0

else
K

Nb Inject Fault
1

1_ _ +

More failure
detections

If TRUE then 0

else
K

Nb Inject Fault
2

10 1− +_ _

Bad estimation of
water level

If TRUE then 0

else K
qc qc

3
1 2−

Explosion
If TRUE then 0
else K4

Figure 6. Proposed cost function

4.6 Calibration
Concerning the cooling schedule (nrep, α, see Figure 1), the
adopted strategy is to have a small value of nrep (equals 1) at
many temperatures. As regards α, a classical geometric
variation of the temperature, as advised in [2,7], is used:
α(t) = at, where a is a constant close to 1 (here, a = 0.95).

The other constants, like Ki, initial temperature t0, etc., were
calibrated in order to have an acceptance rate between 40%
and 60% as reported in [2,7]. After calibration, we obtain the
following values: t0 = 100, K1 = 250, K2 = 250, K3 = 4000,
K4 = 25, for a maximal number of iterations of 100 (to
converge to a zero temperature at the last iterations).

4.7 Basic Simulated Annealing Algorithm
for Test Sequence Generation

Figure 7 shows the basic simulated annealing algorithm used
in the framework of our experiments. The cost of a test
sequence is calculated as shown in Figure 6. The stopping
condition is reaching either a zero cost, or a predefined
maximal number of iterations (100).

Choose randomly the total number of faults Nb_Inject_Fault
between 1 and 10
FOR i = 1 to Nb_Inject_Fault

Choose randomly a fault (without replacement)
Choose randomly its injection cycle (according to the
considered class)

ENDFOR
Apply the sequence to simulator + control program
Calculate Current_Cost

Figure 7. Basic simulated annealing for test sequence
generation

5. FIRST STEP OF THE TEST STRATEGY
The first step searches for test sequences of predefined
maximum length (according to the considered class, e.g.,
13 cycles for Class 2 and 21 cycles for Class 6).

First experiments are aimed at evaluating both the
effectiveness and the efficiency of basic simulated annealing.
As regards the effectiveness issue, we study the ability of
this approach to find test sequences that lead to either a
boiler explosion or a dangerous situation. From previous
work [1], we know that such scenarios do exist. It must be
verified whether or not the known scenarios, or new ones, are
found. As regards the efficiency issue (speed of the search),
we compare this approach with another approach that does
not use any optimization technique. This latter approach will
be called random sampling.

Random sampling uses the same algorithm to generate test
sequences as the one initiating the simulated annealing
algorithm (see Figure 8). However, it takes into account

neither the neighborhood structure nor the cost function in
the generation process. The test sequences are generated
independently of each other. This generation is performed for
each class of sequences. The maximum number of the test
sequences generated is 100 (as in the simulated annealing
algorithm).

Iteration_count = 0;
REPEAT
 Initialization of Current_Test_Sequence and Current_Cost
 (see Figure 5);
 Increment Iteration_count;
UNTIL (Current_Cost = 0) OR (Iteration_count = 100)

Figure 8. Random sampling algorithm

For both approaches, 35 experiments were performed for each
class of sequences. Each experiment may or may not reach the
predefined maximal number of iterations (100).

5.1 Effectiveness
Both the basic simulated annealing and random sampling
approaches allowed us to identify three test scenarios
leading to steam boiler explosion and two test scenarios
leading to a dangerous situation. The identified cases for
explosion are not caused by the non-conformance of the
control program to its requirements. The problem originates
from the very definition of the degraded modes in the
requirements (specification fault).

The three scenarios that lead to a boiler explosion are:

1. Faults affecting several pumps or pump controllers
followed by the fault affecting the water level sensor,
under the condition that the control program detects at
least two failures of pump or pump controller before
the sensor fails;

2. Fault affecting the steam sensor during cycles 0 or 1;

3. Faults affecting the water level sensor and the steam
sensor, during cycles 0 or 1.

Concrete examples of such test scenarios are given in
Table 1. For instance, let us consider the first test sequence. It
is composed of the fault affecting pump controller 2 (“stuck-
at-previous-value”, noted Pump_Ctr2-Fault) injected during
cycle 4 (put in brackets), and the fault affecting pump 3 (“do
nothing”) injected during cycle 6, and the fault affecting the
water level sensor (“stuck-at-previous-value”) injected

Table 1. Examples of test sequences leading to boiler explosion or a dangerous situation

TYPE OF
SCENARIO

CONCRETE EXAMPLES
Fault (injection cycle)

CONTROL PROGRAM BEHAVIOR

1
Pump_Ctr2-Fault (4),

Pump3-Fault (6),
Water-Level-Fault (10)

Detection of the pump and pump controller failures,
and non-detection of the water level failure

2 Steam-Fault (1) Wrong detection of the water level failure,
and non-detection of the steam failure

3 Water-Level-Fault (0),
Steam-Fault (0)

No failure detection

a Pump1-Fault (2) Detection of the pump failure,
and wrong detection of its pump controller failure

b Steam-Fault (3) Non-detection of the steam sensor failure

Explosion

Dangerous
situation

Initialization of Current_Test_Sequence and Current_Cost
(see Figure 5);

Initial Temperature = 100;
Iteration_count = 0;
WHILE (Current_Cost ≠ 0) AND (Iteration_count < 100)

Select Randomly “New_Test_Sequence” in the
neighborhood of the Current_Test_Sequence;

Calculate the “New_Cost”;
δ = New_Cost – Current_Cost
IF (δ ≤ 0) THEN

Current_Test_Sequence = New_Test_Sequence;
Current_Cost = New_Cost;

ELSE
IF Random (0,1) < Exp(-δ / Temperature) THEN

Current_Test_Sequence = New_Test_Sequence;
Current_Cost = New_Cost;

ELSE
-- Do not accept --

Temperature = 0,95 × Temperature;
Increment Iteration_count;
END WHILE

during cycle 10. When we apply this test sequence to the
simulator + control program, the control program detects the
pump controller and pump failures before cycle 10, and
consequently enlarges the plausibility interval [qc1, qc2] of
water level for safety reasons. After injection of the fault
affecting the water level sensor, the sensor’s value remains
within [qc1, qc2]. As a result, the control program will not be
able to detect this failure. It continues to trust the sensor, i.e.,
it believes that the water level is stable until the boiler
explodes.
It is worth noting that none of the classes of sequences can
find all these scenarios. For example, Classes 4, 5 and 6 do not
produce the second and third scenarios since they start fault
injection from cycle 3. So, using several classes of sequences
allows a better exploration of the input domain. The first
scenario was already known in the literature. To the best of our
knowledge, the others two were not.

The two scenarios that lead to a dangerous situation are:

a. Fault affecting a pump, while the associated pump
controller is working correctly;

b. Fault affecting the steam sensor, just when the mode
turns to permanent (during cycle 3).

Table 1 shows two concrete examples. Scenario a was already
reported in [1] and cannot lead to an explosion. Let us
consider the second scenario, which is composed of a fault
affecting a steam sensor injected during cycle 3. When we
apply this test sequence to the simulator + control program,
the control program is not able to detect the steam sensor
failure. This is due to the erroneous value being close to the
constant value normally delivered during permanent mode.
Thus, the steam sensor’s value will remain within the interval
of steam value calculated by the control program. This simple
fault cannot cause a boiler explosion; however, it introduces a
small error in the calculation of the expected steam and water
level limits. Starting from this dangerous situation, it must be
verified whether or not the property is violated when
additional faults are injected. Hence, the second scenario
requires further testing: this will be the focus of the second
step of our strategy (Section 6).

5.2 Efficiency
As regards efficiency, random sampling finds test sequences
that fulfill our main objective more quickly than the approach
using basic simulated annealing. Table 2 shows examples of
results obtained for test sequences of Class 2. In this table, the
random seed corresponds to the starting point of the random
number generation. It is worth noting that for a given random
seed, the first iteration corresponds to the same initial test
sequence whatever the generation technique, since the same
initialization algorithm is used.
For each approach, Table 2 gives the number of sequences
generated until we achieve one of the sub-objectives, and
indicates which sub-objective was fulfilled. Whatever the
experiment, the predefined maximal number of iterations (100)
is never reached: the stopping condition is always a zero cost.
Let us consider the first random seed. The approach using
basic simulated annealing performs two iterations to reach a
dangerous situation (fewer detections), whereas random
sampling performs three iterations. But simulated annealing i s
rarely the quickest technique. For example, for the third
random seed, random sampling is much more efficient.

Looking at the average numbers of sequences calculated from a
sample of 35 seeds*, we observe that random sampling is much
quicker than the other approach. Indeed, the number of
iterations performed by this approach is on average 3.8 while
it is 12.7 for basic simulated annealing (Table 2). It is worth
noting that the probability of selecting a dangerous test
sequence for the steam boiler is high. This explains the small
number of iterations that are processed before finding a
scenario. Yet, in view of the mean numbers of iterations, we are
tempted to say that basic simulated annealing algorithm tends
to slow down the search of a solution. Another observation
concerns the standard deviation of the iteration number
performed by the basic simulated annealing, which is large in
value (18.3 as opposed to 2.9 in the case of random
sampling)**. It means that the efficiency of the approach using
the basic simulated annealing is highly dependent on the
random seed: if we start in an area that is far away from a
solution, because of neighborhood search, we may stay a long
time before finding a solution that fulfills the objective.

Given the previous comments on both the mean and standard
deviation, the comparaison is in favor of random sampling.
Similar results are obtained for the other classes of sequences.

Table 2. First experimental results for test sequences of
Class 2

Basic Simulated Annealing Random SamplingRandom
Seed Sequences

Number
Final State Sequences

Number
Final
State

1st 2
Fewer

Detections 3
Fewer

Detections

2nd 3 Explosion 2 Explosion

3rd 17
Fewer

Detections 4
Fewer

Detections

4th 1
Fewer

Detections 1
Fewer

Detections

5th 3 Explosion 5 Explosion

6th 9 Explosion 4
Fewer

Detections

7th 9 Explosion 2 Explosion

8th 1
Fewer

Detections 1
Fewer

Detections

9th 12 Explosion 6 Explosion

10th 14 Explosion 5 Explosion

… … … … …

Mean (35
seeds) 12.7 3.8

Standard
Deviation 18.3 2.9

* The sample of 35 seeds ensures that the actual mean for random

sampling lies in the interval 3.8±1 with a 95% confidence level.
** As a result, the actual mean for basic simulated annealing cannot be

accurately evaluated from the sample of 35 seeds. However, the
probability of this mean being lower than the random sampling one is
negligible.

5.3 Improvements of the Basic Simulated
Annealing

The poor performance of basic simulated annealing leads us to
investigate modifications in order to improve its efficiency.
Indeed, as said by Dowsland [2], “Many of the reported
successes involve modifications to the basic annealing
algorithm”. We assume that the optimization problem has been
adequately formulated, i.e., the search has to be improved
keeping the same search objective and associated cost
function.

The first experiments presented above provide a significant
insight into the main weakness of the basic algorithm applied
to our search problem: its efficiency remains overly dependent
on the initial solution. This is due to the fact that when no cost
improvement is observed, the search does not allow us to
perform moves larger than those authorized by the
neighborhood function. Hence, a beneficial improvement
could be obtained by searching in the neighborhood of the
current solution while allowing, in case of no cost
improvement, to search elsewhere.

Several modifications have already been confirmed useful in
adapting the simulated algorithm to a number of different
problems [2]. Some of them were aimed at increasing the
probability of uphill moves. Here is a non exhaustive list of
proposed adaptations:

• As regards the acceptance rate of inferior solutions, the
standard exponential distribution, which is a function of the
magnitude of the cost increase δ, gives virtually no chance
of acceptance of large increases, while small increases may
be accepted regularly. Hence, some authors suggest the use
of a linear distribution, or even of probabilities independent
of δ.

• As regards the cooling schedule, some authors observed that
most of the useful work is done in the middle of the
schedule. Thus, it may be advantageous to search only in the
middle part of the temperature range. To do this, an extreme
solution is to use a constant temperature instead of
gradually reducing it during the search (function α).

• If we accept that there is no reason to cool the temperature,
we may authorize the use of heating. The idea is to move
downhill, but if no progress is apparent in searching the
current valley a concerted uphill effort would be made in
order to widen the scope of the search.

• Another type of adaptation consists in adjusting the
neighborhood structure. For example, the search can start
with a large neighborhood at high temperatures, and this
neighborhood is restricted as the temperature drops. Or,
independently of the temperature, it may be decided to
enlarge the neighborhood structure after a given number of
trials with no cost improvement observed.

• Finally, the use of several short runs (obtained by restarting
the algorithm) rather than a single run (with a slow cooling
schedule), has also been suggested.

Having analyzed the previous adaptations, and in order to
allow significant moves in case of no cost improvement, the
revised version of the simulated annealing we propose i s
based on the following principles. When the new solution i s
inferior to the current one:

(i) The acceptance probability is independent of δ and a
constant temperature is used. The simplest way to achieve
this is to set the acceptance probability to a predefined
constant value.

(ii) Allowing the use of heating is expected not to be sufficient
since it increases the probability of accepting inferior
solutions, but these solutions remain in the neighborhood
structure. A more effective process should be the use of
several short runs, by allowing the random choice of a new
initial solution (restart of the algorithm). The principle we
retain is to set a probability of restarting the algorithm in
case of no cost improvement. This principle is much
simpler to implement than the one consisting in varying
the neighborhood structure.

Figure 9 shows the revised algorithm (modifications are
indicated in bold characters). In the WHILE loop, better
solutions are always accepted. When an inferior solution i s
selected, it is either accepted with a probability of 30%, or
rejected with a probability of 30%, or the algorithm restarts
with a probability of 40%. These values mean that 57% of the
rejected moves lead to a reset, which gives a significant chance
to escape from the small neighborhood space of the current
solution. Obviously, the probabilities have been empirically
calibrated. The efficiency of the algorithm is assessed in the
next section.

Figure 9. Revised version of the simulated annealing
algorithm

6. SECOND STEP OF THE TEST
STRATEGY

Because of the high probability of selecting a test sequence
that leads to an explosion or a dangerous situation, we did not
apply the revised algorithm to the first step of our test
strategy. Indeed, random sampling alone is very likely to be
more efficient. Hence, we only applied it to the second step.

For each dangerous scenario identified in the first step, the
second step performs further tests. It explores possible
continuation of the scenarios with the aim of violating the
safety property. In these experiments, only dangerous

Iteration_count = 0;
REPEAT

Initialization of Current_Test_Sequence and Current_Cost
(see Figure 5);

Reset-Flag = FALSE;
WHILE (Current_Cost ≠ 0) AND (Reset_Flag = FALSE)

AND (Iteration_count < 100)
Select Randomly “New_Test_Sequence” in the

neighborhood of the Current_Test_Sequence;
Calculate the “New_Cost”;
Increment Iteration_count;
δ = New_Cost – Current_Cost
IF (δ ≤ 0) THEN

Current_Test_Sequence = New_Test_Sequence;
Current_Cost = New_Cost;

ELSE
30 %: -- Accept New_Test_Sequence -- OR
30 %: -- Do not accept -- OR
40 %: Reset_Flag = TRUE;

END WHILE;
UNTIL (Current_Cost = 0) OR (Iteration_count = 100)

scenarios of type b are considered (see Table 1), since
according to previous work [1], those of type a cannot lead to
boiler explosion. For the purpose of comparison, three
techniques are implemented: basic simulated annealing, the
revised version, and random sampling.

Whatever the technique, the second step of the test strategy
requires adapting the generation of test sequences. We have to
account for the fact that faults must be injected during the
cycles that follow the dangerous situation. Concretely, since
the dangerous situation is the fault affecting the steam sensor
at cycle 3, the continuation of the scenario may inject faults
only from cycle 4. We keep the six classes of sequences of
Section 4.2, but the beginning of the injection cycles i s
delayed by four cycles, i.e., after the dangerous situation. This
means that the classes that started fault injection at cycle 0
now start injection at cycle 4, and those that started injection
at cycle 3 now start at cycle 7. It is worth noting that the
classification of test sequences is no longer related to the
boiler mode being transient or permanent. Rather, i t
characterizes the time spent in the dangerous situation before
additional faults may occur.

First experimentation revealed a problem requiring another
adaptation of test sequence generation. Boiler explosion was
repeatedly observed, but this was due to the reproduction of
Scenario 1 already identified at the first step of the test
strategy. Indeed, we were able to confirm that the dangerous
situation played no role in the observed explosions: the same
results were observed when changing the prefix of the
corresponding test sequences (i.e., removing the steam sensor
fault at cycle 3). In order to overcome this problem, we
implemented a functionality to automatically eliminate the
cases for boiler explosion that are unrelated to the dangerous
situation. The algorithms of both versions of simulated
annealing, and of random sampling, are modified in this way:

1. Each time a new test sequence is generated, it is applied
to the system without “stress”, i.e., without putting the
system in the dangerous situation; then

2. If this test sequence leads to an explosion, the
algorithms generate another test sequence. Otherwise,
the test sequence is retained as a candidate solution, to
be applied to the system put in the dangerous
situation.

Note that, in the general case, this functionality is not
expected to be required since safety property violation should
be seldom observed.

Table 3 shows the results obtained for Class 2. In this table,
the number of sequences corresponds to retained test
sequences, i.e., the ones that do not lead to boiler explosion
when applied without “stress”. Given a random seed, test
sequence generation proceeds until we achieve either the
objective or the maximal number of iterations (100 retained
test sequences). Unsuccessful search is observed several times:
property violation due to the continuation of scenario b is not
trivially triggered.

Each of the three techniques, basic simulated annealing, the
revised version or random sampling, allows us to identify a
new explosion scenario related to the dangerous situation. A
concrete example of the scenario is:

Steam_Fault (3), Pump2-Fault (4), Water-Level-Fault (8)

The scenario involves one pump or pump controller failure
followed by water level failure. It corresponds to the triggering
of an extremal/special case. When the above test sequence i s
applied without “stress” (no Steam-Fault at cycle 3), the boiler
safely shuts down. This is so because the value delivered by
the faulty sensor turns out to fall outside the plausibility
interval [qc1, qc2] calculated by the control program.

Table 3. Comparison of three techniques for the second class of sequences

Basic Simulated
Annealing

Revised Version of
Simulated Annealing

Random Sampling
Random

Seed
Sequences

Number
Final state

Sequences
Number

Final state
Sequences

Number
Final state

1st 100 --- 11 Explosion 68 Explosion

2nd 62 Explosion 28 Explosion 100 ---

3rd 100 --- 87 Explosion 100 ---

4th 100 --- 100 --- 65 Explosion

5th 100 --- 83 Explosion 82 Explosion

6th 100 --- 100 --- 100 ---

7th 76 Explosion 100 --- 55 Explosion

8th 100 --- 87 Explosion 70 Explosion

9th 100 --- 100 --- 93 Explosion

10th 39 Explosion 31 Explosion 100 ---

Total Number
(35 seeds)

3146 2296 2668

Successful
Search

6 20 17

As already mentioned, the injection of Steam-Fault at cycle 3
introduces a small error in the calculation of the water level
limits, yielding a slight overestimation qc2+ ε of the upper
plausibility bound. Now, the scenario is such that when the
fault affecting the water level sensor occurs, the erroneous
sensor value is greater than qc2, but still lower than qc2+ ε.
The water level sensor failure is not detected, and the system
inexorably evolves toward boiler explosion.

As to the comparison of the three techniques, we have seen that
all were effective. As regards efficiency, we observe a
significant improvement of the revised version over the basic
version of simulated annealing. The former technique finds the
new scenario for 20 different seeds, whereas the latter finds i t
only 6 times. By comparing the revised technique to random
sampling, we observe a slight improvement both in terms of
total number of iterations and successful search.

It is worth noting that no new dangerous scenario is identified
by these experiments. Hence, the test strategy applied to the
steam boiler case study involves only two steps.

7. CONCLUSION AND FUTURE WORK
The test strategy we propose aims at validating cyclic real-time
control systems with respect to high-level safety properties.
Given a control program and its controlled environment (or a
simulator of the physical devices), it consists in exercising the
program in closed loop with its (simulated) environment, and
in observing whether a target property is violated or not. The
strategy is based on the stepwise construction of test
scenarios. Each step explores possible continuation of the
scenarios retained at the previous step, using heuristic search
techniques. As a first investigation, the strategy is instantiated
with simulated annealing.

The results of the steam boiler case study tends to confirm the
feasibility and usefulness of the stepwise construction of test
scenarios. This principle allowed a progressive exploration of
longer trajectories in the input domain until property
violation, as exemplified by the last uncovered scenario.

As regards the use of simulated annealing, the performance of
the basic algorithm was really disappointing compared to
blind random sampling. The reason for its poor efficiency
seems to be its overly dependence on the initial solution. We
propose a variant of the basic algorithm, in which 57% of the
rejected moves lead to a reset of the algorithm. This gives a
significant chance to escape from the neighborhood space of
the current solution, when no cost improvement is observed.
As indicated by the general literature on heuristic techniques,
some effort is always required to tune the search process to the
problem to be solved. In our case, the effort was fruitful since
the revised algorithm exhibited much better performance. Yet,
compared to random sampling, the cost-effectiveness of the
revised algorithm remains questionable. Other case studies
will be conducted to assess the power of our algorithm and
investigate further improvement. In particular, it will be
interesting to experiment with examples for which random
sampling becomes quite ineffective. Our future work will also
consider instantiations of the test strategy with another
candidate technique, genetic algorithms.

As a general comment, we experienced that the effort required
to apply heuristic search techniques is far from negligible.
Using simulated annealing, many trials were necessary for
investigating alternative design choices, and calibrating the
corresponding parameters. This is an intrinsic limitation of

any one of the modern heuristic search techniques. But, when
the complexity of the problem is such that more traditional
approaches are not sufficient, heuristic techniques may offer
an automated solution to guide the exploration of large input
spaces. What we need is feedback from empirical studies,
reporting both success and difficulties, in order to gain further
insights into the use of the heuristics for typical instances of
testing problems. It is hoped that the detailed experimental
material provided in this paper contributes to this goal.

8. ACKNOWLEDGEMENTS
This work is partially supported by the European Community
(Project IST-1999-11585: DSoS – Dependable Systems of
Systems).

9. REFERENCES
[1] J-R. Abrial, E. Börger and H. Langmaack, “Formal Methods

for Industrial Applications: Specifying and Programming
the Steam Boiler Control”, Springer-Verlag, 1996.

[2] K.A. Dowsland, “Simulated Annealing”, in Reeves,
“Modern Heuristic Techniques for Combinatorial
Problems”, chapter 2, pp. 20-69, McGraw-Hill, 1995.

[3] H.G. Gross, B. Jones and D. Eyes, “Structural performance
measure of evolutionary testing applied to worst-case
timing of real-time systems”, in IEE Proceedings
software, 147(2), pp. 25-30, April 2000.

[4] B. Jones, H. Sthomer and D. Eyes, “Automatic Structural
Testing Using Genetic Algorithms”, Software
Engineering Journal, 11(5), pp. 299-306, 1996.

[5] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization
by Simulated Annealing”, Science, 220(4598), pp. 671-
680, 1983.

[6] C.C. Michael, G. McGraw and M.A. Schatz, “Generating
Software Test Data by Evolution”, IEEE Transactions on
Software Engineering, 27(12), pp. 1085-110, 2001.

[7] R.P. Pargas, M.J. Harrold and R.R. Peck, “Test-Data
Generation Using Genetic Algorithms”, Journal o f
Software Testing, Verification and Reliability, 9(4), pp.
263-282, 1999.

[8] V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D.
Smith, “Modern Heuristic Search Methods”, Wiley, 1996.

[9] A.C. Shultz, J.J. Grefenstette and K.A. De Jong, “Learning
to Break Things: Adaptive Testing of Intelligent
Controllers”, Naval Research Laboratory, Oxford
University Press, 1995.

[10] N. Tracey, J. Clark and K. Mander, “Automated Program
Flaw Finding using Simulated Annealing”, in Proc. Int.
Symp. on Software Testing and Analysis (ISSTA’98),
Clearwater Beach, Florida, USA, ACM Press, pp. 73-81,
1998.

[11] N. Tracey, J. Clark, K. Mander and J McDermid,
“Automated test-data generation for exception
conditions”, Software–Practice and Experience, 30(1),
pp 61-79, 2000.

[12] N. Tracey, “A Search-Based Automated Test-Data
generation Framework for Safety-Critical Software”,
Doctoral Dissertation, University of York, 2000.

[13] http://www.atelierb.societe.com/BOILER/UK/main.h

