Motion planning

Florent Lamiraux

CNRS-LAAS, Toulouse, France

Task and Motion Planning

Definition

Given

- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Definition

Given

- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Definition

Given

- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Configuration space

Configuration

$$
\begin{aligned}
& \mathbf{q}=\left(\mathbf{q}_{r_{1}}, \mathbf{q}_{r_{2}}, \mathbf{q}_{c_{1}}, \mathbf{q}_{c_{2}}, \mathbf{q}_{s_{1}}, \mathbf{q}_{s_{2}}\right) \\
& \mathbf{q}_{r_{1}}, \mathbf{q}_{r_{2}} \in \mathbb{R}^{6} \\
& \mathbf{q}_{c_{1}}, \mathbf{q}_{c_{2}}, \mathbf{q}_{s_{1}}, \mathbf{q}_{s_{2}} \in \mathbb{R}^{7}
\end{aligned}
$$

where
$\mathbf{q}_{r_{1}}=\left(q 1, \cdots, q_{6}\right)$ is the vector of joint angles,
$\mathbf{q}_{c_{1}}=(x, y, z, X, Y, Z, W)$
$W+X i+Y j+Z k i s$ a unit quaternion.
The configuration space is a differential manifold.

Quaternions

Non-commutative field isomorphic to \mathbb{R}^{4}, spanned by three elements i, j, k that satisfy the following relations:

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

from which we immediately deduce

$$
i j=k, j k=i, k i=j
$$

Quaternions

Non-commutative field isomorphic to \mathbb{R}^{4}, spanned by three elements i, j, k that satisfy the following relations:

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

from which we immediately deduce

$$
i j=k, j k=i, k i=j
$$

Hamilton (1843)

Unit Quaternions and rotations

Let $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ be a unit quaternion:

$$
q_{0}^{2}+q_{3}^{2}+q_{2}^{2}+q_{3}^{2}=1
$$

$\forall x=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$, let $u=x_{0} i+x_{1} j+x_{2} k$

$$
q \cdot u \cdot q^{*}=y_{0} i+y_{1} j+y_{2} k
$$

where $q^{*}=q_{0}-q_{1} i-q_{2} j-q_{3} k$ is the conjugate of q. $y=\left(y_{0}, y_{1}, y_{2}\right)$ is the image of x by the rotation of matrix $\left(\begin{array}{ccc}1-2\left(q_{2}^{2}+q_{3}^{2}\right) & 2 q_{2} q_{1}-2 q_{3} q_{0} & 2 q_{3} q_{1}+2 q_{2} q_{0} \\ 2 q_{2} q_{1}+2 q_{3} q_{0} & 1-2\left(q_{1}^{2}+q_{3}^{2}\right) & 2 q_{3} q_{2}-2 q_{1} q_{0} \\ 2 q_{3} q_{1}-2 q_{2} q_{0} & 2 q_{3} q_{2}+2 q_{1} q_{0} & 1-2\left(q_{1}^{2}+q_{2}^{2}\right)\end{array}\right)$

Unit Quaternions and rotations

Let $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ be a unit quaternion:

$$
q_{0}^{2}+q_{3}^{2}+q_{2}^{2}+q_{3}^{2}=1
$$

$\forall x=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$, let $u=x_{0} i+x_{1} j+x_{2} k$

$$
q \cdot u \cdot q^{*}=y_{0} i+y_{1} j+y_{2} k
$$

where $q^{*}=q_{0}-q_{1} i-q_{2} j-q_{3} k$ is the conjugate of q.
$y=\left(y_{0}, y_{1}, y_{2}\right)$ is the image of x by the rotation of matrix

Unit Quaternions and rotations

Let $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ be a unit quaternion :

$$
q_{0}^{2}+q_{3}^{2}+q_{2}^{2}+q_{3}^{2}=1
$$

$\forall x=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$, let $u=x_{0} i+x_{1} j+x_{2} k$

$$
q \cdot u \cdot q^{*}=y_{0} i+y_{1} j+y_{2} k
$$

where $q^{*}=q_{0}-q_{1} i-q_{2} j-q_{3} k$ is the conjugate of q. $y=\left(y_{0}, y_{1}, y_{2}\right)$ is the image of x by the rotation of matrix

$$
\left(\begin{array}{ccc}
1-2\left(q_{2}^{2}+q_{3}^{2}\right) & 2 q_{2} q_{1}-2 q_{3} q_{0} & 2 q_{3} q_{1}+2 q_{2} q_{0} \\
2 q_{2} q_{1}+2 q_{3} q_{0} & 1-2\left(q_{1}^{2}+q_{3}^{2}\right) & 2 q_{3} q_{2}-2 q_{1} q_{0} \\
2 q_{3} q_{1}-2 q_{2} q_{0} & 2 q_{3} q_{2}+2 q_{1} q_{0} & 1-2\left(q_{1}^{2}+q_{2}^{2}\right.
\end{array}\right)
$$

Unit Quaternions and rotations

- Notice that q and $-q$ represent the same rotation

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves \rightarrow Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}. - Configuration space: \mathcal{C}. - Position in configuration \mathbf{q} of a point $M \in B_{i}: x_{i}(M, q)$. - Obstacle in the configuration space

$$
\exists i, j \in\{1, \cdots, m\}, \exists M_{i} \in \mathcal{B}_{i}, \exists M_{j} \in \mathcal{B}_{j}
$$

$$
\left.\mathbf{x}_{i}\left(M_{i}, \mathbf{q}\right)=x_{j}\left(M_{j}, \mathbf{q}\right)\right\}
$$

- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$.

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves - Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}. Configuration space : C. - Position in configuration \mathbf{q} of a point $M \in \mathcal{B}_{i}: \mathbf{x}_{i}(M, \mathbf{q})$. - Obstacle in the configuration space

$\left.\mathbf{x}_{i}\left(M_{i}, \mathbf{q}\right)=x_{j}\left(M_{j}, \mathbf{q}\right)\right\}$
- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$.

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves
- Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}.
- Configuration space : \mathcal{C}.
\Rightarrow Position in configuration q of a point $M \in \mathcal{B}_{i}: \mathrm{x}_{i}(M, \mathbf{q})$.
- Obstacle in the configuration space

$\exists i, j \in\{1, \cdots, m\}, \exists M_{i} \in \mathcal{B}_{i}, \exists M_{j} \in \mathcal{B}_{j}$,
$\left.\mathbf{x}_{i}\left(M_{i}, \mathbf{q}\right)=x_{j}\left(M_{j}, \mathbf{q}\right)\right\}$
- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$.

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves
- Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}.
- Configuration space : \mathcal{C}.
- Position in configuration \mathbf{q} of a point $M \in \mathcal{B}_{i}: \mathbf{x}_{i}(M, \mathbf{q})$.
- Obstacle in the configuration space
$\mathcal{C}_{\text {obst }}=\{\mathbf{q} \in \mathcal{C}$,

$$
\begin{aligned}
& \exists i \in\{1, \cdots, m\}, \exists M \in B_{i}, x_{i}(M, \mathrm{q}) \in \mathcal{O} \text { or } \\
& \exists i, j \in\{1, \cdots, m\}, \exists M_{i} \in B_{i}, \exists M_{j} \in B_{j}, \\
& \left.x_{i}\left(M_{i}, \mathrm{q}\right)=x_{j}\left(M_{j}, \mathrm{q}\right)\right\}
\end{aligned}
$$

- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$.

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves
- Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}.
- Configuration space: \mathcal{C}.
- Position in configuration \mathbf{q} of a point $M \in \mathcal{B}_{i}: \mathbf{x}_{i}(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$
\begin{aligned}
\mathcal{C}_{\text {obst }}=\{\mathbf{q} \in \mathcal{C}, & \exists i \in\{1, \cdots, m\}, \exists M \in \mathcal{B}_{i}, \mathbf{x}_{i}(M, \mathbf{q}) \in \mathcal{O} \text { or } \\
& \exists i, j \in\{1, \cdots, m\}, \exists M_{i} \in \mathcal{B}_{i}, \exists M_{j} \in \mathcal{B}_{j}, \\
& \left.\mathbf{x}_{i}\left(M_{i}, \mathbf{q}\right)=x_{j}\left(M_{j}, \mathbf{q}\right)\right\}
\end{aligned}
$$

- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$

Definitions

- Workspace: $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} : space in which the robot evolves
- Obstacle in workspace : compact subset of \mathcal{W}, denoted by \mathcal{O}.
- Configuration space: \mathcal{C}.
- Position in configuration \mathbf{q} of a point $M \in \mathcal{B}_{i}: \mathbf{x}_{i}(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$
\begin{aligned}
\mathcal{C}_{\text {obst }}=\{\mathbf{q} \in \mathcal{C}, & \exists i \in\{1, \cdots, m\}, \exists M \in \mathcal{B}_{i}, \mathbf{x}_{i}(M, \mathbf{q}) \in \mathcal{O} \text { or } \\
& \exists i, j \in\{1, \cdots, m\}, \exists M_{i} \in \mathcal{B}_{i}, \exists M_{j} \in \mathcal{B}_{j}, \\
& \left.\mathbf{x}_{i}\left(M_{i}, \mathbf{q}\right)=x_{j}\left(M_{j}, \mathbf{q}\right)\right\}
\end{aligned}
$$

- Free configuration space : $\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C}_{\text {obst }}$.

Motion

- Configuration space:
- differential manifold
- Motion
- continuous function from $[0,1]$ to \mathcal{C}.
- Collision-free motion
\Rightarrow continuous function from $[0,1]$ to $\mathcal{C}_{\text {free }}$.

Motion

- Configuration space :
- differential manifold
- Motion :
- continuous function from $[0,1]$ to \mathcal{C}.
- Collision-free motion
- continuous function from $[0,1]$ to $\mathcal{C}_{\text {free }}$.

Motion

- Configuration space :
- differential manifold
- Motion :
- continuous function from $[0,1]$ to \mathcal{C}.
- Collision-free motion :
- continuous function from $[0,1]$ to $\mathcal{C}_{\text {free }}$.

Motion planning problem

initial configuration

goal configuration

$$
\mathcal{C}=\mathbb{R}^{6}
$$

History

- Before the 1990's : mainly a mathematical problem
- real algebraic geometry,
- decidability : Schwartz and Sharir 1982,
- Tarski theorem, Collins decomposition,
> from the 1990's : an algorithmic problem
- random sampling (1993),
- asymptotically optimal random sampling (2011).

History

- Before the 1990's : mainly a mathematical problem
- real algebraic geometry,
- decidability: Schwartz and Sharir 1982,
- Tarski theorem, Collins decomposition,
- from the 1990's : an algorithmic problem
- random sampling (1993),
- asymptotically optimal random sampling (2011).

Random methods

- In the early 1990's, random methods started being developed
- Principle
- shoot random configurations
\rightarrow test whether they are in collision
\rightarrow build a graph (roadmap) the nodes of which are free configurations
- and the edges of which are collision-free linear interpolations

Random methods

- In the early 1990's, random methods started being developed
- Principle
- shoot random configurations
> test whether they are in collision
- build a graph (roadmap) the nodes of which are free configurations
> and the edges of which are collision-free linear interpolations

Random methods

- In the early 1990's, random methods started being developed
- Principle
- shoot random configurations
- test whether they are in collision
- build a graph (roadmap) the nodes of which are free configurations
- and the edges of which are collision-free linear interpolations

Random methods

- In the early 1990's, random methods started being developed
- Principle
- shoot random configurations
- test whether they are in collision
- build a graph (roadmap) the nodes of which are free configurations
> and the edges of which are collision-free linear interpolations

Random methods

- In the early 1990's, random methods started being developed
- Principle
- shoot random configurations
- test whether they are in collision
- build a graph (roadmap) the nodes of which are free configurations
- and the edges of which are collision-free linear interpolations

Rapidly exploring Random Tree (RRT) 2000

$\mathrm{q}_{\text {goal }}$

Rapidly exploring Random Tree (RRT) 2000

Pick a random configuration

Rapidly exploring Random Tree (RRT) 2000

Try to connect it to the nearest nodes of each connected component

Rapidly exploring Random Tree (RRT) 2000

Keep collision-free parts of paths

Rapidly exploring Random Tree (RRT) 2000

Try to connect new nodes to nearest nodes of other connected components

Rapidly exploring Random Tree (RRT) 2000

Random methods

- Pros:
- no explicit computation of the free configuration space,
- easy to implement,
- robust.
\rightarrow Cons
- no completeness property, only probabilistic completeness,
\rightarrow difficult to find narrow passages.
- Requested operators
- Collision tests
- for configurations (static),
- for paths (dynamic)

Random methods

- Pros:
- no explicit computation of the free configuration space,
- easy to implement,
- robust.
- Cons:
- no completeness property, only probabilistic completeness,
- difficult to find narrow passages.
- Requested operators - Collision tests
- for configurations (static),
- for paths (dynamic)

Random methods

- Pros:
- no explicit computation of the free configuration space,
- easy to implement,
- robust.
- Cons:
- no completeness property, only probabilistic completeness,
- difficult to find narrow passages.
- Requested operators:
- Collision tests
- for configurations (static),
- for paths (dynamic)

Definitions

A manipulation motion

- is the motion of
- one or several robots and of
- one or several objects
- such that each object
- either is in a stable position, or
- is moved by one or several robots.

Definitions

A manipulation motion

- is the motion of
- one or several robots and of
- one or several objects
- such that each object
- either is in a stable position, or
- is moved by one or several robots.

Numerical constraints

Constraints to which manipulation motions are subject can be expressed numerically.

- Numerical constraints:

$$
\begin{array}{ll}
f(\mathbf{q})=0, & m \in \mathbb{N} \\
f \in C^{1}\left(\mathcal{C}, \mathbb{R}^{m}\right)
\end{array}
$$

- setConstantRightHandSide(True)
- Parameterizable numerical constraints:

$$
\begin{array}{ll}
& m \in \mathbb{N} \\
f(\mathbf{q})=f_{0}, & f \in C^{1}\left(\mathcal{C}, \mathbb{R}^{m}\right) \\
& f_{0} \in \mathbb{R}^{m}
\end{array}
$$

- setConstantRightHandSide(False)

Example : robot manipulating a ball

$$
\begin{align*}
\mathcal{C} & =[-\pi, \pi]^{6} \times \mathbb{R}^{3} \tag{1}\\
\mathbf{q} & =\left(q_{0}, \cdots, q_{5}, x_{b}, y_{b}, z_{b}\right) \tag{2}
\end{align*}
$$

Two states:

- placement : the ball is lying on the table,
- grasp : the ball is held by the end-effector.

Example : robot manipulating a ball

Each state is defined by a numerical constraint

- placement

$$
z_{b}=0
$$

$\mathbf{x}_{\text {gripper }}\left(q_{0}\right.$,

Each state is a sub-manifold of the configuration space

Example : robot manipulating a ball

Each state is defined by a numerical constraint

- placement

$$
z_{b}=0
$$

grasp

$$
\mathbf{x}_{\text {gripper }}\left(q_{0}, \cdots, q_{5}\right)-\left(\begin{array}{c}
x_{b} \\
y_{b} \\
z_{b}
\end{array}\right)=0
$$

Each state is a sub-manifold of the configuration space

Example : robot manipulating a ball

Motion constraints

Two types of motion :

- transit: the ball is lying and fixed on the table,
- transfer: the ball moves with the end-effector.

Example : robot manipulating a ball

Motion constraints

- transit

$$
\begin{array}{lll}
x_{b}=x_{0} & \} & \text { parameterizable } \\
y_{b}=y_{0} & \} & \\
z_{b}=0 & & \} \text { simple }
\end{array}
$$

- transfer

$$
\mathbf{x}_{\text {gripper }}\left(q_{0}, \cdots, q_{5}\right)-\left(\begin{array}{c}
x_{b} \\
y_{b} \\
z_{b}
\end{array}\right)=0
$$

Foliation

Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).

- f : position of the ball

$$
L_{f}\left(f_{1}\right)=\left\{\mathbf{q} \in \mathcal{C}, f(\mathbf{q})=f_{1}\right\}
$$

- g : grasp of the ball

$$
L_{g}(0)=\{\mathbf{q} \in \mathcal{C}, g(\mathbf{q})=0\}
$$

Foliation

Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).

> Solution to a manipulation planning problem is a concatenation of transit and transfer paths.

General case

In a manipulation problem,

- the state of the system is subject to
- numerical constraints
> trajectories of the system are subject to - numerical constraints
- parameterizable numerical constraints.

General case

In a manipulation problem,

- the state of the system is subject to
- numerical constraints
- trajectories of the system are subject to
- numerical constraints
- parameterizable numerical constraints.

Constraint graph

A manipulation planning problem can be represented by a manipulation graph.

- Nodes or states are numerical constraints.
- Edges or transitions are parameterizable numerical constraints.

Projecting configuration on constraint

Newton-Raphson algorithm

- \mathbf{q}_{0} configuration,
- $f(\mathbf{q})=0$ non-linear constraint,
- ϵ numerical tolerance

Projection $\left(\mathbf{q}_{0}, f\right)$:
$\mathbf{q}=\mathbf{q}_{0} ; \alpha=0.95$
for i from 1 to max_iter :

$$
\begin{aligned}
& \mathbf{q}=\mathbf{q}-\alpha\left(\frac{\partial f}{\partial \mathbf{q}}(\mathbf{q})\right)^{+} f(\mathbf{q}) \\
& \text { if }\|f(\mathbf{q})\|<\epsilon: \text { return } \mathbf{q}
\end{aligned}
$$

return failure

Projecting path on constraint

- path: mapping from $[0,1]$ to \mathcal{C}
- $f(\mathbf{q})=0$ non-linear constraint,

Applying Newton Raphson at each point may result in a discontinuous path

Discontinuous Projection

$$
\begin{aligned}
& \mathcal{C}=\mathbb{R}^{2}, f(x, y)=y^{2}-1 \\
& \frac{\partial f}{\partial \mathbf{q}}=\left(\begin{array}{ll}
0 & 2 y
\end{array}\right), \frac{\partial f^{+}}{\partial \mathbf{q}}=\binom{0}{\frac{1}{2 y}} \text { ou }\binom{0}{0} \\
& y_{i+1}=y_{i}+\frac{1-y_{i}^{2}}{2 y_{i}}
\end{aligned}
$$

Algorithm

Manipulation RRT

Manipulation RRT
$\mathbf{q}_{\text {rand }}=$ shoot_random_config()
for each connected component
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{r a n d}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathrm{q}_{\text {near }}\right)$
$\mathrm{q}_{\text {proj }}=$ generate_target_config $\left(\mathrm{q}_{\text {near }}, \mathrm{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert edge $\left(T, q_{\text {near }}, \mathrm{q}_{\text {new }}\right)$
new_nodes.append $\left(q_{\text {new }}\right)$
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

 for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathrm{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert_edge($\left.T, \mathrm{q}_{\text {near }}, \mathrm{q}_{\text {new }}\right)$
new_nodes.append $\left(\mathbf{q}_{\text {new }}\right)$
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{n e w}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert_edge($T, \mathbf{q}_{\text {near }}, \mathrm{q}_{\text {new }}$)
new_nodes.append ($\mathrm{q}_{\text {new }}$)
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert_edge($T, \mathrm{q}_{\text {near }}, \mathrm{q}_{\text {new }}$)
new_nodes.append ($\mathbf{q}_{\text {new }}$)
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$ roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert_edge($T, \mathrm{q}_{\text {near }}, \mathrm{q}_{\text {new }}$)
new_nodes.append ($\mathrm{q}_{\text {new }}$)
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$ roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$
roadmap.insert_edge($\left.T, \mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right)$ new_nodes.append $\left(\mathbf{q}_{\text {new }}\right)$
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{n e w}^{n_{n c c}}\right)$

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$ roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$ roadmap.insert_edge($T, \mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}$) new_nodes.append ($\mathbf{q}_{\text {new }}$)
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{\text {new }}^{n_{c c}}\right)$:
connect (\mathbf{q}, roadmap)

Algorithm

Manipulation RRT

Manipulation RRT

$\mathbf{q}_{\text {rand }}=$ shoot_random_config() for each connected component :
$\mathbf{q}_{\text {near }}=$ nearest_neighbor $\left(\mathbf{q}_{\text {rand }}\right.$, roadmap $)$
$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$ roadmap.insert_node $\left(\mathbf{q}_{\text {new }}\right)$ roadmap.insert_edge($T, \mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}$) new_nodes.append ($\mathbf{q}_{\text {new }}$)
for $\mathbf{q} \in\left(\mathbf{q}_{\text {new }}^{1}, \ldots, \mathbf{q}_{n e w}^{n_{c c}}\right)$:
connect (\mathbf{q}, roadmap)

Select transition

$T=$ select_transition $\left(\mathbf{q}_{\text {near }}\right)$
Outward transitions of each state are given a probability distribution. The transition from a state to another state is chosen by random sampling.

Generate target configuration

$\mathbf{q}_{\text {proj }}=$ generate_target_config $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {rand }}, T\right)$
Once transition T has been selected, $\mathbf{q}_{\text {rand }}$ is projected onto the destination state $S_{\text {dest }}$ in a configuration reachable by $\mathbf{q}_{\text {near }}$.

$$
\begin{aligned}
f_{T}\left(\mathbf{q}_{\text {proj }}\right) & =f_{T}\left(\mathbf{q}_{\text {near }}\right) \\
f_{S_{\text {dest }}}\left(\mathbf{q}_{\text {proj }}\right) & =0
\end{aligned}
$$

Extend

$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
Project straight path [$\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}$] on transition constraint:

- if projection successful and projected path collision free

$$
\mathbf{q}_{\text {new }} \leftarrow \mathbf{q}_{\text {proj }}
$$

- otherwise $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right) \leftarrow$ largest path interval tested as collision-free with successful projection.

$$
\forall \mathbf{q} \in\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right), f_{T}(\mathbf{q})=f_{T}\left(\mathbf{q}_{\text {near }}\right)
$$

Extend

$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
Project straight path [$\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}$] on transition constraint:

- if projection successful and projected path collision free

$$
\mathbf{q}_{\text {new }} \leftarrow \mathbf{q}_{\text {proj }}
$$

- otherwise $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right) \leftarrow$ largest path interval tested as collision-free with successful projection.
$\forall \mathbf{q} \in\left(\mathrm{q}_{\text {near }}, \mathrm{q}_{\text {new }}\right), f_{T}(\mathrm{q})=f_{T}\left(\mathrm{q}_{\text {near }}\right)$

Extend

$\mathbf{q}_{\text {new }}=\operatorname{extend}\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}, T\right)$
Project straight path [$\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {proj }}$] on transition constraint:

- if projection successful and projected path collision free

$$
\mathbf{q}_{\text {new }} \leftarrow \mathbf{q}_{\text {proj }}
$$

- otherwise $\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right) \leftarrow$ largest path interval tested as collision-free with successful projection.

$$
\forall \mathbf{q} \in\left(\mathbf{q}_{\text {near }}, \mathbf{q}_{\text {new }}\right), f_{T}(\mathbf{q})=f_{T}\left(\mathbf{q}_{\text {near }}\right)
$$

Connect

connect (q, roadmap)
for each connected component $c c$ not containing \mathbf{q} : for all n closest config \mathbf{q}_{1} to \mathbf{q} in $c c$:

- connect $\left(\mathbf{q}, \mathbf{q}_{1}\right)$

Connect

```
connect (q}\mp@subsup{\mathbf{q}}{0}{},\mp@subsup{\mathbf{q}}{1}{})\mathrm{ :
    So = state (q}\mp@subsup{\mathbf{q}}{0}{}
    S = state (q}\mp@subsup{\mathbf{q}}{1}{}
    T= transition (S0, S )
    if T and f
        if p = projected_path (T, \mp@subsup{\mathbf{q}}{0}{},\mp@subsup{\mathbf{q}}{1}{})\mathrm{ collision-free:}
        roadmap.insert_edge (T, q}\mp@subsup{\mathbf{q}}{0}{},\mp@subsup{\mathbf{q}}{1}{}
    return
```


Relative positions as numerical constraints

- $T_{1}=T_{\left(R_{1}, t_{1}\right)} \in S E(3)$, $T_{2}=T_{\left(R_{2}, t_{2}\right)} \in S E(3)$.
- $T_{2 / 1}=T_{1}^{-1} \circ T_{2}$ can be represented by a vector of dimension 6 :

$$
\binom{\mathbf{u}}{\mathbf{v}}
$$

where

$$
\mathbf{u}=R_{1}^{T}\left(t_{2}-t_{1}\right)
$$

$R_{1}^{T} R_{2}$ matrix of the rotation around axis $\mathbf{v} /\|\mathbf{v}\|$ and of angles $\|\mathbf{v}\|$.

A few words about the BE

- script/grasp_ball.py

