Motion planning

Florent Lamiraux

CNRS-LAAS, Toulouse, France

Motion planning

æ

Task and Motion Planning

Motion planning

æ

Given

- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Given

- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Given

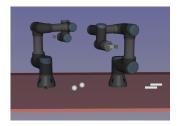
- One or several robots,
- One or several objects,
- initial configurations for robots and objects
- goal configurations for robots and objects

Task and Motion planning : automatically computing a feasible trajectory between the initial and goal configurations.

Configuration space

Configuration

$$\begin{split} \mathbf{q} &= (\mathbf{q}_{r_1}, \mathbf{q}_{r_2}, \mathbf{q}_{c_1}, \mathbf{q}_{c_2}, \mathbf{q}_{s_1}, \mathbf{q}_{s_2}) \\ \mathbf{q}_{r_1}, \mathbf{q}_{r_2} &\in \mathbb{R}^6 \\ \mathbf{q}_{c_1}, \mathbf{q}_{c_2}, \mathbf{q}_{s_1}, \mathbf{q}_{s_2} \in \mathbb{R}^7 \end{split}$$



where

$$\mathbf{q}_{r_1} = (q1, \cdots, q_6)$$
 is the vector of joint angles,
 $\mathbf{q}_{c_1} = (x, y, z, X, Y, Z, W)$
 $W + Xi + Yj + Zk$ is a **unit** quaternion.

The configuration space is a differential manifold.

Quaternions

Non-commutative field isomorphic to \mathbb{R}^4 , spanned by three elements i, j, k that satisfy the following relations :

$$i^2 = j^2 = k^2 = ijk = -1$$

from which we immediately deduce

$$ij = k, jk = i, ki = j$$

Hamilton (1843)

Quaternions

Non-commutative field isomorphic to \mathbb{R}^4 , spanned by three elements i, j, k that satisfy the following relations :

$$i^2 = j^2 = k^2 = ijk = -1$$

from which we immediately deduce

$$ij = k$$
, $jk = i$, $ki = j$

Hamilton (1843)

Let $q = q_0 + q_1i + q_2j + q_3k$ be a unit quaternion :

$$q_0^2 + q_3^2 + q_2^2 + q_3^2 = 1$$

 $\forall x = (x_0, x_1, x_2) \in \mathbb{R}^3$, let $u = x_0 i + x_1 j + x_2 k$

$$q \cdot u \cdot q^* = y_0 i + y_1 j + y_2 k$$

where $q^* = q_0 - q_1i - q_2j - q_3k$ is the conjugate of q. $y = (y_0, y_1, y_2)$ is the image of x by the rotation of matrix

$$\begin{pmatrix} 1-2(q_2^2+q_3^2) & 2q_2q_1-2q_3q_0 & 2q_3q_1+2q_2q_0 \\ 2q_2q_1+2q_3q_0 & 1-2(q_1^2+q_3^2) & 2q_3q_2-2q_1q_0 \\ 2q_3q_1-2q_2q_0 & 2q_3q_2+2q_1q_0 & 1-2(q_1^2+q_2^2) \end{pmatrix}$$

Let $q = q_0 + q_1i + q_2j + q_3k$ be a unit quaternion :

$$q_0^2 + q_3^2 + q_2^2 + q_3^2 = 1$$

 $\forall x = (x_0, x_1, x_2) \in \mathbb{R}^3$, let $u = x_0 i + x_1 j + x_2 k$

$$q \cdot u \cdot q^* = y_0 i + y_1 j + y_2 k$$

where $q^* = q_0 - q_1 i - q_2 j - q_3 k$ is the conjugate of q. $y = (y_0, y_1, y_2)$ is the image of x by the rotation of matrix

$$\begin{pmatrix} 1-2(q_2^2+q_3^2) & 2q_2q_1-2q_3q_0 & 2q_3q_1+2q_2q_0 \\ 2q_2q_1+2q_3q_0 & 1-2(q_1^2+q_3^2) & 2q_3q_2-2q_1q_0 \\ 2q_3q_1-2q_2q_0 & 2q_3q_2+2q_1q_0 & 1-2(q_1^2+q_2^2) \end{pmatrix}$$

Let $q = q_0 + q_1i + q_2j + q_3k$ be a unit quaternion :

$$q_0^2 + q_3^2 + q_2^2 + q_3^2 = 1$$

 $\forall x = (x_0, x_1, x_2) \in \mathbb{R}^3$, let $u = x_0 i + x_1 j + x_2 k$

$$q \cdot u \cdot q^* = y_0 i + y_1 j + y_2 k$$

where $q^* = q_0 - q_1 i - q_2 j - q_3 k$ is the conjugate of q. $y = (y_0, y_1, y_2)$ is the image of x by the rotation of matrix

$$\left(egin{array}{cccc} 1-2(q_2^2+q_3^2) & 2q_2q_1-2q_3q_0 & 2q_3q_1+2q_2q_0\ 2q_2q_1+2q_3q_0 & 1-2(q_1^2+q_3^2) & 2q_3q_2-2q_1q_0\ 2q_3q_1-2q_2q_0 & 2q_3q_2+2q_1q_0 & 1-2(q_1^2+q_2^2) \end{array}
ight)$$

• Notice that q and -q represent the same rotation

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- Obstacle in workspace : compact subset of \mathcal{W} , denoted by \mathcal{O} .
- ► Configuration space : C.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$$

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- ▶ Obstacle in workspace : compact subset of *W*, denoted by *O*.
- ► Configuration space : *C*.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$$

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- ▶ Obstacle in workspace : compact subset of *W*, denoted by *O*.
- ► Configuration space : C.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$$

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- ▶ Obstacle in workspace : compact subset of *W*, denoted by *O*.
- ► Configuration space : C.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.

Obstacle in the configuration space :

 $\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- ▶ Obstacle in workspace : compact subset of *W*, denoted by *O*.
- ► Configuration space : C.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$$

- ▶ Workspace : $W = \mathbb{R}^2$ or \mathbb{R}^3 : space in which the robot evolves
- ▶ Obstacle in workspace : compact subset of *W*, denoted by *O*.
- ► Configuration space : C.
- ▶ Position in configuration **q** of a point $M \in B_i$: $\mathbf{x}_i(M, \mathbf{q})$.
- Obstacle in the configuration space :

$$\begin{aligned} \mathcal{C}_{obst} &= \{ \mathbf{q} \in \mathcal{C}, \quad \exists i \in \{1, \cdots, m\}, \ \exists M \in \mathcal{B}_i, \ \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ &\exists i, j \in \{1, \cdots, m\}, \ \exists M_i \in \mathcal{B}_i, \ \exists M_j \in \mathcal{B}_j, \\ &\mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \} \end{aligned}$$

Motion

Configuration space :

Motion :

• continuous function from [0,1] to C.

Collision-free motion :

• continuous function from [0, 1] to C_{free} .

Motion

Configuration space :

- differential manifold
- Motion :
 - continuous function from [0,1] to C.
- Collision-free motion :
 - continuous function from [0,1] to C_{free} .

Motion

Configuration space :

differential manifold

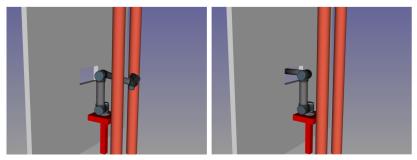
Motion :

• continuous function from [0,1] to C.

Collision-free motion :

• continuous function from [0,1] to C_{free} .

Motion planning problem



initial configuration

goal configuration

 $\mathcal{C} = \mathbb{R}^6$

History

Before the 1990's : mainly a mathematical problem

- real algebraic geometry,
- decidability : Schwartz and Sharir 1982,
 - Tarski theorem, Collins decomposition,
- ▶ from the 1990's : an algorithmic problem
 - random sampling (1993),
 - asymptotically optimal random sampling (2011).

History

Before the 1990's : mainly a mathematical problem

- real algebraic geometry,
- decidability : Schwartz and Sharir 1982,
 - Tarski theorem, Collins decomposition,
- from the 1990's : an algorithmic problem
 - random sampling (1993),
 - asymptotically optimal random sampling (2011).

In the early 1990's, random methods started being developed

- Principle
 - shoot random configurations
 - test whether they are in collision
 - build a graph (roadmap) the nodes of which are free configurations
 - and the edges of which are collision-free linear interpolations

In the early 1990's, random methods started being developed

Principle

shoot random configurations

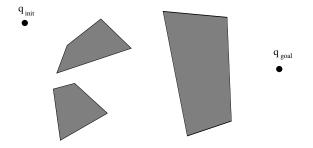
- test whether they are in collision
- build a graph (roadmap) the nodes of which are free configurations
- and the edges of which are collision-free linear interpolations

- In the early 1990's, random methods started being developed
- Principle
 - shoot random configurations
 - test whether they are in collision
 - build a graph (roadmap) the nodes of which are free configurations

and the edges of which are collision-free linear interpolations

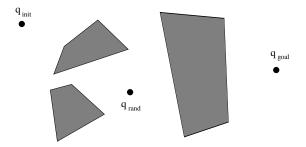
- In the early 1990's, random methods started being developed
- Principle
 - shoot random configurations
 - test whether they are in collision
 - build a graph (roadmap) the nodes of which are free configurations
 - and the edges of which are collision-free linear interpolations

- In the early 1990's, random methods started being developed
- Principle
 - shoot random configurations
 - test whether they are in collision
 - build a graph (roadmap) the nodes of which are free configurations
 - and the edges of which are collision-free linear interpolations

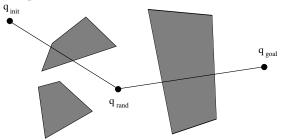


Motion planning

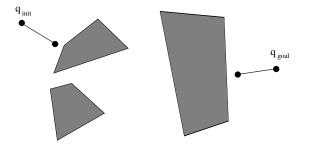
Pick a random configuration



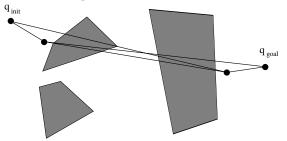
Try to connect it to the nearest nodes of each connected component

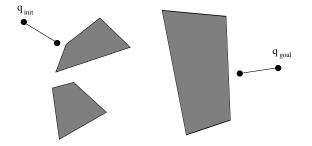


Keep collision-free parts of paths

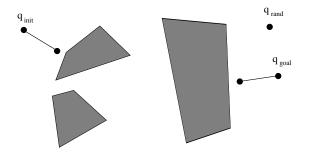


Try to connect new nodes to nearest nodes of other connected components

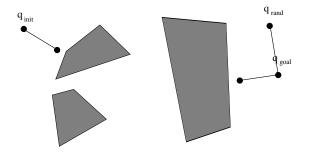


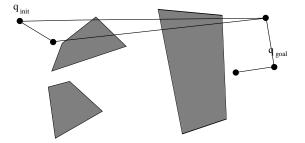


Motion planning

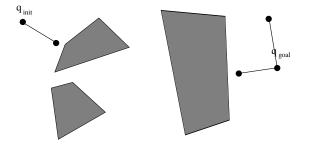


Motion planning

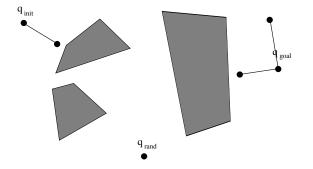


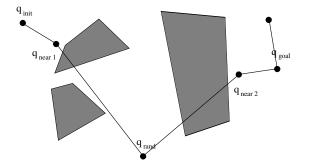


Motion planning

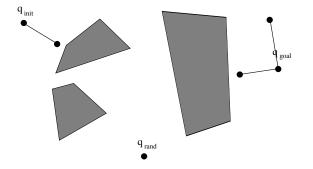


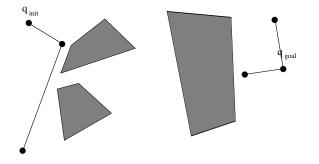
Motion planning

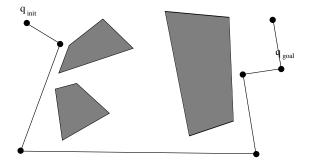




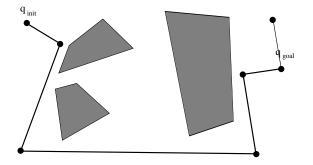
Motion planning







Motion planning



Motion planning

Random methods

Pros :

- no explicit computation of the free configuration space,
- easy to implement,
- robust.
- Cons :
 - no completeness property, only probabilistic completeness,
 - difficult to find narrow passages.
- Requested operators :
 - Collision tests
 - for configurations (static),
 - for paths (dynamic)

Random methods

Pros :

no explicit computation of the free configuration space,

- easy to implement,
- robust.
- Cons :
 - no completeness property, only probabilistic completeness,
 - difficult to find narrow passages.
- Requested operators :
 - Collision tests
 - for configurations (static),
 - for paths (dynamic)

Random methods

Pros :

- no explicit computation of the free configuration space,
- easy to implement,
- robust.
- Cons :
 - no completeness property, only probabilistic completeness,
 - difficult to find narrow passages.
- Requested operators :
 - Collision tests
 - for configurations (static),
 - for paths (dynamic)

Definitions

A manipulation motion

- is the motion of
 - one or several robots and of
 - one or several objects
- such that each object
 - either is in a stable position, or
 - ▶ is moved by one or several robots.

Definitions

A manipulation motion

- is the motion of
 - one or several robots and of
 - one or several objects
- such that each object
 - either is in a stable position, or
 - is moved by one or several robots.

Numerical constraints

Constraints to which manipulation motions are subject can be expressed numerically.

Numerical constraints :

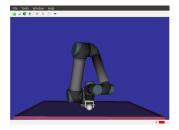
$$f(\mathbf{q}) = 0, \qquad egin{array}{cc} m \in \mathbb{N}, \ f \in C^1(\mathcal{C}, \mathbb{R}^m) \end{array}$$

setConstantRightHandSide(True)

Parameterizable numerical constraints :

$$f(\mathbf{q}) = f_0, \qquad \begin{array}{l} m \in \mathbb{N}, \\ f \in C^1(\mathcal{C}, \mathbb{R}^m) \\ f_0 \in \mathbb{R}^m \end{array}$$

setConstantRightHandSide(False)



$$\mathcal{C} = [-\pi, \pi]^6 \times \mathbb{R}^3 \tag{1}$$

$$\mathbf{q} = (q_0, \cdots, q_5, x_b, y_b, z_b) \quad (2)$$

Two states :

- placement : the ball is lying on the table,
- grasp : the ball is held by the end-effector.

Each state is defined by a numerical constraint

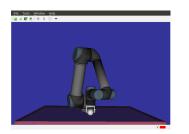
> placement

$$z_b = 0$$

▶ grasp

$$\mathbf{x}_{gripper}(q_0,\cdots,q_5) - \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = 0$$

Each state is a sub-manifold of the configuration space



Each state is defined by a numerical constraint

placement

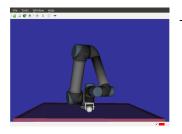
$$z_b = 0$$

▶ grasp

$$\mathbf{x}_{gripper}(q_0,\cdots,q_5) - \left(egin{array}{c} x_b \ y_b \ z_b \end{array}
ight) = 0$$

Each state is a sub-manifold of the configuration space

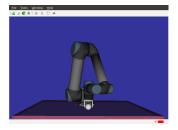
Motion constraints



Two types of motion :

- transit : the ball is lying and fixed on the table,
- transfer : the ball moves with the end-effector.

Motion constraints



transit

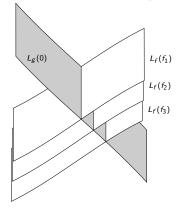
 $x_b = x_0$ $y_b = y_0$ } parameterizable $z_b = 0$ } simple

transfer

$$\mathbf{x}_{gripper}(q_0,\cdots,q_5) - \left(egin{array}{c} x_b \ y_b \ z_b \end{array}
ight) = 0$$

Foliation

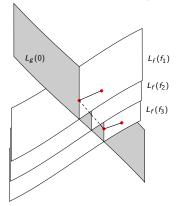
Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).



- ► *f* : position of the ball
 - $L_f(f_1) = \{\mathbf{q} \in \mathcal{C}, f(\mathbf{q}) = f_1\}$
- ▶ g : grasp of the ball
 - $L_g(0) = \{\mathbf{q} \in \mathcal{C}, g(\mathbf{q}) = 0\}$

Foliation

Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).



Solution to a manipulation planning problem is a concatenation of *transit* and *transfer* paths.

General case

In a manipulation problem,

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints.

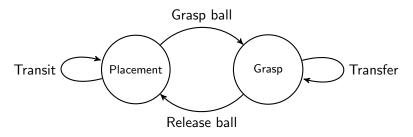
In a manipulation problem,

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints.

Constraint graph

A manipulation planning problem can be represented by a *manipulation graph*.

- **Nodes** or *states* are numerical constraints.
- Edges or *transitions* are parameterizable numerical constraints.



Projecting configuration on constraint

Newton-Raphson algorithm

q₀ configuration,

 $\blacktriangleright \epsilon$ numerical tolerance

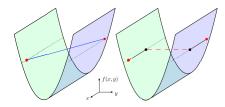
Projection (\mathbf{q}_0, f) :

 $\mathbf{q} = \mathbf{q}_0; \ \alpha = 0.95$
for i from 1 to max_iter :
 $\mathbf{q} = \mathbf{q} - \alpha \left(\frac{\partial f}{\partial \mathbf{q}}(\mathbf{q})\right)^+ f(\mathbf{q})$
if $\|f(\mathbf{q})\| < \epsilon$: return \mathbf{q}
return failure

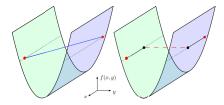
Projecting path on constraint

- *path* : mapping from [0,1] to C
- $f(\mathbf{q}) = 0$ non-linear constraint,

Applying Newton Raphson at each point may result in a discontinuous path



Discontinuous Projection

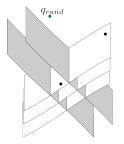


$$\mathcal{C} = \mathbb{R}^2, f(x, y) = y^2 - 1$$

$$\frac{\partial f}{\partial \mathbf{q}} = \begin{pmatrix} 0 & 2y \end{pmatrix}, \quad \frac{\partial f}{\partial \mathbf{q}}^+ = \begin{pmatrix} 0 \\ \frac{1}{2y} \end{pmatrix} \text{ ou } \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$y_{i+1} = y_i + \frac{1 - y_i^2}{2y_i}$$

æ



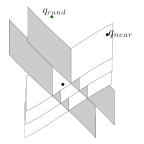
Manipulation RRT

 $\mathbf{q}_{\textit{rand}} = \mathsf{shoot_random_config()}$

for each connected component :

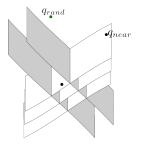
 $\begin{array}{l} \mathbf{q}_{near} = \mathrm{nearest_neighbor}(\mathbf{q}_{rand}, \ roadmap)\\ \mathcal{T} = \mathrm{select_transition}(\mathbf{q}_{near})\\ \mathbf{q}_{proj} = \mathrm{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, \ \mathcal{T})\\ \mathbf{q}_{new} = \mathrm{extend}(\mathbf{q}_{near}, \ \mathbf{q}_{proj}, \ \mathcal{T})\\ roadmap.\mathrm{insert_node}(\mathbf{q}_{new})\\ roadmap.\mathrm{insert_edge}(\mathcal{T}, \ \mathbf{q}_{near}, \ \mathbf{q}_{new})\\ \mathrm{new_nodes.append}\ (\mathbf{q}_{new}) \end{array}$

for $\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$: connect (\mathbf{q} , roadmap)



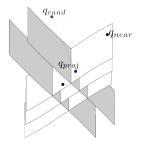
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$



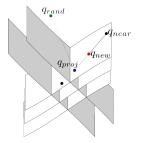
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$



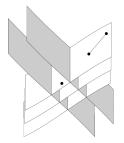
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$ $\mathbf{q}_{proi} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$



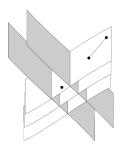
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$ $\mathbf{q}_{proi} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$ $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, T)$



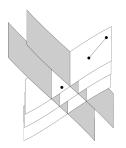
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$ $\mathbf{q}_{proi} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$ $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proi}, T)$ roadmap.insert_node(**q**_{new})



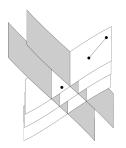
Manipulation RRT

 $\begin{aligned} \mathbf{q}_{rand} &= \text{shoot_random_config()} \\ \text{for each connected component :} \\ \mathbf{q}_{near} &= \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap) \\ \mathcal{T} &= \text{select_transition}(\mathbf{q}_{near}) \\ \mathbf{q}_{proj} &= \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, \mathcal{T}) \\ \mathbf{q}_{new} &= \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \mathcal{T}) \\ roadmap.\text{insert_node}(\mathbf{q}_{new}) \\ roadmap.\text{insert_edge}(\mathcal{T}, \mathbf{q}_{near}, \mathbf{q}_{new}) \\ \text{new_nodes.append} (\mathbf{q}_{new}) \\ \text{for } \mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}}) \\ \end{aligned}$



Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$ $\mathbf{q}_{proi} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$ $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, T)$ roadmap.insert_node(**q**_{new}) roadmap.insert_edge(T, q_{near}, q_{new}) new_nodes.append (\mathbf{q}_{new}) for $\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$:



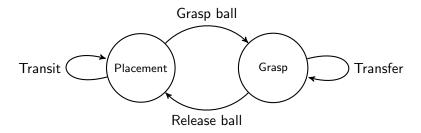
Manipulation RRT

 $\mathbf{q}_{rand} = \text{shoot}_{random}()$ for each connected component : $\mathbf{q}_{near} = \text{nearest_neighbor}(\mathbf{q}_{rand}, roadmap)$ $T = \text{select}_{\text{transition}}(\mathbf{q}_{\text{near}})$ $\mathbf{q}_{proi} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$ $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, T)$ roadmap.insert_node(**q**_{new}) roadmap.insert_edge(T, \mathbf{q}_{near} , \mathbf{q}_{new}) new_nodes.append (\mathbf{q}_{new}) for $\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$: connect (**q**, roadmap)

Select transition

```
T = select\_transition(\mathbf{q}_{near})
```

Outward transitions of each state are given a probability distribution. The transition from a state to another state is chosen by random sampling.



Generate target configuration

$$\mathbf{q}_{proj} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, T)$$

Once transition T has been selected, \mathbf{q}_{rand} is projected onto the destination state S_{dest} in a configuration reachable by \mathbf{q}_{near} .

$$f_T(\mathbf{q}_{proj}) = f_T(\mathbf{q}_{near})$$

 $f_{\mathcal{S}_{dest}}(\mathbf{q}_{proj}) = 0$

Extend

 $\mathbf{q}_{new} = \mathsf{extend}(\mathbf{q}_{near}, \, \mathbf{q}_{proj}, \, T)$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on transition constraint :

if projection successful and projected path collision free

 $\mathbf{q}_{new} \leftarrow \mathbf{q}_{proj}$

► otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.
∀q ∈ (q_{near}, q_{new}), f_T(q) = f_T(q_{near})

Extend

 $\mathbf{q}_{new} = \mathsf{extend}(\mathbf{q}_{near}, \, \mathbf{q}_{proj}, \, T)$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on transition constraint :

if projection successful and projected path collision free

$$\mathbf{q}_{new} \leftarrow \mathbf{q}_{proj}$$

▶ otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.

 $\forall \mathbf{q} \in (\mathbf{q}_{near}, \mathbf{q}_{new}), \ f_{\mathcal{T}}(\mathbf{q}) = f_{\mathcal{T}}(\mathbf{q}_{near})$

Extend

 $\mathbf{q}_{new} = \mathsf{extend}(\mathbf{q}_{near}, \, \mathbf{q}_{proj}, \, T)$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on transition constraint :

if projection successful and projected path collision free

$$\mathbf{q}_{new} \leftarrow \mathbf{q}_{proj}$$

▶ otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.

$$\forall \mathbf{q} \in (\mathbf{q}_{near}, \mathbf{q}_{new}), \ f_T(\mathbf{q}) = f_T(\mathbf{q}_{near})$$

Connect

connect (q, roadmap)

for each connected component cc not containing **q** : for all n closest config **q**₁ to **q** in cc :

• connect $(\mathbf{q}, \mathbf{q}_1)$

Connect

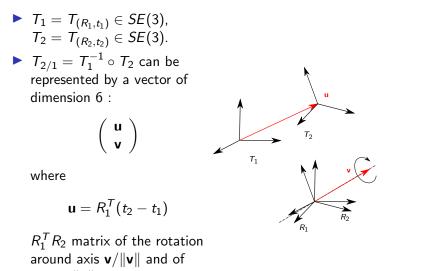
connect
$$(\mathbf{q}_0, \mathbf{q}_1)$$
:
 $S_0 = \text{state} (\mathbf{q}_0)$
 $S_1 = \text{state} (\mathbf{q}_1)$
 $T = \text{transition} (S_0, S_1)$
if T and $f_T(\mathbf{q}_0) == f_T(\mathbf{q}_1)$:
if $p = \text{projected_path} (T, \mathbf{q}_0, \mathbf{q}_1)$ collision-free :
roadmap.insert_edge $(T, \mathbf{q}_0, \mathbf{q}_1)$

return

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

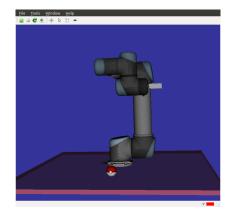
æ

Relative positions as numerical constraints



angles $\|\mathbf{v}\|$.

A few words about the BE



script/grasp_ball.py