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1 Introduction

According to the theory of Network Calculus based on the (min,+) algebra (see
[2] and [5]), analysis and measure of worst-case performance in communication
networks can be made easily and several toolboxes such as COINC [1] or DISCO
[6] offer to do it. However, the exact computations – sum, inf-convolution, subad-
ditive closure – of such systems are often memory consuming and time costly (see
[1] and [4]). That is why we developed a toolbox called ContainerMinMaxGD
which handles some “container” of ultimately pseudo-periodic functions and
makes approximated computations. The convexity properties of the bounds of
a container provide efficient algorithms (linear and quasi-linear complexity) for
sum, inf-convolution and subadditive closure.

The ContainerMinMaxGD toolbox1 is a set of C++ classes which can be
found at the following address: http://www.istia.univ-angers.fr/~euriell.
lecorronc/Recherche/softwares.php.

2 ContainerMinMaxGD Toolbox

Fig. 1: Container [ f , f ]L ∈ F.

The elementary object handled by the
toolbox is called a container and de-
fined as the following intersection il-
lustrated by the grey zone of Fig. 1:

[ f , f ]L , [ f , f ] ∩ [ f ]L,

where [ f , f ] is an interval of

functions and [ f ]L is the equiva-
lence class of f modulo the Legendre-
Fenchel transform2 L.
1 It it important to note that this toolbox is an extension of the library MinMaxGD

which handles increasing periodic series of the idempotent semiring Max
in Jγ, δK (see

[3]).
2 A non-injective mapping defined by L(f)(s) , supt{s.t − f(t)} from the set of

increasing and positive functions F to the set of convex functions Facx.



A function f is approximated by a container [ f , f ]L if f 4 f 4 f and

[f ]L = [ f ]L. This means that f necessarily belongs to the grey zone of the figure,
and by denoting Cvx the convex hull of a function, that ∀f ∈ [ f , f ]L, f =
Cvx(f). Handling such containers amounts doing computations modulo L. We
thus obtain the equivalence class of the non-approximated result f . Therefore,
even throughout the computations, the extremal points of f truly belong to the
exact function f , and the asymptotic slope of f is the one of f .

Such a container belongs to the following set:

F , { [ f , f ]L | f ∈ Facv, f ∈ Facx, σ(f) = σ(f) }.

Its bounds f and f are non-decreasing, piecewise affine and ultimately affine
functions. They are in addition concave for the lower bound (set Facv), and
convex for the upper bound (set Facx). Moreover, their asymptotic slopes σ(f)

and σ(f) are equals, so are the slopes of their ultimately affine parts.
According to the computations, let us first recall that the elementary opera-

tions of the Network Calculus are:

– sum: (f ⊕ g)(t) = min{f(t), g(t)},
– inf-convolution: (f ∗ g)(t) = minτ≥0 {f(τ) + g(t− τ)},
– subadditive closure: f?(t) = minτ≥0 fτ (t) with f0(t) = e.

On the set F of containers, these operations are now denoted [◦] ∈ { [⊕] , [∗] , [?] }
and redefined as inclusion functions such that for f = [ f , f ]L ∈ F, g =
[ g , g ]L ∈ F, ∀f ∈ f , and ∀g ∈ g:{

f [◦]g ∈ F,
f ◦ g ∈ f [◦]g.

Thanks to the convexity characteristics of the bounds of a container, the compu-
tation algorithms of these inclusion functions are of linear complexity depending
on the input size for the sum [⊕], the inf-convolution [∗] and the upper bound
of the subadditive closure [?], whereas the algorithm for the computation of the
lower bound of [?] is of quasi-linear complexity depending on the input size.

Finally, it is interesting to have an idea of the performance of this toolbox
by the following method. First, an exact system A is approximated by a con-
tainer A (A ∈ A). Then, the subadditive closures of both the exact system A?

and the container A[?] are computed, and the result obtained with the exact
system is approximated by another container: A? ∈ B. At last, the pessimism
of the toolbox is given by comparing B (obtained from the exact system), and
A[?] (obtained from the approximated system). After experiments, we reach a
pessimism of about 30%.
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