
1

A Verifiable and Correct-by-Construction Controller
for Robots in Human Environments∗

Saddek Bensalem† Lavindra de Silva‡ Matthieu Gallien† Félix Ingrand‡ Rongjie Yan†

Abstract—Autonomous robots are complex systems that re-
quire the interaction and cooperation between numerous hetero-
geneous software components. In recent times, robots are being
increasingly used to assist and replace humans. Consequently,
robots are becoming critical systems that must meet safety prop-
erties, in particular, logical, temporal and real-time constraints.
To this end, we present an evolution of the LAAS architecture
for autonomous systems, and its tool GenoM. This evolution relies
on the BIP component-based design framework, which has been
successfully used in other domains such as embedded systems.
We show how we integrate BIP into our existing methodology for
developing the lowest (functional) level of robots. Particularly, we
discuss the componentization of the functional level, the synthesis
of an execution controller for it, and how we verify whether
the resulting functional level conforms to properties such as
deadlock-freedom. Our approach has been fully implemented in
the LAAS architecture, and the implementation has been used
in several experiments on a real robot.

I. INTRODUCTION

As autonomous robots become more and more widespread,
the need increases for robotic systems that are safe, depend-
able, and correct. This is particularly true for robots that have
to interact regularly and in close contact with humans or
other robots. Consequently, it will soon become commonplace
for the developer of robot software to provide guarantees to
certification bodies that, for instance, a hospital nursebot will
not start moving too fast when an elderly person is leaning
on it, that the arm of a service robot will not open its gripper
while holding a bottle, or that there will not be a deadlock
while a service robot is navigating in an office.

A certain level of dependability and safety can be provided
with thorough software testing and extensive simulation. The
goal of software testing is to “validate” and “verify” that
the software meets a given set of requirements, and the goal
of simulation is to detect errors as early as possible in the
design phase. Unfortunately, both simulation and testing have
the disadvantage of being incomplete, in the sense that each
simulation run and each test evaluates the system only against
a small subset of the foreseeable set of operating conditions
and inputs. Hence, with complex autonomous and embedded
systems it is often impractical to use these techniques to cover
even a small fraction of the total operating space, not to
mention the high cost of building test harnesses.

In this paper, we make a significant step toward building
safe and dependable robotic architectures. Robotic architec-

∗Authors are in alphabetical order by last name. Part of this work is funded
by the ESA/ESTEC GOAC project and by the FNRAE MARAE project.
†Verimag/CNRS, Grenoble I Uni., France. first.last@imag.fr
‡LAAS/CNRS, Toulouse Uni., France. first.last@laas.fr

tures are typically organized into several levels, which usually
correspond to different temporal requirements (e.g. TREX [1])
or different levels of abstraction of functionality (e.g. the
LAAS architecture [2]). The lowest level of the latter type
of architecture is the functional level, which includes all
the basic, built-in action and perception capabilities such as
image processing, obstacle avoidance, and motion control.
We propose an approach for developing safe and dependable
functional levels of complex, real-world robotic architectures.
With our approach one can provide guarantees that the robot
will not perform actions that may lead to states that are deemed
unsafe, which may eventuate in undesired or catastrophic
consequences.

Our solution relies on the integration of two state-of-the-art
technologies, namely:

• GenoM [2] – a tool (part of the LAAS architecture
toolbox) that is used for specifying and implementing
the functional level of robots; and

• BIP [3] – a software framework for formally modeling
complex, real-time component-based systems, with sup-
porting toolsets for, among other things, verifying such
systems.

This integration allows us to synthesize for our Dala robot
a complete functional level that is correct by construction,
which can be checked offline for properties such as deadlocks
using verification tools and suites. Moreover, our integration
allows safety constraints to be modeled and included, which
can then be enforced online by the resulting controller. With
the inclusion of such constraints, one can guarantee that the
functional level will not reach unsafe states, even if bugs exist
in user-supplied programs at higher levels of abstraction (e.g.,
the decisional level). Specifically, developing a functional
level using our approach consists of the following steps: (i)
developing the functional level using the GenoM tool of the
LAAS architecture; (ii) translating the GenoM functional level
into an equivalent BIP model; (iii) adding safety constraints
into the generated BIP model; and (iv) verifying the model
with the D-Finder [5] tool in our BIP tool-chain.

Then, we can summarize the contributions of this paper as
follows. First, we provide algorithms and data structures for
generating from a given GenoM functional level specification
an equivalent BIP functional level. The BIP functional level
can then be used in place of its GenoM counterpart. We provide
an implemented tool that can automate this translation process.
Second, we show, using a construction site inspection scenario
for the decisional level, how the user can straightforwardly use
BIP to specify and enforce different kinds of safety constraints

2

on a generated BIP functional level. Third, we present results
from using D-Finder to incrementally verify the generated BIP
functional level. In particular, we prove that a substantial part
of the BIP functional level is deadlock-free, and we report, for
the first time, experiences in using D-Finder (e.g. solutions to
deadlocks encountered) with a complex, real-world domain.

This paper is organized as follows. In Section II, we present
the existing LAAS architecture and the BIP tool-chain; in
Section III, we discuss in detail how to generate from a GenoM
functional level an equivalent BIP functional level; in Section
IV, we show how BIP can be used as a controller of the BIP
functional level, in order to prevent the system from reaching
“dangerous” states; in Section V, we show how D-Finder was
used to analyze the BIP functional level for properties such as
deadlocks. Finally, in Section VI, we present our conclusions
and directions for future work.

II. BACKGROUND

A. GenoM
The lowest level of most complex systems and robotic

architectures is the functional level, which includes all the
basic, built-in action and perception capabilities. These pro-
cessing functions and control loops (e.g. image processing,
obstacle avoidance, and motion control) are encapsulated
into controllable, communicating modules. At LAAS, we use
GenoM1 [2] to develop these modules. Each module in the
functional level of the LAAS architecture is responsible for
a particular functionality of the robot. Complex modalities
(such as navigation) are obtained by making modules “work
together.”

For example, the functional level of our Dala robot is shown
in Figure 1. This functional level2 includes two navigation
modes. The first one, for mostly flat terrain, is laser based
(LaserRF), and it builds a map (Aspect) and navigates
using the near diagram (NDD) approach. In particular, (i)
LaserRF acquires laser scans and stores them in the Scan
poster, from which Aspect builds the obstacle map Obs; and
(ii) NDD manages the navigation by avoiding these obstacles
and periodically produces a speed reference to reach a given
target from the current position Pos produced by POM. The
speed reference produced by NDD is, in turn, used by RFLEX,
which manages the low level robot wheels controller in order
to control the speed of the robot. RFLEX also produces the
current position of the robot based on odometry; this position
is used by POM to generate the current position of the robot.
The second navigation mode, for rough terrain, is vision based,
and uses stereo images (VIAM and Stereo) to build a 3D
map (DTM), which is used as input into an arc based trajectory
planner (P3D). P3D also produces a speed reference which
can be used by RFLEX. Hueblob, using panoramic images
taken by VIAM, monitors potentially interesting features in the
images. Finally, Antenna emulates communication with an
inspector/operator PDA, and Battery emulates the manage-
ment of the power on the whole platform.

1GenoM and other tools from the LAAS architecture can be freely down-
loaded from: http://softs.laas.fr/openrobots/wiki/genom

2Module names in Figure 1 are given in fixed font.

Functional level with
integrated BIP controller

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEXPan-Tilt
Unit

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna

Decisional level

Procedural
Executive
(open-PRS)

Flat terrain
navigation

Rough terrain
navigation

Fig. 1. The complete architecture of Dala.

Control &
Functional

IDS

Requests Reports

Control Task
Timer Message Box

Execution Task

Poster
IDS Lock

Control Service

Execution Service
Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Control Service
Control Service

Control Service

Execution Service
Service
Controller

Activity

Execution Service
Service
Controller

Activity

Poster
Poster

Poster
Poster

Execution Task

Execution Service
Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Execution Service
Service
Controller

Activity

Execution Service
Service
Controller

Activity

.....

.....

.....

.....

Timer

Fig. 2. A GenoM module functional organization and its componentization.

All these modules are built by instantiating a unique generic
canvas. This canvas is shown in Figure 2. Each module pro-
vides services, which can be invoked by the higher (decisional)
level according to tasks that need to be achieved. Services can
be execution services, which initiate activities that take time

3

to execute, or control services, which take negligible time to
execute and are responsible for setting and returning variable
values.3 For example, the NDD module provides five services
corresponding to initializations of the navigation algorithm
(SetParams, SetDataSource, and SetSpeed), and launching and
stopping the path computation toward a given goal (Stop and
GoTo). Execution services are managed by execution tasks,
responsible for launching and executing activities within the
associated running services. The remaining boxes in the figure
correspond to BIP entities, which will be discussed in Section
III.

Figure 3 presents the automaton of an activity. Transitions
in the automaton correspond to the execution of particular
elementary (C/C++) code, called codels, available through
libraries. Codels actualize activities, and they are responsible
for things such as initializing parameters (transition from start
location), executing the “body” of the activity or its main codel
(transition from exec location), and safely ending the activity,
which may amount to things such as resetting parameters and
sending error signals.

start

failether

execinter

end

request(args)/-
-/started

-/interrupted

-/failed

abort/-

abort/-

-/OK(ret)
abort/-

Fig. 3. The execution automaton of a GenoM activity. Transitions are of the
form input/output.

Each module can return information to the caller – such as
a final report – regarding the status of executed services, and
export posters for others (modules or the decisional level) to
read; posters store data produced by the module.

B. BIP
BIP [3] is a framework for modeling heterogeneous real-

time programs. The main characteristics of BIP are the fol-
lowing:

• It supports a model-based design methodology where
parallel programs are obtained as the superposition of
three layers. The lowest layer describes behavior, the
intermediate layer includes a set of connectors describing
the interactions between transitions of the behavior, and
the upper layer is a set of priority rules describing
scheduling policies for interactions of the layer under-
neath. Such a layering offers a clear separation between
behavior and structure (connectors and priority rules).

• It uses a parametrized composition operator on programs.
The product of two programs is the composition of

3These variables are stored in a data structure called Functional IDS, which
stores the data that is shared by all parts of a module.

their corresponding layers separately. Parameters are used
to define the interactions as well as new priority rules
between the parallel programs [4]. The use of such a com-
position operator allows incremental construction, i.e.,
obtaining a parallel program by successive composition
of other programs.

• It provides a powerful mechanism for structuring interac-
tions involving strong synchronization (rendezvous) and
weak synchronization (broadcast).

The BIP framework is implemented in the form a tool-
chain. This is presented in Figure 4. The BIP tool-chain
provides a complete implementation, with a rich set of tools
for modeling, execution, analysis (both static and on-the-fly)
and static transformations.

BIP
Model

compiler

D-Finder
deadlock analysis

BIP2BIP
source to source

architecture transformations

C/C++
Code

Engine
sequential,

distributed, …

C/C++
Code

IF
Toolbox

BIP
Programs

Programming Models
Lustre, Matlab/Simulink, DOL,

AADL, GenoM, nesC, …

Execution Models
MPI, Think, …

exporter

Analysis
Tools

Analysis
Tools

exporter

code generatorcode generator

Fig. 4. The BIP tool-chain.

C. BIP Language
The BIP language supports a methodology for building

components from: (i) atomic components, which are a class
of components with behavior specified as a set of transitions
and having empty interaction and priority layers, and where
triggers (labels) of transitions are ports (action names) used
for synchronization; (ii) connectors, used to specify possible
interaction patterns between ports of atomic components;
and (iii) priority relations, used to select amongst possible
interactions according to conditions, whose valuations depend
on the state of the integrated atomic components.

An atomic component consists of: (i) a set of ports P =
{p1 . . . pn}, where ports are used for synchronization with
other components; (ii) a set of control states/locations S =
{s1 . . . sk}, which denote locations at which the components
await synchronization; (iii) a set of variables V used to store
(local) data; and (iv) a set of transitions modeling atomic
computation steps.

A transition is a tuple of the form (s1, p, gp, fp, s2), rep-
resenting a step from control state s1 to s2. A transition
can be executed if the guard (boolean condition on V) gp

4

is true and some interaction including port p is offered.
Its execution is an atomic sequence of two microsteps: (1)
an interaction including p, which involves synchronization
between components with possible exchange of data, followed
by (2) an internal computation specified by the function fp on
V .

emptystart full

in out

in 0 < x y ← f(x)

out

Fig. 5. A simple BIP atomic component.

Figure 5 shows a simple atomic component. This component
has: two ports in, out; two variables x, y; and control locations
empty, full. At control location empty, the transition labeled
in is possible if 0 < x. When an interaction through in takes
place, the variable y is eventually modified when a new value
for y is computed. From control location full, the transition
labeled out can occur. The omission of the guard and function
for this transition means that the associated guard is true and
the internal computation microstep is empty. Note that in the
rest of the paper, we do not show, for legibility, guards and
functions in figures of BIP components. The BIP description
of the reactive component of Figure 5 is the following:

component Reactive
port in,out
data int x,y
behaviour

state empty
on in provided 0 < x do y ← f(x) to full

state full
on out to empty

end
end

Components are built from a set of atomic components
with disjoint sets of names for ports, control locations, vari-
ables and transitions. We simplify the notation for sets of
ports by writing p1‖p2‖p3‖p4 for the set {p1, p2, p3, p4} . A
connector γ is a set of ports of atomic components which
can be involved in an interaction. We assume that connectors
contain at most one port from each atomic component. An
interaction of γ is any non empty subset of this set. For
example, if p1, p2, p3 are ports of distinct atomic components,
then the connector γ = p1‖p2‖p3 has seven interactions:
p1, p2, p3, p1‖p2, p1‖p3, p2‖p3, p1‖p2‖p3. Each non trivial in-
teraction, i.e., interaction with more than one port, represents
a synchronization between transitions labeled with its ports.
Given a connector γ, there are two basic modes of synchro-
nization: (i) strong synchronization or rendezvous, when the
only feasible interaction of γ is the maximal one, i.e., it
contains all the ports of γ; and (ii) weak synchronization or

broadcast, when feasible interactions are all those containing
a particular port which initiates the broadcast.

A connector description includes its set of ports followed
by the optional list of its minimal complete interactions and
its behavior. If the list of the minimal complete interactions
is omitted, then this is considered to be empty. Connectors
may have behavior specified as for transitions, by a set of
guarded commands associated with feasible interactions. If
α = p1‖p2‖ . . . ‖pn is a feasible interaction, then its behavior
is described by a statement of the form: on α provided Gα
do Fα, where Gα and Fα are respectively a guard and a
statement representing a function on the variables of the
components involved in the interaction. An example of the
syntax of a connector is given below. Note that this syntax is
a simplified version to that given in the BIP literature.

connector conn(c1.p1, c2.p2)
define [c1.p1′, c2.p2]
on c1.p1,c2.p2
provided g

do {c2.p2.v ← C}
on c1.p1
provided g

do {}

This connector, called conn, is a broadcast connector due
to the inverted comma next to one of the ports. Port p1 of
component c1 is the initiator of the broadcast synchronization
between ports c1.p1 and c2.p2, where c2 is a component and
p2 is one of its ports. If a strong synchronization involving
both ports can occur, then a data transfer takes place, i.e.,
the variable v of port p2 is assigned the constant C. No
synchronization can take place unless guard g is met.

Finally, a compound component allows defining new com-
ponents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors between
them and the priorities. The instances can have parameters
providing initial values to their variables through a named
association.

D. D-Finder
The D-Finder tool implements a compositional [5] and in-

cremental methodology [6] for the verification of component-
based systems described in the BIP language [3]. D-Finder
is mainly used to check safety properties of composite com-
ponents. To check safety properties, D-Finder applies the
compositional verification method proposed in [5], [6]. In
this method, the set of reachable states is approximated by
component invariants and interaction invariants. Component
invariants are over-approximations of the set of the reachable
states of atomic components and are generated by simple
forward propagation techniques. Interaction invariants express
global synchronization constraints between atomic compo-
nents.

When we are concerned with the verification of deadlock
properties, we let DIS be the set of global states in where
a deadlock can occur. The tool will progressively find and

5

eliminate potential deadlocks as follows. D-Finder starts with
a BIP model as input and computes component invariants CI
by using the technique outlined in [5]. From the generated
component invariants, it computes an abstraction of the BIP
model and the corresponding interaction invariants II . Then,
it checks satisfiability of the conjunction II ∧ CI ∧DIS. If
the conjunction is unsatisfiable, then there is no deadlock. Oth-
erwise, either it generates stronger component and interaction
invariants or it tries to confirm the detected deadlocks by using
reachability analysis techniques. When verifying other safety
properties with D-Finder, one of the steps is to replace DIS
by the set of global states in which property violations occur.
The other steps are identical to those of deadlock-freedom
checking.

E. BIP Engine
The BIP tool-chain provides a platform for executing and

analyzing the C++ application code generated by the front-end.
The tool-chain includes an engine and the associated software
infrastructure. The engine, entirely implemented in C++ on
Linux, directly implements the operational semantics of BIP.

Engine
Interactions

fi
lt
er
()

Prioritiesevaluate()

execute()

B1 B2 ··· Bn

init()/notify()

sync()

Fig. 6. The centralized engine architecture.

The engine works based upon the complete state informa-
tion of the components. The execution follows a two-phase
protocol, marked by the execution of the engine, and the
execution of the atomic components. In the execution phase
of the engine, it computes the interactions possible from the
current state of the atomic components, and guards of the
connectors. Then, between the enabled interactions, priority
rules are applied to eliminate the ones with low priority.
During this phase, the components are blocked, and await
to be triggered by the engine. The engine selects a maximal
enabled interaction, executes its data transfer, and triggers
the execution of the atomic components associated with this
interaction. The second phase is the execution of the local
transitions of the notified atomic components. They continue
their local computation independently and eventually reach
new control states. Here, the atomic components notify of their
enabled transitions to the engine and get blocked once more.
The two phases are repeated, unless a deadlock is reached or
the user wants to terminate the simulation. The scheme of the
protocol is shown in Figure 6.

III. COMPONENTIZATION OF THE GenoM FUNCTIONAL
LEVEL

In this section, we discuss our algorithms for mapping a
given GenoM functional level into an equivalent BIP functional
level. We start with the mapping from individual GenoM
modules to their BIP counterparts. Each GenoM module is
mapped to a hierarchy of BIP components, as shown in
Figure 2. In addition to representing some GenoM entity, each
box in this figure also represents an atomic or compound BIP
component.

In the componentization, an Execution Task is a compound
component consisting of: a Scheduler (atomic) component, to
control the execution of the associated Activity component
of some Execution Service component; a Task Controller
(atomic) component to stop the Scheduler if none of the
associated Execution Service components are running; a Timer
component to control the execution period of the Execution
Task, provided it has a temporal period specified for it; and
a Permanent component, provided the Execution Task has a
permanent codel.

The Poster components store data associated with the mod-
ule and provide operations for reading from and writing to
this data. The IDS Lock component represents a semaphore for
ensuring mutual exclusion between different Execution Task
components and Execution Service components when manip-
ulating Poster components. The Timer component (directly)
in the Module component is used by Poster components to
determine how much time has elapsed, in terms of “ticks,”
since the last modification to their data. Specifically, Poster
components contain a variable called PosterAge (initially 0)
that is incremented for each “tick” in the associated Timer
component, and reset whenever the poster is written to. The
Service Controller, Activity, and Control Task components are
discussed later.

As shown in Figure 2, some of the atomic components are
combined to form compound components such as Execution
Service. This is done by adding the necessary connectors
between the atomic components. In turn, these compound
components are combined using connectors to form the
even more compound component Module, corresponding to a
GenoM module. By combining components incrementally (or
“bottom-up”) in this way, we have the guarantee that if its
constituent components are proven to be correct with respect to
some properties, then the resulting compound component will
also be correct, provided it is free of deadlocks. Checking for
deadlock-freedom using D-Finder will be discussed in Section
V.

The most important components from those mentioned are
Message Box (Figure 7), Activity, and Service Controller
(Figure 8). Each Module component has, within its Control
Task component, a Message Box component, which represents
the interface for receiving requests for services and sending
back replies. The period with which requests are read is
controlled by the Timer component of the Control Task. There
are two approaches for handling a newly received request in
the Message Box: either (i) reject the request along with a
specific report explaining the reason; or (ii) unconditionally

6

accept the request. The latter is done via two transitions. The
first transition (abtIncbi) is for implementing a GenoM feature
of interrupting certain execution services (Execution Service
components) that are incompatible with the new request, and
the second transition (trigbi) actually executes the request
by interacting with either a Control Service or an Execution
Service component.

readchck

giveidleinitstart

stop stpd fini

abtI

chck stop read give trigb1
. . . trigbn

abtIncb1 . . . abtIncbn rejb1 . . . rejbn exit stopped

read

rejb1 , . . . , rejbn , rejStp

give

noMsg chck

abtIncb1 , . . . , abtIncbn

trigb1
, . . . , trigbn

init

stop

err, term

kill

kill

stopped
chck chck chck

exit

Fig. 7. An (atomic) BIP Message Box component. Transitions with multiple
ports (separated by commas) represent multiple such transitions, each with one
of the ports.

Each GenoM execution service has one corresponding Ser-
vice Controller component, which controls its execution by,
for example, checking the validity of the parameters (if any)
of the request associated with the service, and handling the
aborting of the service’s execution. This component has two
variables active and done, which are both initially false. The
execution of the Service Controller starts via a synchronization
with port trig, which sets active to true, after which the service
can be aborted from any location via synchronization with the
abt port. On the two transitions to location ethr, variable active
is set to false, and variable done is set to true provided the
transition labeled fin (denoting successful completion of the
activity) was taken. Like a GenoM activity, the execution of
the main codel of the Service Controller is initiated by the
exec transition from the exec location. In each location of the
Service Controller the status of the service can be obtained by
synchronizing with the stat port of the component. Note that
Service Controller components belonging to different Module
components are equivalent except for the code executed during
certain transitions (e.g., the ones labeled ctrl and abt), and
that transitions labeled abt have higher priority than all other
transitions, i.e., whenever a transition labeled abt and some
other transition are both possible, the former will be taken
instead of the latter.4

The Activity component corresponds to the GenoM activity
automaton shown in Figure 3. This component will wait to be

4This is necessary to ensure, for instance, that a request to abort a service
is given priority over starting another step in its execution.

initiated, i.e., for a synchronization between its start port and
the start port of Service Controller, and then wait for its main
execution to begin, i.e., for a synchronization between its exec
port and the exec port of Service Controller. In particular, this
latter synchronization will, in the Activity component, lead to a
transition that executes the main codel of the associated GenoM
module. The Activity component is aborted by synchronizing
with the abt port of the corresponding Service Controller;
this synchronization will set a flag that prevents the Activity
component from executing its main codel again.

ethrstart

start

ctrl rprt

exec abrt

start stat exec abt trig fail fin

ctrl inter reprt err

trig

ctrl
abt

abt, err

start

reprt

fail, fin

abt

inter

stat

stat

stat

stat

reprt

stat, exec stat

Fig. 8. An (atomic) BIP Service Controller component.

It is worth noting that, unlike its GenoM counterpart, each
BIP Execution Service component has exactly one Service
Controller component, and consequently, a given Execution
Service component cannot have more than one Activity com-
ponent associated with it (and executing concurrently). While
this is indeed limiting, it can be overcome to a certain extent by
defining multiple execution service types in the GenoM module,
to represent the different activity instances that may be needed
at runtime. In our experience, this solution was found to be
a reasonable one for the modules that we have developed so
far.

Observe from Figure 7 that, due to the semantics of BIP
components, an interaction involving a trigbi port of a Message
Box component cannot happen concurrently with an inter-
action involving some other trigbj port of the component.
Similarly, we add the restriction that no interaction involv-
ing a trigbi port of a Message Box component can happen
concurrently with an interaction involving a trigbj port of
some other Message Box component (belonging to some other
Module component). Without this restriction it would not be
possible to add connectors (as we do later in Section IV) to
guarantee that two services are not executed concurrently.5

To add this restriction, we use a simple atomic component
which represents a semaphore; its token is obtained by the

5Note that this restriction does not imply that two Service Controller
components cannot be executed concurrently.

7

···

····

···

···

. . .mod2 mod3 modm

. . .

abtIncb2
abtIncb1

rejb1rejb2

abtIncbn

rejbn

msgbx trig

abt
stat

b1

b2

bn
abt
stat

trig

trigb1trigb2

trigbn

abt
stat

trig

mod1

root

Fig. 9. A high-level illustration of exported ports (in grey), and important
connectors within Module components (mod1, . . . ,modm). Connectors
are between a Message Box (msgbx) and the associated Service Controller
components (b1, . . . , bn).

read transition of Message Box components, and released by
the give transition of Message Box components.

As shown in Figure 9, each port trigbi of a Message Box
component is synchronized via rendezvous with port bi.trig
of Service Controller component bi. All such connectors are
exported so that they are “visible” from the root component,
i.e., it is possible to interact with them from the root compo-
nent. The root component in BIP is the top-level (compound)
component that includes all the other components. In our case,
the root component includes all components of the functional
level.

From now on, for convenience, we simply use trigbi to refer
to such an exported connector involving a port trigbi . For
example, the exported port (grey circle) in Figure 9 that is
associated with the connector involving trigb1 is also referred
to as trigb1 . Similarly, for each Service Controller component
bi, the rejbi and abtIncbi ports of the associated Message Box
component, as well as the bi.abt and bi.stat ports of bi are
exported so that it is possible to interact with them from
the root component. As before, from now on we simply use
rejbi , abtIncbi , bi.abt and bi.stat to refer to these exported
ports. Unlike the other ports shown in Figure 9 (e.g., abt),
by default, all trigbi ports are possible due to a singleton
connector with no guard (i.e., a “no-op” connector) at the
root-component level for each trigbi port. On the other hand,
by default, all rejbi , abtIncbi , bi.abt and bi.stat ports are not
available (i.e., synchronizations involving any of these ports
are not possible) due to all such ports being left unconnected
at the root-component level.

To ease the integration of BIP in the new framework, we
have developed a tool that automatically produces a BIP model
from a GenoM module description file. Still, if one wants to
enforce some safety properties inside a module (intra-module)
or between modules (inter-module), these constraints have to
be explicitly added to the resulting BIP model. Adding such

constraints will be discussed in the next section.

IV. FUNCTIONAL LEVEL CONTROLLER SYNTHESIS

Since commands to the functional level are sent from
the decisional level, i.e., the Procedural Reasoning System
(PRS) [7] executive in our case, and since programs written
for the decisional level may contain erroneous handcoded
procedures, it is important to be able to constrain the decisional
level so as to ensure the appropriate/safe execution of GenoM
services in the functional level. For example, one may want to
ensure that there is never a situation in which too much power
is drawn from the battery, that the speed reference produced
by a navigation mode is “fresh” enough with respect to the
sensing data that it uses, or that the robot will not move when
it is taking high resolution pictures or communicating.

In the previous LAAS architecture, the proper execution
of GenoM services was managed by a centralized controller
called R2C [8]. The purpose of such a controller is to prevent
the system from reaching dangerous states, such as those
mentioned, which could lead to undesirable or catastrophic
consequences. The R2C controller maintains its own model
and global state of the system. For the latter, R2C monitors
all requests sent from the decisional level to the functional
level and all reports sent back from the functional level. If
a request sent to the functional level may move the system
into an undesirable (or unsafe) state, R2C takes actions to
prevent the state from being reached, such as killing a service
or rejecting the request. Otherwise, R2C allows the request to
go through and the result to be returned.

One of the main differences between the R2C approach
and the BIP approach is that the former merely acts as
a “filter” below the decisional level to enforce constraints
between requests, while relying mostly on the control provided
by GenoM. The BIP model and engine, on the other hand, go
far beyond this by providing a formal and much finer grained
model of the control taking place inside a functional module,
which allows the user to specify finer grained constraints on
the behaviour of functional modules. Moreover, in our new
framework, we have one integrated system with a single model
and single global state, rather than two systems (GenoM and
R2C) with two different models and two (possibly incon-
sistent) representations of the global state. Finally, by using
BIP we now have a clearer semantics for constraints specified
as BIP connectors, compared to the semantics of constraints
specified in R2C.

Before discussing how safety constraints can be encoded
as BIP connectors in the functional level, we first discuss the
construction site inspection scenario we have implemented for
the PRS [7] based executive at the decisional level. We use
this scenario to motivate and illustrate our constraints. The
robot’s duty is to work collaboratively with human inspectors
and to assist them with the inspections. Our scenario consists
of the robot exploring a set of waypoints initially supplied
by the human inspector(s), which involves navigating to them
and then taking images. Taking an image at a location involves
aligning the high resolution cameras – mounted on the pan-
and-tilt unit – to face the surfaces on the left and right sides of

8

the robot. During navigation, the robot continuously monitors
its surroundings for potentially unsafe piles of (red) bricks,
using the low resolution panoramic camera mounted on the
mast. If such a pile is found, the robot stops navigating,
determines if the pile is still within its front cameras’ visibility
area, and then takes a picture of the pile by aligning the front
cameras toward it. The robot transmits all new images and
associated waypoints to the PDAs of the human inspectors.
Once all locations have been explored, the robot navigates
back to its original location. Throughout the inspections the
robot needs to stay clear of humans at work. Although not
implemented in our scenario, one could extend it to make the
robot opportunistically detect other potential hazards such as
obstructions and cables strewn across walkways.

Now we can discuss in detail some of the constraints
we have added into the BIP functional level (i.e., root
component). We split the constraints into intra-module con-
straints, i.e., those between services belonging to a single
module, and inter-module constraints, i.e., those between
services belonging to two or more modules. In what fol-
lows, ports with suffixes Trigger, Reject, Abort, Status, and
AbortIncompatibleServices are used to represent (respectively)
particular trigb, rejb, abtIncb, b.abt, and b.stat ports. Recall
from Section III that all of these are exported ports.

A. Intra-module constraints

In the NDD module, there must be at least one successfully
completed SetParams service,6 and at least one successfully
completed SetSpeed service before a GoTo service can be
triggered. Note that SPS = SetParamsStatus, SSS = SetSpeedStatus,
GT = GotoTrigger, and GR = GotoReject.

connector AllowGotoIfArgsSet(ndd.GT , ndd.SPS, ndd.SSS)
define [ndd.GT , ndd.SPS, ndd.SSS]
on ndd.GT , ndd.SPS, ndd.SSS
provided ndd.SPS.done ∧ ndd.SSS.done
do {}

connector RejectGotoIfArgsNotSet(ndd.GR, ndd.SPS, ndd.SSS)
define [ndd.GR, ndd.SPS, ndd.SSS]
on ndd.GR, ndd.SPS, ndd.SSS
provided ¬ndd.SPS.done ∨ ¬ndd.SSS.done
do {ndd.GR.rep ← PARAMS-OR-SPEED-NOT-SET}

For any module with an Init service, no other execution
service of the module should be allowed unless the last
instance of an executed service, if one exists, is a successfully
completed Init service. The BIP connectors for this constraint
are similar to the ones shown above.

B. Inter-module constraints

Next, we discuss constraints involving multiple modules.
First, pictures should not be taken with any high resolution
camera while the robot is moving, and vice versa, in order
to prevent high resolution pictures from being blurred (this

6i.e., where the execution of the service returned a nominal report

constraint does not apply to low resolution panoramic
pictures). Hence, we say that moving is “incompatible” with
taking a picture with a high resolution camera. To enforce
this constraint, whenever a new request is received that is
incompatible with a currently executing service, the latter is
aborted with a specific error message and the new request is
executed. In what follows, note that AcS = AcquireStatus, TSST
= TrackSpeedStartTrigger, and TSSR = TrackSpeedStart Reject.7

We only show the first two connectors; the other two (i.e.,
AllowAcquireIfNotMoving and RejectAcquireIfMoving) are
analogous.

connector AllowMoveIfNotAcquiring(rflex.TSST , viam.AcS)
define [rflex.TSST , viam.AcS]
on rflex.TSST , viam.AcS
provided ¬(viam.AcS.active ∧

viamAcParams.bank.id = “Marlin”)
do {}

connector RejectMoveIfAcquring(rflex.TSSR, viam.AcS)
define [rflex.TSSR, viam.AcS]
on rflex.TSSR, viam.AcS
provided viam.AcS.active ∧

viamAcParams.bank.id = “Marlin”
do {rflex.TSSR.rep ← CANNOT-ACQ-AND-MOVE}

Likewise, we have connectors to disallow taking pictures
with the high resolution camera while the pan-and-tilt unit
is moving, and vice versa, and connectors also to disallow
communication with a PDA while moving, and vice versa,
in order to ensure that communication is not disrupted. The
connectors for the first constraint is similar to those shown
above. The connectors for the second constraint are shown
below. In what follows, TSSA = TrackSpeedStartAbort, CAIS
= CommunicateAbortIncompatibleServices, CT = Communicate
Trigger, and TSSS = TrackSpeedStartStatus. As before, we only
show the first two connectors; the other two are analogous.

connector AllowCommIfNotMoving(antenna.CT , rflex.TSSS)
define [antenna.CT , rflex.TSSS]
on antenna.CT , rflex.TSSS
provided ¬rflex.TSSS.active
do {}

connector AbortMovingToComm(antenna.CAIS, rflex.TSSA)
define [antenna.CAIS′, rflex.TSSA]
on antenna.CAIS,rflex.TSSA
provided true
do {rflex.TSSA.rep ← CANNOT-COMM-AND-MOVE}
on antenna.CAIS
provided true
do {}

Finally, the following connector prevents poster data
produced by certain modules from being used if the data is

7Marlin is the camera model, and viamAcParams is a variable that stores
the camera model passed (as a parameter) with the most recent request to
acquire an image.

9

not “fresh”; e.g., a speed reference produced by the NDD
module is not “fresh” if it has not been updated for more
than ten ticks. Recall that the PosterAge variable keeps track
of the amount of time that has elapsed since the last time the
associated Poster component was written to.

connector AbtMoveIfPstrNotFresh(rflex.TSSA, ndd.PosterAge)
define [rflex.TSSA, ndd.PosterAge]
on rflex.TSSA, ndd.PosterAge
provided ndd.PosterAge > 10

do {rflex.TSSA.rep ← NDD-POSTER-NOT-FRESH}

From the constraints presented in this section, it is clear that
the BIP language provides a natural syntax for encoding non-
trivial constraints on certain aspects of BIP components. Such
constraints are fundamental for synthesizing a controller for
the functional level. To make it even more convenient for the
user, we are currently in the process of developing a higher-
level language for specifying constraints; these will then be
automatically translated into BIP connectors, such as those
shown in this section.8

V. VERIFICATION WITH D-FINDER

The connectors added in the previous section could cause
deadlocks in the functional level, since they amount to adding
tighter constraints to certain subsets of components. To check
whether the additional connectors may cause deadlocks, and
to determine whether (atomic and compound) components by
themselves are free of deadlocks, we use D-Finder to first
verify atomic components and to then incrementally verify the
compound components resulting from their composition. Due
to space constraints, we do not discuss our experiences with
using D-Finder for verifying properties other than deadlocks,
such as “data freshness.” We first discuss our results from
the verification we carried out for compound components
corresponding to individual GenoM modules. We start with a
deadlock found while verifying the NDD (Module) component
with D-Finder.

Figure 10 shows some of the components and associated
connectors of the NDD component. Observe that there are
three Timer components, one for the Control Task component,
one for the Execution Task component, and one for the Poster
component. The purpose of a Timer component is to make
a trigger port available when the elapsed time in terms of
“ticks” reaches a predefined value or period. To ensure that
the duration between two contiguous tick synchronizations in
a Timer component is equivalent to such a duration in any
other Timer component, we strongly synchronize all tick ports
of the mentioned Timer components with the tick port of
the MasterTimer component. This component will effectively
ensure that there are at least 10 milliseconds (ms) between two

8Examples of constraints in this new language are (r1 ≺ r2) and (r1 ∦
r2), where the former means that request r2 can only start after request r1
has completed, and the latter means that the execution of r1 should not be
overlapped with the execution of r2.

contiguous synchronizations involving all these tick ports.9

Although this design seemed correct, we found a non-
trivial deadlock while verifying the NDD component with D-
Finder. Intuitively, the reason for this deadlock is the strong
synchronization between the Timer in Control Task and the
Timer in Execution Task. Specifically, the deadlock scenario
identified was the following: the Message Box is in location
abtI ; the Scheduler is in location idle; Execution Services
SetParams and GoTo have started executing and they are
respectively in locations exec and abrt ; variable t in the
Timer of the Execution Task (ExecTaskTimer) has been reset
to zero; and variable t in the Timer of the Control Task
(InterfaceTimer) has reached the maximal value.

In this scenario, Scheduler is waiting to synchronize with
the trigger port of ExecTaskTimer in order to start the next
round of execution; ExecTaskTimer is waiting for variable t in
InterfaceTimer to be reset (via the synchronization involving
its trigger port) in order to continue with the synchroniza-
tion between the four connected tick ports; InterfaceTimer
is waiting for Message Box to return to location idle via
location give , so that the InterfaceTimer can reset its variable
t and perform the synchronization with the four connected
tick ports; and Message Box, after having aborted the GoTo
service, is waiting to trigger the Stop service, in order to return
to location idle via location give (see Figure 7). However,
according to our mapping from GenoM to BIP, no condition
on the transition corresponding to any trigbi port in the
Message Box component will be met because the SetParams
and GoTo services have already started executing, and all other
services in the NDD module have been declared by the user as
incompatible with at least one of these services. Consequently,
a deadlock state has been reached.

Our solution to this deadlock was to modify the connector
synchronizing the tick ports to allow InterfaceTimer to not
participate in the synchronization via the connector if it cannot
participate. In precise terms, we have replaced the strong
synchronization between the Timer components in Figure
10 with two new connectors, of which the first is shown below.

connector ModuleSync(execTaskTimer.Tick, posterTimer.Tick,
interfaceTimer.Tick)
define [execTaskTimer.Tick, posterTimer.Tick]′,

interfaceTimer.Tick
export port Port moduleTick

This connector, exported as moduleTick, executes a strong
synchronization between the three tick ports if the tick port of
the InterfaceTimer component is available, and otherwise, the
connector executes a strong synchronization only between the
tick ports of the ExecTaskTimer component and PosterTimer
component. This solves the deadlock because it allows the
Timer components inside the Module component to continue
executing even if the Message Box component is waiting for

9More than 10 ms may be taken if at least one of the Timer components
takes time to complete their trigger synchronizations. Waiting for 10 ms is
implemented using the usleep system call. There is ongoing work [9] to extend
BIP with the ability to model time, which will remove the need for the system
call and improve the accuracy of measuring time.

10

idle

Task Controller

trigger

ExecTaskTimer

Scheduler

t=0

runExecutionTask
stopService triggerService

blockExecutionTask

InterfaceTimer
t=10 tick

t++t==5
t=0

trigger

tickPosterTimer

t<5

abrt

ethr

Goto

exec
SetParams

ethr

trigger

tick
t<10

t++t==10
t=0

trigger

tick

check

Message Box

idle

abtI
init

tick
t<10

t++t==10
t=0

trigger

tick

MasterTimer

tick

tick

Poster startread

endread

startwrite

endwrite

tick
t++

startwrite

endwrite
endread startread

blockExecutionTask

check

trigger

tick

trigger trigger

inter

fail

fin

runExecutionTask

goto_exec

setparams_exec

Fig. 10. A deadlock scenario caused by synchronization between Timer components. Dotted lines stand for ignored locations and transitions.

TABLE I
RESULTS FOR DEADLOCK-FREEDOM CHECKING.

Module Components Locations Interactions States LOC Minutes
LaserRF 43 213 202 220 × 329 × 34 4353 1:22
Aspect 29 160 117 217 × 323 3029 0:39
NDD 27 152 117 222 × 314 × 5 4013 8:16

RFLEX 56 308 227 234 × 335 × 1045 8244 9:39
Antenna 20 97 73 212 × 39 × 13 1645 0:14
Battery 30 176 138 222 × 317 × 5 3898 0:26
Platine 37 174 151 219 × 322 × 35 8669 0:59

a service to be aborted. The second connector is shown below.

connector InterModuleSync (masterT imer.T ick,moduleT ick1,

. . . ,moduleT ickn)
define masterTimer.Tick, moduleT ick1, . . . ,moduleT ickn
on masterTimer.Tick, moduleT ick1, . . . ,moduleT ickn
provided true
do {}

This connector is for global synchronization between
all Module components contained in the functional level,
where {moduleT icki}1≤i≤n is a set of connectors of type
ModuleSync, one for each Module component in the functional
level composed of n Module components.

Table I shows the time taken for computing invariants for
the deadlock-freedom checking of eight modules by D-Finder.
Module is the name of the module; Locations is the total
number of control locations in the module; Interactions is
the total number of interactions in the module; States is the
total number of states in the module – including those in its
constituent components; LOC is the number of lines of (BIP)
code in the module; and Minutes is the time taken for D-
Finder to return a result. Observe from the table that we were
able to check for the deadlock-freedom of all our modules
in reasonable amounts of time, even for those consisting of
thousands of lines of BIP code. This shows that D-Finder can

be used to verify complex, real-world domains, and not just
toy examples as shown in previous work [10]. It was already
shown in [10], [6] that the component sizes handled by D-
Finder are far beyond those that can be handled by other state
of the art academic verification tools such as NuSMV [11] and
SPIN [12].

Even after correcting individual modules with respect to
deadlocks, it is still possible for collections of modules to
contain deadlocks or to exhibit unsafe behaviour. Consider
once again the two connectors described above, which syn-
chronized all the Module components in the functional level
by synchronizing a single MasterTimer component with the
associated Timer components of all Control Task, Execution
Task, and Poster components. As one might expect, with
such a complex synchronization there may be the risk of a
deadlock if one of the Timer components cannot perform a
tick transition due to its trigger port never becoming avail-
able after the Timer’s period is reached. Interestingly, we
successfully verified using D-Finder that the synchronization
between the Timer components belonging to NDD, Aspect
and LaserRF modules are deadlock-free, and moreover, that
the synchronization between the Timer components of NDD
and RFLEX are also deadlock-free.10 Unfortunately, because
of the large state space, we were unable to check whether the
synchronization between all related Module components are
deadlock-free.11 Improving D-Finder to make such an analysis
possible is an avenue we intend to explore in the future.

10For NDD, Aspect and LaserRF, deadlock-freedom checking took 25
seconds, and for NDD and RFLEX deadlock-freedom checking took 66
minutes and 43 seconds.

11When we used D-Finder with four modules, it was unable to find a
solution within two days.

11

VI. CONCLUSION

There are numerous works that address similar issues to
what we address in this paper (e.g. [13], [14], [1], [15], [16],
[17]). However, many of these frameworks do not present a
formal model that allows to synthesize a controller that is
correct by construction, and to verify safety properties on
the resulting system. The remaining frameworks from those
mentioned either do not address the componentization of
the functional level, or they focus on the decisional level
of the overall architecture whereas our work focuses on the
functional level.

Despite the fact that software has become a large part of
robot development, one must admit that the software models
used up to now are either too coarse, too high level, or too
large and thus very difficult to analyze. We propose a novel
approach to developing functional levels of robotic systems,
which incorporates a component-based design approach (BIP)
in an existing architectural tool for developing functional
modules (GenoM). Our approach allows the synthesis of a
functional level that is correct by construction. To this end, we
use our D-Finder tool to formally verify that a significant part
of our functional level is deadlock-free, and that it conforms
to other safety properties such as data freshness. Our approach
also allows the synthesis of a controller that encodes and
enforces user-supplied safety properties, thereby facilitating
the development of safe and dependable robotic architectures.

We were able to run experiments with a complete functional
and decisional level on the Dala robot, and to demonstrate via
fault injections that the BIP engine successfully stops the robot
from reaching undesired/unsafe situations like those discussed
previously, and that it reports appropriately to the decisional
level. In terms of runtime performance, experiments showed
that by using the BIP engine, instead of using GenoM, as a
controller of the functional level, the CPU load of the Pentium
III machine on Dala is doubled. This is not surprising since
the BIP engine must compute all the feasible interactions
at each step in its execution. Nonetheless, since most real-
world actions take time to execute (e.g., in our experiments,
moving Dala from (x, y) coordinates (0, 0) to (4, 0) takes
approximately 30 seconds), this overhead goes unnoticed in
most cases.

We plan to extend our work in various directions: e.g., a
real-time BIP engine to take into account wall clock proper-
ties, and a distributed engine to distribute it over more than one
CPU. Another more ambitious research direction is to study
the use of the BIP approach at the decisional level of our
autonomous robot.

REFERENCES

[1] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen,
“A deliberative architecture for AUV control,” in Proc. of ICRA-08,
2008, pp. 1049–1054.

[2] S. Fleury, M. Herrb, and R. Chatila, “GenoM: A tool for the specification
and the implementation of operating modules in a distributed robot
architecture,” in Proc. of IROS-97, pp. 842–848.

[3] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in BIP,” in Proc. of Int. Conf. on Software Engineering and
Formal Methods (SEFM-06), 2006, pp. 3–12.

[4] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “Compositional
verification for component-based systems and application,” in Proc. of
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA-08), 2008, pp. 64–79.

[5] J. Sifakis, “A framework for component-based construction extended
abstract,” in Proc. of SEFM-05, 2005, pp. 293–300.

[6] S. Bensalem, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan,
“Incremental invariant generation for compositional design,” Verimag
Research Report, Tech. Rep. TR-2010-6, 2010. [Online]. Available:
http://www-verimag.imag.fr/TR/TR-2010-6.pdf

[7] M. Georgeff and F. Ingrand, “Decision making in an embedded reason-
ing system,” in Proc. of IJCAI-89, 1989, pp. 972–978.

[8] F. Ingrand, S. Lacroix, S. Lemai, and F. Py, “Decisional autonomy of
planetary rovers,” Journal of Field Robotics, vol. 24, no. 7, pp. 559–580,
2007.

[9] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based
implementation of real-time applications,” Verimag Research Report,
Tech. Rep. TR-2010-14, 2010. [Online]. Available: http://www-
verimag.imag.fr/TR/TR-2010-14.pdf

[10] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-Finder: A tool
for compositional deadlock detection and verification,” in Proc. of CAV,
2009, pp. 614–619.

[11] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model checker,” Int. Journal on Software Tools for Technology
Transfer, vol. 2, pp. 410–425, 2000.

[12] G. J. Holzmann, SPIN Model Checker, The: Primer and Reference
Manual. Addison-Wesley, 2003.

[13] I. A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
“CLARAty and challenges of developing interoperable robotic soft-
ware,” in Proc. of IROS-03, 2003, pp. 2428–2435.

[14] A. Finzi and F. I. N. Muscettola, “Robot action planning and execution
control,” in Proc. of Int. Workshop on Planning and Scheduling for
Space, 2004.

[15] P. Kim, B. C. Williams, and M. Abramson, “Executing reactive, model-
based programs through graph-based temporal planning,” in Proc. of
IJCAI-01, 2001, pp. 487–493.

[16] R. P. Goldman, D. J. Musliner, and M. J. Pelican, “Using model checking
to plan hard real-time controllers,” in Proc. of AIPS Workshop on Model-
Theoretic Approaches to Planning, 2000.

[17] R. Simmons, C. Pecheur, and G. Srinivasan, “Towards automatic veri-
fication of autonomous systems,” in Proc. of IROS-00, 2000.

