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Abstract— This paper proposes an whole body motion plan-
ning method for humanoid robots in which dynamics is in-
tegrated. The method consists of two stages. A collision-free
and statically stable path is planned in the first stage and it is
transformed into a dynamically stable trajectory in the second
stage. Contributions of the method is summarized as follows.
(1) A local method plans aC

1 path while avoiding collisions
between non-strictly convex objects. (2) The second stage
gives the minimum time trajectory by time parameterization
under dynamic balance constraints. (3) Any path reshaping for
recovering collision-freeness is not required since the second
stage doesn’t change shape of the path. Effectiveness of the
method is examined by applying it to scenarios of a humanoid
robot HRP-2.

I. INTRODUCTION

An whole body motion planning of a humanoid robot is
a challenging problem mainly from the following reasons.
(1) Most of humanoid robots have more than 30 degrees of
freedom. (2) The whole body motion must satisfy constraints,
collision-freeness, physical capabilities and dynamic stability
at the same time. Because of these reasons, it is difficult
to solve the problem within reasonable time by applying
existing motion planning techniques in straightforward way.

Several challenges have already been done on this topic.
[1] proposes a whole-body control framework which pro-

vides joint torques by projecting operational tasks into the
constraint null-space. We prefer to generate motions in the
joint velocity space. Because most of existing humanoid
robots are position controlled and it’s difficult to controlthem
using joint torques from a practical point of view.

[2] proposes a motion planning method under obstacles
and dynamic balance constraints. It consists of two stages.
In the first stage, it finds a collision-free path by exploringa
set of pre-computed statically stable postures. In the second
stage the path is transformed into a dynamically stable
trajectory by applying a dynamics filter. Since the dynamics
filter modifies shape of the path, it possibly cause collisions.
Therefore, the trajectory is confirmed to be collision-free
and its duration is extended if collisions are found. [3] also
proposes a two stages approach for passing under obstacles.
It plans a statically stable path in the first stage like [2] but
the path is transformed into a dynamically stable trajectory
without changing shape of the path.
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Fig. 1. Whole body reaching with avoiding collisions and keeping stability

[4], [5] and [6] propose methods that integrate motion
planning techniques and a bipedal walking pattern generator.
The method of [4] is applied to a bar carrying task. It
plans a collision-free path at first by approximating a robot
by a parallelepiped and then a trajectory is generated by
the walking pattern generator. If collisions are caused by
dynamic effects, the initial path is reshaped. Methods in [5]
and [6] are applied to passing motion under obstacles. [5]
regards a robot as a height adjustable box and plans its
position, orientation and height. Then the planned path is
transformed into a trajectory by a walking pattern generator.
[6] generates a walking pattern at first with monitoring
collisions and then colliding parts are modified while keeping
the horizontal position of the center of mass.

Our strategy is also one of two stages strategies. A
collision-free and statically stablepath is planned in the
first stage and it is transformed into a dynamically stable
trajectory in the second stage. Contributions of the method
are summarized as follows. (1) A local method plans aC1

path while avoiding collisions between non-strictly convex
objects. (2) The second stage gives the minimum time
trajectory by time parameterization under dynamic balance
constraints. (3) Any path reshaping for recovering collision-
freeness is not required since the second stage doesn’t change
shape of the path.

This work is a continuation of [7] and integrates dynamics
into a local method in [7].

The paper is organized as follows. In section II, an outline
of our method is introduced. In section III, a local method
to get a collision-free and statically stable path is explained.
In section IV, a timing planning method to transform the
path into a minimum time and dynamically stable trajectory
is presented. In section V, the effectiveness of the proposed
method is confirmed by applying it to two scenarios for a



humanoid robot HRP-2[8]. In section VI, we summarize and
conclude the paper.

II. T WO STAGES APPROACH

An whole body motion of a humanoid robot must satisfy
the following constraints to be feasible for the real robot.

1) There is no self-collision and collision with the envi-
ronment.

2) All joint angles stay within joint movable ranges.
3) All joint velocities don’t exceed their limits.
4) ZMP stays inside of the support polygon.

We propose a method which consists of two stages. The
first stage plans a collision-freepath and it is transformed
into a dynamically stabletrajectory in the second stage like
[2]. Here, path is a series of configurations andtrajectory
associates time and these configurations. In that sense,path is
a projected image oftrajectoryonto the configuration space.

If the transformation of the second stage modifies shape of
the path, its collision-freeness might be broken. In the case,
we need to go back to the first stage and iterate these two
stages until a collision-free and dynamically stable trajectory
is obtained. In order to prevent this iteration, we plan a
statically stable path in the first stage and transform it into a
dynamically stable trajectory without changing shape of the
path by timing planning. By using a statically stable path
as an input of timing planning, the second stage can always
obtain a dynamically stable trajectory by slowing down[9].

The timing planning problem is an old problem in robotic
research. In the research works on manipulators, the main
objective was to reduce the execution time of the tasks,
thereby increasing the productivity. Most of these approaches
is based on time-optimal control theory (see [10] for an
overview). In the framework of mobile robots, the timing
planning problem arises also to transform a feasible path to
a feasible trajectory [11]. The main objective, in this case,
is to reach the goal position as fast as possible.

However, in our case the application of time optimal
control theory is a difficult task. This is because not only the
dynamic equation of the humanoid robot motion is very com-
plex, but also applying time optimal control theory requires
the calculation of the derivative of the configuration space
vector of humanoid robot with respect to the parameterized
path. Although such a calculation can be evaluated from
differential geometry, it is a very difficult task in the caseof
high dimensional degree of freedoms and branched kinematic
chains, which is the case of humanoid robot. For that, we
propose to solve the timing planning problem numerically
using finite difference approach as it will be explained later
in the sequel.

In order to get a short trajectory by timing planning, the
first stage plans aC1 path. If the path is notC1 at some
points, the robot must stop at those points. Because if the
robot doesn’t stop, discontinuous velocities and infinite joint
accelerations are applied to joints and it is impossible to
keep dynamic stability. Therefore aC1 path is preferable to
prevent such a “stop-and-go” trajectory is generated.

Fig. 2. Collision avoidance: Faverjon and Tournassoud’s method

Requirements for a path planned in the first stage is
summarized as follows.

1) There is no self-collision and collision with the envi-
ronment.

2) All joint angles stay within joint movable ranges.
3) The path is composed of statically stable postures.
4) The path isC1.

These constraints are not broken by timing planning in the
second stage. The second stage transforms the path under
the following constraints.

5) All joint velocities don’t exceed their limits.
6) ZMP stays inside of the support polygon.

III. C OLLISION-FREE AND STATICALLY STABLE PATH

A. Local Based Path Planning Method

In order to plan a collision-free and statically stable path,
we use a local based path planning method proposed by
Faverjon and Tournassoud[12]. The method produces the
velocity of the robot under constraints. In the method, a non-
constrained initial velocity to achieve a task is computed and
this initial guess is projected over the subspace of velocities
satisfying linear equality and inequality constraints.

Let q denote the configuration anḋq the velocity of
the robot. The projection is formulated as an optimization
problem described as follows.

min
q̇

‖Jτ (q)q̇ − τ̇‖2

subject to Aq̇ + b = 0,

Cq̇ + d ≤ 0.

(1)

where Jτ (q) and τ̇ denote Jacobian matrix of the task
and the desired task velocity respectively. The path under
constraints is generated by solving this problem repeatedly
until a configuration which satisfiesτ (q) = 0 is obtained.

B. Constraints

1) Collision Avoidance:A linear inequality constraint to
avoid collision is also proposed in [12]. It is calledvelocity
damper. Let d be the distance between points,p1 andp2 on
two objects,O1 and O2(Fig. 2). Whend is smaller than
a threshold calledinfluence distanceand denoted bydi,
velocity damperis activated for velocity ofd:

ḋ ≥ −ξ
d − ds

di − ds

(2)



where ξ is a positive coefficient for adjusting convergence
speed,ds(< di) is a positive value calledsecurity distance.
d is constrained not to be smaller thands. ḋ is computed by
the following equation.

ḋ = (ṗ1 − ṗ2|n)

wheren is the unit vector(p1 − p2)/d and notation(u|v)
refers to the inner product of vectorsu and v. The region
whered is smaller thaninfluence distanceis calledinfluence
zone. velocity damperexpresses thatd must not decrease too
fast when it is smaller thandi.

The velocity ofpi(i = 1, 2) can be expressed as:

ṗi = J(q,pi)q̇

whereJ(q,pi) is a Jacobian matrix ofOi at pi. Inequal-
ity (2) thus becomes a linear inequality constraint over the
robot velocityq̇:

(q̇|J(q,p1)
T n − J(q,p2)

T n) ≥ −ξ
d − ds

di − ds

(3)

If O1 and O2 are strictly convex objects,p1 and p2

are the closest points on them. In order to use non-strictly
convex polyhedra as geometric models of the robot and the
environment, several pairs of points must be selected to get
continuous velocities as solutions of Problem (1).

The interaction between polyhedra is decomposed into
a set of interactions between faces. Polygonal faces are
assumed to be decomposed into triangles1. The interaction
between triangles is managed by the combinatorics between
edges of the triangle and Voronoi regions of the other
triangle. Let us recall the definition of Voronoi region.
Definition: Voronoi regionVR(X) for featureX. A Voronoi
region associated with a featureX of a triangle is a set of
points that are closer toX than any other feature.

Pairs of points are selected as follows.
Case1 : The edge is inVR(F)
Two pairs,(Vi,V

′
i)(i = 1, 2) are constrained, whereVi(i =

1, 2) are end points of the edge.(a, b) denotes a pair of
points,a and b andV ′

i(i = 1, 2) denotes a projection ofVi

ontoF along its normal vector.
Case2 : The edge is inVR(E)
Three pairs,(Vi,V

′
i)(i = 1, 2, 3) are constrained, where

V ′
i(i = 1, 2) is a projected point of the end pointVi onto E .

V3 andV ′
3 are the closest points between the edge andE .

Case3 : The edge is inVR(V)
Three pairs,(Vi,V)(i = 1, 2, 3) are constrained, where
Vi(i = 1, 2) are end points of the edge.V3 is the closest
point between the edge andV.

For more details on continuous constraints generation
between polyhedra, please refer [7].

2) Joint Angle Limits:Joint angles can stay within joint
movable ranges by constraining those velocities usingve-
locity damper. velocity damperfor joint angles limits are
defined as follows.

1In the following, featuresof a triangle are the triangular (open)face, the
three edges and the three vertices.

Fig. 3. Constraints generated between an edge and a triangle

q̇maxi(qi) ≥ q̇i ≥ q̇mini(qi), for i ∈ {1, ..., n}. (4)

q̇maxi(qi) =







ξ
(q+

i − qi) − qs

qi − qs

if q+
i − qi ≤ qi,

q̇+
i otherwise

(5)

q̇mini(qi) =







−ξ
(qi − q−i ) − qs

qi − qs

if qi − q−i ≤ qi,

q̇−i otherwise
(6)

whereq+
i andq−i are physical upper bound and lower bound

of joint angle ofith joint respectively.
3) Horizontal Position of the Center of Mass:The robot

is statically stable when a projected point of the center
of mass(CoM for short) is in the support polygon. CoM
is allowed to move as far as the projected point is in
the polygon. This can be expressed as a set of inequality
constraints. But in order to maximize margin for dynamic
effect and minimize the duration of trajectory in the second
stage, we constrain the horizontal position of CoM on the
line which is orthogonal to the ground. This constraint is
expressed as an equality constraint as follows.

Jcq̇ = ṗc (7)

whereJc and ṗc are Jacobian matrix of CoM and a desired
velocity of CoM respectively.̇pc is used to switch supporting
legs.

IV. DYNAMICALLY STABLE TRAJECTORY

A. Dynamic Stability and ZMP

Dynamically stable trajectory is a trajectory for which the
ZMP trajectory is always inside of the polygon of support
(i,e, the convex hull of all points of contact between the sup-
port foot (feet) and the ground). Theoretically, any statically
stable trajectory can be transformed into a dynamically stable
one by slowing down the humanoid robot’s motion.
However, our objective is to find a minimum time and
dynamically stable trajectory from a statically stable one.
In order to obtain a motion within the humanoid robot
capacities, the joint velocity limits of the humanoid robot
should be taken into account.



Finally, the timing planning problem can be seen as an
optimization problem under inequality constraints.

Let the ZMP on the horizontal ground be given by the
following vector

p =
[

px py

]T (8)

To computep, one can use the following formula

p = N
n × τ

(f |n)
(9)

whereN is a constant matrix

N =

[

1 0 0
0 1 0

]

(10)

the vectorn is the normal vector on the horizontal ground
(n = z). The operator× refers to the cross product. Recall
that (f |n) is the inner product of the vectorsf andn.

The vectorf is the result of the gravity and inertia forces

f = Mg −

n
∑

i=1

mi c̈i (11)

whereg denotes the acceleration of the gravity (g = −gz),
andM is the total mass of the humanoid robot. The quanti-
ties mi, c̈i are the mass of theith link and the acceleration
of its center of massci respectively.
Finally, τ denotes the moment of the forcef about the origin
of the fixed world framepO. The expression ofτ is the
following

τ =
n

∑

i=1

(

mi ci × (g − c̈i) − L̇ci

)

(12)

whereLci
is the angular momentum at the pointci

L̇ci
= Ri (Ici

ω̇i − (Ici
ωi) × ωi) (13)

Ri is the rotation matrix associated to theith link. Ici
, ωi

and ω̇i are its inertia matrix, angular velocity and angular
acceleration respectively.

B. Timing planning formulation

Generally speaking, the timing planning problem of a
functionf (xt), wheret denotes time, consists into finding a
real functionSt in such a wayf (xSt

) verifies some temporal
constraints, e.g,

h(St) ≤ f (xSt
) ≤ l(St) (14)

Definition: The spatial velocity vectorVt ∈ R
6 is defined

as follows

Vt =





vt

ωt



 =





dXt

dt

dθt

dt



 (15)

Definition: The spatial acceleration vectoṙVt ∈ R
6 is

defined as follows

V̇t =





at

ω̇t



 =





dvt

dt

dωt

dt



 (16)

In order to obtain a causal motion, the functionSt should
be a strictly increasing function, that meansdSt

dt
> 0.

Therefore we will expressSt as the integral of a strictly
positive functionst > 0, as follows

St =

∫ t

τ=0

sτ dτ (17)

Let us rewrite the quantities in Eqs (15) and (16) with
respect to the mapping functionSt

VSt
=





dXt

dSt

dθt

dSt



 ≈





∆Xt

st ∆t

∆θt

st ∆t



 (18)

V̇St
=

d VSt

d St

≈
1

∆St

(

VSt
− VSt−1

)

≈









∆Xt

∆t
st−1−

∆Xt−1

∆t
st

s2
t
st−1∆t

∆θt

∆t
st−1−

∆θt−1

∆t
st

s2
t
st−1∆t









(19)

C. Minimum Time and Dynamically Stable Trajectory

Let us suppose that the first stage provides a path which
consists ofL points. At first, we transform this path to a tra-
jectory by considering a uniform time distribution function.
In other words, we suppose thatst = 1 : ∀t in (17). We
denoteT = L ∆t.

In our case, we would obtain a minimum time trajectory
which is not only dynamically stable but also it should
respect the joint velocity limits of the humanoid robot.
Therefore, the optimization problem can be formulated as
follow

min ST = min
st

∫ T

t=0

st dt

subject to st > 0

p−

st
≤ pst

≤ p+
st

q̇− ≤ q̇st
≤ q̇+

(20)

wherepst
is the ZMP vector,p−

st
andp+

st
design the polygon

of support for the humanoid robot.
The vectorq̇st

denotes the joint velocity of the humanoid
robot, andq̇− and q̇+ design its upper and lower limits.
Let us writepst

as function ofst

pst
= N

n × τ̃

(f̃ |n)
(21)

where

τ̃ =
n

∑

i=1

(

mi Xci

t ×
(

g − ˜̈ci

)

− ˜̇
Lci

)

f̃ = Mg −

n
∑

i=1

mi
˜̈ci

(22)



in which

˜̈ci =
∆X

ci

t

∆t
st−1 −

∆X
ci

t−1

∆t
st

st
2st−1∆t

˜̇
Lci

= Ri

(

Ici

˜̇ωi − (Ici
ω̃i) × ω̃i

)

˜̇ωi =
∆θ

ci

t

∆t
st−1 −

∆θ
ci

t−1

∆t
st

st
2st−1∆t

ω̃i =
∆θci

t

st∆t
.

(23)

In similar way we obtain

q̇st
=

∆qt

st∆t
(24)

It is clear that the optimization problem (20) is polynomialin
st, so the gradient and Jacobian functions can be calculated
easily.

D. Discretization of solution space

In real fact, the space of the admissible solutions of
the minimization problem (20) is very large. In order to
transform this space to a smaller dimensional space, we can
use a basis of shape functions (e,g cubic B-spline functions).
Let us consider a basis of shape functionsBt that is defined
as follows

Bt =
[

B1
t B2

t · · · Bl
t

]T (25)

whereBi
t denotes the value of shape function numberi at

the instantt, the dimension ofBt is l defines the dimension
of the basis of shape functions.
The projection ofst into the basis of shape functionsBt can
be given by the following formula

st =

l
∑

i=1

si
B Bi

t = sT
B Bt (26)

Thus, the optimization problem (20) can be written as follows

min
sB

l
∑

k=1

sk
B

∫ T

t=0

Bk
t dt

subject to sT
BBt > 0

p−

sB
≤ psB

≤ p+
sB

q̇− ≤ q̇sB
≤ q̇+

(27)

The optimization problem has been transformed into finding
the vectorsB ∈ R

l, and, in its new form, it can be solved
using C-FSQP [13].

Note that the support polygon is a function ofsB , and
it depends on the horizontal position of CoM. However, as
the path provided by the first stage is a statically stable one,
the path can be split into various sections. Each section is a
statically stable path which has a fixed support polygon and
it is independent fromsB .

E. Implementation Algorithm of Second Stage

The algorithm of the second stage can be summarized as
follows

1) Given a path.
2) Transform the path to a trajectory by considering a

uniform time distribution function.
3) Calculate∆qt, ∆Xci

t and ∆θci

t from the obtained
trajectory.

4) Choose∆t, e,g,∆t = 5.10−3[s].
5) Calculate the cubic B-spline functions.
6) Split the path into verious sections depending on the

place and shape of support polygon during the motion.
The support polygon for each section is fixed and
independent from the time.

7) Solve the optimization problem (27) for each path with
the initial solution obtained from the above steps.

V. SIMULATION

In this section, we confirm effectiveness of our strategy
using two examples.

A. Toy World Scenario

The first example is a collision-free reaching motion in
the cluttered environment. In this example, the task of the
robot is to move its left hand to the specified positionph.
The objective function of Problem (1) is given as follows.

‖Jhq̇ − ṗh‖
2

where

ṗ
h

= δpmax

ph − ph(q)

‖ph − ph(q)‖
(28)

Inequality (3),(4) and Equality (7) are used as constraints
over joint velocities.ξ, di and ds of Inequality (3) are set
to 0.5[m/s], 0.05[m] and 0.03[m] respectively. Those of
Inequality (4) are set to 0.5[rad/s], 0.2[rad] and 0.05[rad]
respectively. In this example, since the robot is standing on
the right leg from the beginning,̇pc is set to0.

The reaching motion is obtained by solving Problem (1)
until the hand reachespg. Figure 4 shows the initial con-
figuration and the final one. Figure 1 also shows the final
configuration from another viewpoint. Red lines show pairs
of points to be constrained. The robot is standing on its right
leg with surrounded by a torus, a cylinder and a box in
the initial configuration. The reaching target is placed at the
other side of the torus. In the final configuration, the left arm
and the head are avoiding collisions with the torus and the
left leg and the right arm are with the cylinder and the box
respectively.

The computational time of the first stage is mainly decided
by the number of constraints for collision avoidance and
it depends on the number of pairs of triangles ininfluence
zone. The computational time can be saved by reducing the
number of pairs. The reduction can be done by the following
two methods. The first one is to makeinfluence zonethin
by making the difference betweendi and ds small. But it
leads to big accelerations since the velocity of constrained



Fig. 4. Initial and final configurations of whole body reaching: In the final
configuration, the left arm and the head are avoiding collisions with the
torus and the left leg and the right arm are with the cylinder and the box
respectively.

points are decreased quickly. This is not preferable to obtain
a short trajectory in the next stage. The second method is to
simplify geometric models of the robot and the environment.
If the simplified model contains the precise one in it, the path
obtained using simplified model is also valid for the precise
one.

Figure 5 shows a precise model and a simplified one of
HRP-2. The precise one consists of 20858 triangles and the
simplified one does of 1140 triangles. The computational
times and the number of constraints are compared while com-
bining these models and models of torus. The precise torus
consists of 800 triangles and the simplified one does of 288
triangles. Table I shows averages of the computational time
in [s] and the number of constraints (the number between
parentheses) for one computational step. The computational
time can be drastically reduced by using a simplified model.

Once the collision-free path is available, this path is
converted to a trajectory using a uniform time distribution
function. The obtained trajectory is then used to initialize
Problem (27). Solving Problem (27) yields a minimum time
and dynamically stable trajectory. The computation time
of the second stage is obviously depends on the length
of the path and the dimension of the basis of cubic B-
spline functions. For this scenario, we have chosen:∆t =
5.10−3[s], and a basis of 120 cubic B-spline functions.
The function st is given in Figure 6. The duration of
minimum time dynamically stable trajectory is around24[s]
instead of77[s] for the original uniform time distribution
trajectory. That means the optimized trajectory is around 3
times faster than the original one. However it’s not always
the case, for example if the original trajectory is fast and
dynamically unstable, then the optimized trajectory will be
slower. Though the optimized trajectory is the minimum
time trajectory of the dynamically stable trajectories. The
trajectory of ZMP is given in Figure 7.

B. In a Room Scenario

The second example is on HRP-2 in its room. Figure 8
shows snapshots of this scenario. Each row shows snapshots
along time-line and each column does from different view-
points. In the first frame, HRP-2 is sleeping but there is no

Fig. 5. Precise model(left) and simplified model(right)

TABLE I

AVERAGES OF THE COMPUTATIONAL TIME[S] AND THE NUMBER OF

CONSTRAINTS

torus
precise simplified

HRP-2
precise 1.47(3460) 0.45(1803)

simplified 0.10(698) 0.05(375)
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Fig. 6. Time parameterization function (st)
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Fig. 7. ZMPx andZMPy trajectories in solid lines, and the safety zones
for dynamical stability are designed by the dashed lines



contacts among HRP-2, the chair and the table. We inserted
gaps which are bigger thands since constraints for collision
avoidance don’t work correctly if distances are smaller than
ds. And then it stands up(b), gets out of a gap between the
table and the chair(c–e) and tries to grasp something on the
shelf(f).

The scenario is split into three parts, (A) stretching, (B)
stepping and (C) reaching to switch objective functions and
constraints in Problem (1). In part (A) the task is to going to
a goal configurationq and the objective function is defined
as follows.

‖q̇ − q̇‖2

where

q̇ = δqmax

q − q

maxi=1,··· ,n |qi − qi|

The part (B) is split into two parts again, (B-1) moving
CoM and (B-2) moving foot. Multiple steps can be done by
repeating these two parts. Since the first stage must generate
a statically stable path, a resultant walking is a static one.
In part (B-1),ṗc is computed in the same way with Eq.(28).
Paths for the part (B-2) and (C) are generated in the same
way with the previous example. Goal configurations and
points of feet and the hand are selected by hand.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a collision-free and dynamically
stable whole body motion planning method. The method and
its contributions are summarized as follows.

• The method consists of two stages. A collision-free stat-
ically stable path is planned in the first stage. The path
is transformed into a minimum time and dynamically
stable trajectory in the second stage.

• A local method in the first stage can generate a dif-
ferentiable path while avoiding collisions between non-
strictly convex objects.

• Since the first stage plans a statically stable path and
the second stage doesn’t change shape of the path, the
trajectory can be always obtained without iterating two
stages.

Since the path is generated using a local method, the
planner might be trapped by local minima. We are woking on
integration with a global method like PRM[14] or RRT[15].

The followings are limitations of our strategy and future
works.

• Since the first stage of the method must plan a statically
stable path, this method can’t be applied to faster
motions where CoM goes out of the support polygon
like a biped walking.

• The robot might slip or jump. Because forces and the
moment around the vertical axis are not constrained.
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Fig. 8. Snapshots of in a room scenario


