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Abstract— We present a novel method for prioritizing both
linear equality and inequality systems and provide one algo-
rithm for its resolution. This algorithm can be summarized as a
sequence of optimal resolutions for each linear system following
their priority order. We propose an optimality criterion that is
adapted to linear inequality systems and characterize the result-
ing optimal sets at every priority level. We have successfully
applied our method to plan local motions for the humanoid
robot HPR-2. We will demonstrate the validity of the method
using an original scenario where linear inequality constraints
are solved at lower priority than equality constraints.

I. INTRODUCTION

A. Statement of the problem and contribution

Let us recall the context of prioritized kinematic control of

robots. For a robotic arm, a humanoid robot or any articulated

structure, a motion of the structure’s joints is calculated to

achieve a goal task. The task is often a target position and/or

an orientation in the workspace for a body in the structure.

Call q the joints configuration of the robot and T (q) = 0
the goal value of a task whose current value is T (q) = c.

By computing the jacobian J = ∂T
∂q

(q), one can calculate

velocities q̇ to tend towards achieving T (q) = 0. q̇ is solution

of the following linear equality system [1]:

Jq̇ = −λc

where λ is a positive real. This linear system can be under-

constrained for structures with a high number of degrees

of freedom. As we naturally want to specify extra tasks to

take advantage of this redundancy, comes a need to organize

the tasks from most to least critical. The reason is that we

want to avoid trade off between tasks of unequal importance

and secure the most critical ones. Several works have been

carried in this scope yielding efficient algorithms for task

prioritization [2], [3], [4]. These algorithms have also been

widely used in the robotics community [5], [6].

Some tasks are not naturally expressed as linear equality

systems. There are for instance limits on the controls (e.g
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velocity and acceleration bounds in robot joints). Another ex-

ample is the avoidance of collision with obstacles in the envi-

ronment. Collision avoidance is a task naturally expressed as

T (q) ≤ 0, where T (q) is a function defining the boundaries

between colliding configurations, {q such that T (q) > 0},
and non-colliding ones {q such that T (q) < 0}. The critical

nature of these unilateral constraints have inspired works

such as [7], [8], [9], [10]. In these works, the inequality

constraints are taken into account prior to solving any other

task.

The contribution of our work is to overcome this restriction

as our method will allow us to prioritize both linear equations

and linear inequalities in any order. The algorithm we provide

in this paper is general in the sense that it can be applied

to any problem involving the resolution of a set of linear

equality and inequality systems with priorities.

For the control of redundant robots, the inequalities at

lower priority allow us to solve new kinds of scenarii.

Consider for example a humanoid robot which has to grasp

an object seen with embedded cameras. It is best if its

reaching hand does not come between the cameras and the

object too soon. This is because we would like to keep

checking the visual target to maximize the chance of a

successful grasp. In this scenario, the robot has to accomplish

a primary reaching task and a secondary region-avoidance

task. The available algorithms do not handle this problem

including tasks expressed by inequalities with lower priority.

Our algorithm, however, will provide a solution to this

scenario.

B. Definition of linear systems

Let A and C be matrices in ℜm×n and b and d vectors

in ℜm with (m,n) ∈ N
2. We will consider in the following

either a system of linear equalities

Ax = b (1)

or a system of linear inequalities

Cx ≤ d (2)

or both. When m = 1, (1) is reduced to one linear equation

and (2) to one linear inequality.

A system of linear equalities may have no solution or may

define an affine subspace of ℜn. For instance, in case n = 3
this affine subspace is either a point, a line, a plane or the

whole space ℜ3.
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In the unconstrained case, when Ω = ℜn, the solutions

of (3)-(4) are such that AT Ax∗ = AT b. This minimization

problem corresponds therefore to a constrained pseudo-

inverse solution of the system of linear equalities (1).

B. System of linear inequalities

When trying to satisfy a system (2) of linear inequalities

while constrained to a non-empty convex set Ω ⊂ ℜn, we

will consider the set Si of optimal solutions to the following

minimization problem:

min
x∈Ω,w∈ℜm

1

2
‖w‖2 (6)

with

w ≥ Cx− d, (7)

where w plays now the role of a vector in ℜm of slack

variables. Once again, since the minimized function is co-

ercive, the set Si is non-empty. Considering each inequality

cjx ≤ bj of the system (2) separately, we also have the

property:

x1, x2 ∈ Si ⇔ x1, x2 ∈ Ω and

∀j

{

cjx1 ≤ dj ⇔ cjx2 ≤ dj ,

cjx1 > dj ⇒ cjx1 = cjx2,
(8)

which means that all the optimal solutions satisfy a same set

of inequalities and violate the others by a same amount, and

from which we can conclude that the set Si is convex.

Proof: Let us consider an optimal solution x∗, w∗ to

the minimization problem (6)-(7). The Karush-Kuhn-Tucker

optimality conditions give that for every vector v not pointing

outside Ω from x∗,

w∗T Cv ≥ 0

and

w∗ = max {0, Cx∗ − d}. (9)

This last condition indicates that if an inequality in the

system (2) is satisfied, the corresponding element of w∗ is

zero, and when an inequality is violated, the corresponding

element of w∗ is equal to the value of the violation.

Let us consider now two such optimal solutions, x∗
1, w∗

1

and x∗
2, w∗

2 . Since the set Ω is convex, the direction x∗
2−x∗

1

points towards its inside from x∗
1, so we have

w∗T
1 C(x∗
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which is equivalent to
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C. Mixed system of linear equalities and inequalities

We can observe that systems of linear equalities and

systems of linear inequalities are dealt with optimization

problems (3)-(4) and (6)-(7) which have similar lay-outs and

similar properties (5) and (8). The generalization of these

results to mixed systems of linear equalities and inequalities

is therefore trivial and we will consider in the following the

minimization problem (in a more compact form)

min
x∈Ω,w∈ℜm

1

2
‖Ax− b‖2 +

1

2
‖w‖2 (10)

with

Cx− w ≤ d. (11)

The set of solutions to this minimization problem shares both

properties (5) and (8).

III. PRIORITIZING LINEAR SYSTEMS

A. Formulation

Let us consider now the problem of trying to satisfy a

set of systems of linear equalities and inequalities with a

strict order of priority between these systems. At each level

of priority k ∈ {1, . . . p}, both a system of linear equalities

(1) and a system of linear inequalities (2) are considered,

with matrices and vectors Ak, bk, Ck, dk indexed by their

priority level k. At each level of priority, we try to satisfy

these systems while strictly enforcing the solutions found for

the levels of higher priority. We propose to do so by solving

at each level of priority a minimization problem such as (10)-

(11). With levels of priority decreasing with k, that gives:

S0 = ℜn, (12)

Sk+1 = Arg min
x∈Sk,w∈ℜm

1

2
‖Akx− bk‖

2 +
1

2
‖w‖2 (13)

with Ckx− w ≤ dk. (14)



B. Properties

A first direct implication of properties (5) and (8) is that

throughout the process (12)-(14),

Sk+1 ⊆ Sk.

This means that the set of solutions found at a level of

priority k is always strictly enforced at lower levels of

priority, what is the main objective of all this prioritization

scheme.

A second direct implication of these properties (5) and (8)

is that if Sk is a non-empty convex polytope, Sk+1 is also

a non-empty convex polytope, the shape of which is given

in properties (5) and (8). Figure 3 illustrates how these sets

evolve in different cases. Classically, these convex polytopes

can always be represented by systems of linear equalities and

inequalities:

∀k, ∃Āk, b̄k, C̄k, d̄k such that x ∈ Sk ⇔

{

Ākx = b̄k

C̄kx ≤ d̄k

With this representation, the step (13)-(14) in the prioritiza-

tion process appears to be a simple Quadratic Program with

linear constraints that can be solved efficiently.

Note that when only systems of linear equalities are con-

sidered, with the additionnal final requirement of choosing

x∗ with a minimal norm, the prioritization process (12)-(14)

boils down to a reformulation of the well-known task-priority

problem [3].

C. Algorithm

The proposed Algorithm consists in processing the priority

levels from highest to lowest and solving at every level the

corresponding Quadratic Program. The representation of the

sets Sk by systems of linear equalities and inequalities is

efficiently updated then by direct application of the properties

(5) and (8).

It is naturally possible to optimize additional criteria

over the final set of solutions. For instance, one might be

interested in the solution with minimal norm, or in the

solution that maximizes the distance to the boundaries of

the optimal set, etc...

Note that a similar algorithm has already been described

in [11], but in the setting of Constraint Programming on

discrete variables: the structure and the logic are similar,

but the inner workings are very different, especially the

theoretical analysis of Section II.

IV. APPLICATION

We have applied the proposed algorithm to plan local

motions for the humanoid robot HRP-2 [12]. We show

in the following examples the ability of our algorithm to

treat any order of priority with both equality and inequality

tasks. The motions mentioned hereby may be viewed in the

accompanying video.

Algorithm 1 Solve prioritized linear systems

1: Initialize the system of equalities Ā0, b̄0 to empty.

2: Initialize the system of inequalities C̄0, d̄0 to empty.

3:

4: for k = 0 to p− 1 do

5:

6: Solve the Quadratic Program (13)-(14) to obtain Sk+1.

7:

8: Āk+1 ←

[

Āk

Ak

]

, b̄k+1 ←

[

b̄k

Akx∗
k

]

.

9:

10: C̄k+1 ← C̄k, d̄k+1 ← d̄k.

11:

12: for all c
j
k in Ck do

13: if c
j
kx∗

k ≤ d
j
k then

14:

15: C̄k+1 ←

[

C̄k+1

c
j
k

]

, d̄k+1 ←

[

d̄k+1

d
j
k

]

.

16:

17: else

18:

19: Āk+1 ←

[

Āk+1

c
j
k

]

, b̄k+1 ←

[

b̄k+1

c
j
kx∗

k

]

.

20:

21: end if

22: end for

23: end for

A. Example 1: inequality tasks at higher priority

In this example, we illustrate the utility of prioritizing

equality tasks after specification of inequality constraints.

The goal of the motion is to reach a ball underneath an

object (blue polyhedron in figure VI) while looking at it.

Here is the stack of tasks sorted in decreasing priority:

1) Stability + Collision avoidance

2) Reach for the ball

3) Look at the ball + minimal joint velocity

The stability task ensures the quasi-static stability of the mo-

tion by fixating the center of mass projection and the feet on

the ground. The collision avoidance task was built following

Kanehiro’s method[13] for smooth avoidance between non

strictly convex polyhedra. This task is used for both obstacle

avoidance and self-collision avoidance and it expresses as

a linear inequality system. For the reaching we specified

a three-dimensional position task on the center of the left

hand. The gaze task was defined as the alignment of the

principle axis of the head on the vector linking the center of

the head to the ball. We added a final task to minimize the

joint velocities, also called a damping task (see [14]).

In the resulting motion, the looking task could be main-

tained until the robot’s head came close to the border of

the table. When simultaneous looking and reaching became

infeasible, the specified priorities made the robot continue

the reaching while its gaze direction drifted off the target.

Task 2) was satisfied at the end of this motion (frame 4(d)).

We tried to achieve the same goal while making the

looking and the reaching tasks share the same priority. This






