
Motion planning

Florent Lamiraux

CNRS-LAAS, Toulouse, France

Motion planning



Task and Motion Planning

Motion planning



Definition

Given

I One or several robots,

I One or several objects,

I initial configurations for robots and objects

I goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible
trajectory between the initial and goal configurations.

Motion planning



Definition

Given

I One or several robots,

I One or several objects,

I initial configurations for robots and objects

I goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible
trajectory between the initial and goal configurations.

Motion planning



Definition

Given

I One or several robots,

I One or several objects,

I initial configurations for robots and objects

I goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible
trajectory between the initial and goal configurations.

Motion planning



Configuration space

Configuration

q = (qr1 ,qr2 ,qc1 ,qc2 ,qs1 ,qs2)

qr1 ,qr2 ∈ R6

qc1 ,qc2 ,qs1 ,qs2 ∈ R7

where

qr1 = (q1, · · · , q6) is the vector of joint angles,

qc1 = (x , y , z ,X ,Y ,Z ,W )

W + Xi + Yj + Zk is a unit quaternion.

The configuration space is a differential mani-
fold.

Motion planning



Quaternions

Non-commutative field isomorphic to R4, spanned
by three elements i , j , k that satisfy the following
relations :

i2 = j2 = k2 = ijk = −1

from which we immediately deduce

ij = k, jk = i , ki = j Hamilton (1843)

Motion planning



Quaternions

Non-commutative field isomorphic to R4, spanned
by three elements i , j , k that satisfy the following
relations :

i2 = j2 = k2 = ijk = −1

from which we immediately deduce

ij = k, jk = i , ki = j Hamilton (1843)

Motion planning



Unit Quaternions and rotations

Let q = q0 + q1i + q2j + q3k be a unit quaternion :

q20 + q23 + q22 + q23 = 1

∀x = (x0, x1, x2) ∈ R3, let u = x0i + x1j + x2k

q . u . q∗ = y0i + y1j + y2k

where q∗ = q0 − q1i − q2j − q3k is the conjugate of q.
y = (y0, y1, y2) is the image of x by the rotation of matrix 1− 2(q22 + q23) 2q2q1 − 2q3q0 2q3q1 + 2q2q0

2q2q1 + 2q3q0 1− 2(q21 + q23) 2q3q2 − 2q1q0
2q3q1 − 2q2q0 2q3q2 + 2q1q0 1− 2(q21 + q22)



Motion planning



Unit Quaternions and rotations

Let q = q0 + q1i + q2j + q3k be a unit quaternion :

q20 + q23 + q22 + q23 = 1

∀x = (x0, x1, x2) ∈ R3, let u = x0i + x1j + x2k

q . u . q∗ = y0i + y1j + y2k

where q∗ = q0 − q1i − q2j − q3k is the conjugate of q.
y = (y0, y1, y2) is the image of x by the rotation of matrix 1− 2(q22 + q23) 2q2q1 − 2q3q0 2q3q1 + 2q2q0

2q2q1 + 2q3q0 1− 2(q21 + q23) 2q3q2 − 2q1q0
2q3q1 − 2q2q0 2q3q2 + 2q1q0 1− 2(q21 + q22)



Motion planning



Unit Quaternions and rotations

Let q = q0 + q1i + q2j + q3k be a unit quaternion :

q20 + q23 + q22 + q23 = 1

∀x = (x0, x1, x2) ∈ R3, let u = x0i + x1j + x2k

q . u . q∗ = y0i + y1j + y2k

where q∗ = q0 − q1i − q2j − q3k is the conjugate of q.
y = (y0, y1, y2) is the image of x by the rotation of matrix 1− 2(q22 + q23) 2q2q1 − 2q3q0 2q3q1 + 2q2q0

2q2q1 + 2q3q0 1− 2(q21 + q23) 2q3q2 − 2q1q0
2q3q1 − 2q2q0 2q3q2 + 2q1q0 1− 2(q21 + q22)



Motion planning



Unit Quaternions and rotations

I Notice that q and −q represent the same rotation

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Definitions

I Workspace : W = R2 or R3 : space in which the robot evolves

I Obstacle in workspace : compact subset of W, denoted by O.

I Configuration space : C.

I Position in configuration q of a point M ∈ Bi : xi (M,q).

I Obstacle in the configuration space :

Cobst = {q ∈ C, ∃i ∈ {1, · · · ,m}, ∃M ∈ Bi , xi (M,q) ∈ O or

∃i , j ∈ {1, · · · ,m}, ∃Mi ∈ Bi , ∃Mj ∈ Bj ,
xi (Mi ,q) = xj(Mj ,q)}

I Free configuration space : Cfree = C \ Cobst .

Motion planning



Motion

I Configuration space :
I differential manifold

I Motion :
I continuous function from [0, 1] to C.

I Collision-free motion :
I continuous function from [0, 1] to Cfree .

Motion planning



Motion

I Configuration space :
I differential manifold

I Motion :
I continuous function from [0, 1] to C.

I Collision-free motion :
I continuous function from [0, 1] to Cfree .

Motion planning



Motion

I Configuration space :
I differential manifold

I Motion :
I continuous function from [0, 1] to C.

I Collision-free motion :
I continuous function from [0, 1] to Cfree .

Motion planning



Motion planning problem

initial configuration goal configuration

C = R6

Motion planning



History

I Before the 1990’s : mainly a mathematical problem
I real algebraic geometry,
I decidability : Schwartz and Sharir 1982,

I Tarski theorem, Collins decomposition,

I from the 1990’s : an algorithmic problem
I random sampling (1993),
I asymptotically optimal random sampling (2011).

Motion planning



History

I Before the 1990’s : mainly a mathematical problem
I real algebraic geometry,
I decidability : Schwartz and Sharir 1982,

I Tarski theorem, Collins decomposition,

I from the 1990’s : an algorithmic problem
I random sampling (1993),
I asymptotically optimal random sampling (2011).

Motion planning



Random methods

I In the early 1990’s, random methods started being developed
I Principle

I shoot random configurations
I test whether they are in collision
I build a graph (roadmap) the nodes of which are free

configurations
I and the edges of which are collision-free linear interpolations

Motion planning



Random methods

I In the early 1990’s, random methods started being developed
I Principle

I shoot random configurations
I test whether they are in collision
I build a graph (roadmap) the nodes of which are free

configurations
I and the edges of which are collision-free linear interpolations

Motion planning



Random methods

I In the early 1990’s, random methods started being developed
I Principle

I shoot random configurations
I test whether they are in collision
I build a graph (roadmap) the nodes of which are free

configurations
I and the edges of which are collision-free linear interpolations

Motion planning



Random methods

I In the early 1990’s, random methods started being developed
I Principle

I shoot random configurations
I test whether they are in collision
I build a graph (roadmap) the nodes of which are free

configurations
I and the edges of which are collision-free linear interpolations

Motion planning



Random methods

I In the early 1990’s, random methods started being developed
I Principle

I shoot random configurations
I test whether they are in collision
I build a graph (roadmap) the nodes of which are free

configurations
I and the edges of which are collision-free linear interpolations

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q rand

Pick a random configuration

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q rand

Try to connect it to the nearest nodes of each connected

component

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Keep collision-free parts of paths

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Try to connect new nodes to nearest nodes of other

connected components

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q rand

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q rand

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q
rand

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q
rand

q
near 1

q
near 2

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

q
rand

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Rapidly exploring Random Tree (RRT) 2000

q
init

q goal

Motion planning



Random methods

I Pros :
I no explicit computation of the free configuration space,
I easy to implement,
I robust.

I Cons :
I no completeness property, only probabilistic completeness,
I difficult to find narrow passages.

I Requested operators :
I Collision tests

I for configurations (static),
I for paths (dynamic)

Motion planning



Random methods

I Pros :
I no explicit computation of the free configuration space,
I easy to implement,
I robust.

I Cons :
I no completeness property, only probabilistic completeness,
I difficult to find narrow passages.

I Requested operators :
I Collision tests

I for configurations (static),
I for paths (dynamic)

Motion planning



Random methods

I Pros :
I no explicit computation of the free configuration space,
I easy to implement,
I robust.

I Cons :
I no completeness property, only probabilistic completeness,
I difficult to find narrow passages.

I Requested operators :
I Collision tests

I for configurations (static),
I for paths (dynamic)

Motion planning



Definitions

A manipulation motion
I is the motion of

I one or several robots and of
I one or several objects

I such that each object
I either is in a stable position, or
I is moved by one or several robots.

Motion planning



Definitions

A manipulation motion
I is the motion of

I one or several robots and of
I one or several objects

I such that each object
I either is in a stable position, or
I is moved by one or several robots.

Motion planning



Numerical constraints

Constraints to which manipulation motions are subject can be
expressed numerically.

I Numerical constraints :

f (q) = 0,
m ∈ N,
f ∈ C 1(C,Rm)

I setConstantRightHandSide(True)

I Parameterizable numerical constraints :

f (q) = f0,
m ∈ N,
f ∈ C 1(C,Rm)
f0 ∈ Rm

I setConstantRightHandSide(False)

Motion planning



Example : robot manipulating a ball

C = [−π, π]6 × R3 (1)

q = (q0, · · · , q5, xb, yb, zb) (2)

Two states :

I placement : the ball is lying on
the table,

I grasp : the ball is held by the
end-effector.

Motion planning



Example : robot manipulating a ball

Each state is defined by a numerical
constraint

I placement

zb = 0

I grasp

xgripper (q0, · · · , q5)−

 xb
yb
zb

 = 0

Each state is a sub-manifold of the configuration space

Motion planning



Example : robot manipulating a ball

Each state is defined by a numerical
constraint

I placement

zb = 0

I grasp

xgripper (q0, · · · , q5)−

 xb
yb
zb

 = 0

Each state is a sub-manifold of the configuration space

Motion planning



Example : robot manipulating a ball

Motion constraints

Two types of motion :

I transit : the ball is lying and
fixed on the table,

I transfer : the ball moves with
the end-effector.

Motion planning



Example : robot manipulating a ball

Motion constraints

I transit

xb = x0
yb = y0

} parameterizable

zb = 0 } simple

I transfer

xgripper (q0, · · · , q5)−

 xb
yb
zb

 = 0

Motion planning



Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

I f : position of the ball

Lf (f1) = {q ∈ C, f (q) = f1}

I g : grasp of the ball

Lg (0) = {q ∈ C, g(q) = 0}

Motion planning



Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

Solution to a manipulation
planning problem is a

concatenation of transit and
transfer paths.

Motion planning



General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints

I trajectories of the system are subject to
I numerical constraints
I parameterizable numerical constraints.

Motion planning



General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints

I trajectories of the system are subject to
I numerical constraints
I parameterizable numerical constraints.

Motion planning



Constraint graph

A manipulation planning problem can be represented by a
manipulation graph.

I Nodes or states are numerical constraints.

I Edges or transitions are parameterizable numerical
constraints.

Placement GraspTransit

Grasp ball

Release ball

Transfer

Motion planning



Projecting configuration on constraint

Newton-Raphson algorithm

I q0 configuration,

I f (q) = 0 non-linear constraint,

I ε numerical tolerance

Projection (q0, f ) :

q = q0 ; α = 0.95

for i from 1 to max iter :

q = q− α
(

∂f
∂q (q)

)+
f (q)

if ‖f (q)‖ < ε : return q

return failure

Motion planning



Projecting path on constraint

I path : mapping from [0, 1] to C
I f (q) = 0 non-linear constraint,

Applying Newton Raphson at each point may result in a
discontinuous path

Motion planning



Discontinuous Projection

C = R2, f (x , y) = y2 − 1

∂f

∂q
=
(

0 2y
)
,
∂f

∂q

+

=

(
0
1
2y

)
ou

(
0
0

)
yi+1 = yi +

1− y2i
2yi

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()

for each connected component :

qnear = nearest neighbor(qrand , roadmap)
T = select transition(qnear )
qproj = generate target config(qnear ,qrand , T )
qnew = extend(qnear , qproj , T )
roadmap.insert node(qnew )
roadmap.insert edge(T , qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ) :

connect (q, roadmap)

Motion planning



Select transition

T = select transition(qnear )

Outward transitions of each state are given a probability
distribution. The transition from a state to another state is chosen
by random sampling.

Placement GraspTransit

Grasp ball

Release ball

Transfer

Motion planning



Generate target configuration

qproj = generate target config(qnear ,qrand , T )

Once transition T has been selected, qrand is projected onto the
destination state Sdest in a configuration reachable by qnear .

fT (qproj) = fT (qnear )

fSdest (qproj) = 0

Motion planning



Extend

qnew = extend(qnear , qproj , T )

Project straight path [qnear ,qproj ] on transition constraint :

I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew )← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew ), fT (q) = fT (qnear )

Motion planning



Extend

qnew = extend(qnear , qproj , T )

Project straight path [qnear ,qproj ] on transition constraint :

I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew )← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew ), fT (q) = fT (qnear )

Motion planning



Extend

qnew = extend(qnear , qproj , T )

Project straight path [qnear ,qproj ] on transition constraint :

I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew )← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew ), fT (q) = fT (qnear )

Motion planning



Connect

connect (q, roadmap)

for each connected component cc not containing q :
for all n closest config q1 to q in cc :

I connect (q, q1)

Motion planning



Connect

connect (q0, q1) :

S0 = state (q0)

S1 = state (q1)

T = transition (S0, S1)

if T and fT (q0) == fT (q1) :
if p = projected path (T , q0, q1) collision-free :

roadmap.insert edge (T , q0,q1)

return

Motion planning



Relative positions as numerical constraints

I T1 = T(R1,t1) ∈ SE (3),
T2 = T(R2,t2) ∈ SE (3).

I T2/1 = T−1
1 ◦ T2 can be

represented by a vector of
dimension 6 :(

u
v

)
where

u = RT
1 (t2 − t1)

RT
1 R2 matrix of the rotation

around axis v/‖v‖ and of
angles ‖v‖.

T1

T2

u

v

R1

R2

Motion planning



A few words about the BE

I script/grasp_ball.py

Motion planning


