Control of uncertain (max,+)-linear systems in order to decrease uncertainty. WODES'10

Euriell Le Corronc, Bertrand Cottenceau, Laurent Hardouin

University of Angers - LISA - France http://www.istia.univ-angers.fr/LISA/

September 1, 2010

WODES 2010

Motivations

Uncertain (max,+)-linear systems

- Input/output behavior h unknown
- Framed by an interval [fastest behavior , slowest behavior] \rightarrow [\underline{h} , \overline{h}]
- Uncertainty (time and event) over the output $y \in [\underline{h}u \ , \ \overline{h}u \]$

Motivations

Uncertain (max,+)-linear systems

- Input/output behavior h unknown
- Framed by an interval [fastest behavior , slowest behavior] \rightarrow [\underline{h} , \overline{h}]
- Uncertainty (time and event) over the output $y \in [\underline{h}u \ , \ \overline{h}u \]$

Control synthesis problem

Decrease the uncertainty at the output of the system

- Upstream controller p
- Fixed point of isotone mapping

Outlines

- 1 Uncertain (max,+)-linear systems
 - Introduction
 - Linear modelling
- Control synthesis problem
 - Uncertain controlled system
 - Reduction of the uncertainty
 - Application
- Conclusions

Outlines

- Uncertain (max,+)-linear systems
 - Introduction
 - Linear modelling
- 2 Control synthesis problem
 - Uncertain controlled system
 - Reduction of the uncertainty
 - Application
- 3 Conclusions

Theory of (max,+)-linear systems ¹

• Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena

¹F. Baccelli *and al.*: Synchronisation and Linearity. Wiley and sons, 1992.

Theory of (max,+)-linear systems $^{ m 1}$

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Application areas: manufacturing systems, computing networks ², transportation systems ³

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

²J.Y Le Boudec and P. Thiran: Network Calculus. Springer, 2001.

³B. Heidergott and al.: Max plus at work. Princeton University Press, 2006. ▶ ₹ ₹ ♦ 0 €

Theory of (max,+)-linear systems ¹

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Application areas: manufacturing systems, computing networks ², transportation systems ³

Idempotent semiring

Set $\ensuremath{\mathcal{D}}$ endowed with two inner operations

- ullet \oplus o associative, commutative, idempotent $(a \oplus a = a)$ neutral element arepsilon
- ⊗ → associative, distributes over the sum neutral element e

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

²J.Y Le Boudec and P. Thiran: Network Calculus. Springer, 2001.

³B. Heidergott *and al.*: Max plus at work. Princeton University Press, 2006. ▶ □ □ □ ○ ○

First example: $\mathbb{B}[\![\gamma,\delta]\!]$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in $\mathbb B$, exponents in $\mathbb Z$

First example: $\mathbb{B}[\![\gamma,\delta]\!]$

Set of formal series with two commutative variables γ and δ ,

Boolean coefficients in
$$\mathbb{B}$$
, exponents in \mathbb{Z}

$$s = \bigoplus_{n,t \in \mathbb{Z}} s(n,t) \gamma^n \delta^t$$
 where $s(n,t) = \begin{cases} e & or \\ \varepsilon \end{cases}$

First example: $\mathbb{B}[\![\gamma,\delta]\!]$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in \mathbb{B} , exponents in \mathbb{Z}

$$s = \bigoplus_{n,t \in \mathbb{Z}} s(n,t) \gamma^n \delta^t$$
 where $s(n,t) = \begin{cases} e & or \\ \varepsilon \end{cases}$

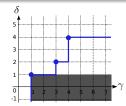
- Quotient of $\mathbb{B}[\![\gamma,\delta]\!]$ by $(\gamma\oplus\delta^{-1})^*$
 - * → Kleene star

First example: $\mathbb{B}[\![\gamma, \delta]\!]$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in \mathbb{B} , exponents in \mathbb{Z}

$$s = \bigoplus_{n,t \in \mathbb{Z}} s(n,t) \gamma^n \delta^t$$
 where $s(n,t) = \begin{cases} e & or \\ \varepsilon \end{cases}$

- Quotient of $\mathbb{B}[\![\gamma,\delta]\!]$ by $(\gamma\oplus\delta^{-1})^*$
- ullet $\gamma^n \delta^t o$ southeast cone with coordinates (n,t)
 - * → Kleene star



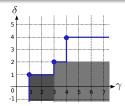
$$q = \gamma^1 \delta^1$$

First example: $\mathbb{B}[\![\gamma, \delta]\!]$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in \mathbb{B} , exponents in \mathbb{Z}

$$s = \bigoplus_{n,t \in \mathbb{Z}} s(n,t) \gamma^n \delta^t$$
 where $s(n,t) = \begin{cases} e & or \\ \varepsilon \end{cases}$

- Quotient of $\mathbb{B}[\![\gamma,\delta]\!]$ by $(\gamma\oplus\delta^{-1})^*$
- ullet $\gamma^n \delta^t o$ southeast cone with coordinates (n,t)
 - $* \rightarrow \mathsf{Kleene} \; \mathsf{star}$



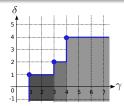
$$q = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2$$

First example: $\mathbb{B}[\![\gamma, \delta]\!]$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in \mathbb{B} , exponents in \mathbb{Z}

$$s = \bigoplus_{n,t \in \mathbb{Z}} s(n,t) \gamma^n \delta^t$$
 where $s(n,t) = \begin{cases} e & or \\ \varepsilon \end{cases}$

- Quotient of $\mathbb{B}[\![\gamma,\delta]\!]$ by $(\gamma\oplus\delta^{-1})^*$
- $\gamma^n \delta^t \to \text{southeast cone with coordinates } (n,t)$
 - * → Kleene star



$$q = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^4$$

DEDS linear modelling on $\mathcal{M}_{\mathit{in}}^{\mathit{ax}}[\![\gamma,\delta]\!]$

ullet $\gamma^n \delta^t
ightarrow the <math>n^{th}$ event occurs at earliest at time t

DEDS linear modelling on $\mathcal{M}_{in}^{\mathrm{ax}} \llbracket \gamma, \delta rbracket$

ullet $\gamma^n \delta^t \to the \ n^{th}$ event occurs at earliest at time t

Input/output relation

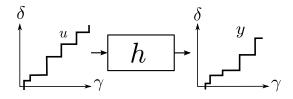
$$y = hu = CA^*Bu$$

where h is the transfer function of the system

h is periodic and causal

u, y and h are known

u and $y \rightarrow$ trajectories event / time



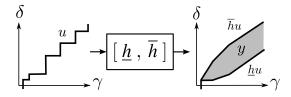
u, y and h are known

u and $y \rightarrow$ trajectories event / time

Uncertain system

- u exact
- $h \in [\underline{h}, \overline{h}]$
- $y \in [\underline{h}u, \overline{h}u]$

[fastest , slowest] ightarrow [\underline{h} , \overline{h}]



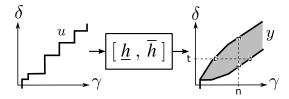
u, y and h are known

u and $y \rightarrow$ trajectories event / time

Uncertain system

- u exact
- $h \in [\underline{h}, \overline{h}]$
- $y \in [\underline{h}u, \overline{h}u]$

[fastest , slowest] ightarrow [\underline{h} , \overline{h}]



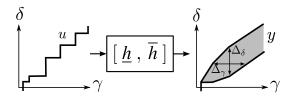
u, y and h are known

u and $y o \mathsf{trajectories}$ event / time

Uncertain system

- u exact
- $h \in [\underline{h}, \overline{h}]$
- $y \in [\underline{h}u, \overline{h}u]$

[fastest , slowest] ightarrow [\underline{h} , \overline{h}]



Maximal uncertainty

- event domain: Δ_{γ}
- time domain: Δ_{δ}

Computation of this uncertainty ⁴

Maximal uncertainty over y for all u: $\overline{h} \nmid \underline{h}$

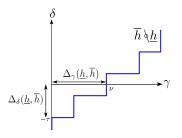
Residuation theory: $a \ b$ is the optimal solution to inequality $a \otimes x \leq b$ $b \rightarrow b$ left quotient

⁴Max Plus: Second order theory. CDC'91.

Computation of this uncertainty 4

Maximal uncertainty over y for all u: $\overline{h} \nmid \underline{h}$

Residuation theory: $a \ b$ is the optimal solution to inequality $a \otimes x \leq b$ $b \to b$ left quotient



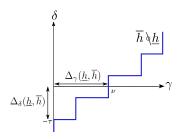
⁴Max Plus: Second order theory. CDC'91.

Computation of this uncertainty ⁴

Maximal uncertainty over y for all u: $\overline{h} \nmid \underline{h}$

$$\bullet \ \gamma^{\boldsymbol{\nu}} \delta^0 \in \overline{h} \, \underline{h} \quad \to \quad \boldsymbol{\nu} = \Delta_{\gamma}(\underline{h}, \overline{h})$$

Residuation theory: $a \ b$ is the optimal solution to inequality $a \otimes x \leq b$ $b \to b$ left quotient



⁴Max Plus: Second order theory. CDC'91.

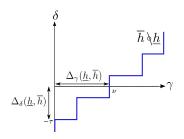
Computation of this uncertainty ⁴

Maximal uncertainty over y for all u: $\overline{h} \nmid \underline{h}$

$$\bullet \ \gamma^{\nu} \delta^{0} \in \overline{h} \, \underline{h} \quad \to \quad \nu = \Delta_{\gamma}(\underline{h}, \overline{h})$$

$$\bullet \ \gamma^0 \delta^{-\tau} \in \overline{h} \, \underline{h} \quad \to \quad \underline{\tau} = \Delta_{\delta}(\underline{h}, \overline{h})$$

Residuation theory: $a \ b$ is the optimal solution to inequality $a \otimes x \leq b$ $b \rightarrow b$ left quotient



⁴Max Plus: Second order theory. CDC'91.

Outlines

- Uncertain (max,+)-linear system
 - Introduction
 - Linear modelling
- Control synthesis problem
 - Uncertain controlled system
 - Reduction of the uncertainty
 - Application
- 3 Conclusions

Influence of a controller over an uncertain system

• Upstream controller p(u = pv)

$$v \longrightarrow p \xrightarrow{u} [\underline{h}, \overline{h}] \longrightarrow y$$

Influence of a controller over an uncertain system

- Upstream controller p(u = pv)
- Exact (max,+)-linear system (filter)

$$v \longrightarrow p \xrightarrow{u} [\underline{h}, \overline{h}] \longrightarrow y$$

Influence of a controller over an uncertain system

- Upstream controller p(u = pv)
- Exact (max,+)-linear system (filter)
- Possible decreasing of the uncertainty

$$\begin{array}{lcl} \Delta_{\gamma}(\underline{h},\overline{h}) & \geq & \Delta_{\gamma}(\underline{h}p,\overline{h}p) \\ \Delta_{\delta}(\underline{h},\overline{h}) & \geq & \Delta_{\delta}(\underline{h}p,\overline{h}p) \end{array}$$

$$v \longrightarrow p \xrightarrow{u} [\underline{h}, \overline{h}] \longrightarrow y$$

$$\Delta_{\gamma}(\underline{h}p,\overline{h}p) \leq \nu_0$$

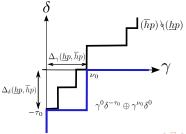
 $\Delta_{\delta}(\underline{h}p,\overline{h}p) \leq \tau_0$

$$\Delta_{\gamma}(\underline{h}p, \overline{h}p) \leq \nu_{0} \quad \Leftrightarrow \quad (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{\nu_{0}} \delta^{0} \\ \Delta_{\delta}(\underline{h}p, \overline{h}p) \leq \tau_{0} \quad \Leftrightarrow \quad (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{0} \delta^{-\tau_{0}}$$

$$\Delta_{\gamma}(\underline{h}p,\overline{h}p) \leq \nu_{0} \Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{\nu_{0}} \delta^{0}$$

$$\Delta_{\delta}(\underline{h}p,\overline{h}p) \leq \tau_{0} \Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{0} \delta^{-\tau_{0}}$$

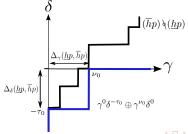
$$\Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{0} \delta^{-\tau_{0}} \oplus \gamma^{\nu_{0}} \delta^{0}$$



Maximal uncertainty no greater than fixed values

$$\begin{split} \Delta_{\gamma}(\underline{h}p,\overline{h}p) &\leq \nu_{0} &\Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{\nu_{0}} \delta^{0} \\ \Delta_{\delta}(\underline{h}p,\overline{h}p) &\leq \tau_{0} &\Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{0} \delta^{-\tau_{0}} \\ &\Leftrightarrow (\overline{h}p) \, \langle (\underline{h}p) \succeq \gamma^{0} \delta^{-\tau_{0}} \oplus \gamma^{\nu_{0}} \delta^{0} \end{split}$$

• Greatest controller \hat{p} (just in time criterion)



Knaster-Tarski theorem

Let f be an isotone mapping defined over \mathcal{D}

• $\mathcal{F}_f = \{x \in \mathcal{D} \mid f(x) = x\}$ is the set of fixed points of f

Knaster-Tarski theorem

Let f be an isotone mapping defined over \mathcal{D}

- $\mathcal{F}_f = \{x \in \mathcal{D} \mid f(x) = x\}$ is the set of fixed points of f
- $\hat{y} = \lim_{n \to \infty} f^n(val)$ is the greatest fixed point of f lower than val

Knaster-Tarski theorem

Let f be an isotone mapping defined over \mathcal{D}

- $\mathcal{F}_f = \{x \in \mathcal{D} \mid f(x) = x\}$ is the set of fixed points of f
- $\hat{y} = \lim_{n \to \infty} f^n(val)$ is the greatest fixed point of f lower than val

Algorithm

Let
$$x_0 = val \ (val \in \mathcal{D})$$
,
do $x_{n+1} = f(x_n)$,
until $x_{m+1} = x_m$ for $m \in \mathbb{N}$.

Knaster-Tarski theorem

Let f be an isotone mapping defined over \mathcal{D}

- $\mathcal{F}_f = \{x \in \mathcal{D} \mid f(x) = x\}$ is the set of fixed points of f
- $\hat{y} = \lim_{n \to \infty} f^n(val)$ is the greatest fixed point of f lower than val

Algorithm

Let
$$x_0 = val \ (val \in \mathcal{D})$$
,
do $x_{n+1} = f(x_n)$,
until $x_{m+1} = x_m$ for $m \in \mathbb{N}$.

If f admits a fixed point $x \in \mathcal{F}_f$

 \rightarrow convergence toward the greatest fixed point $\hat{y} = x_m \leq val$

Optimal controller \hat{p}

$$\hat{p} =$$

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid p\}$$

 $\oplus \to \mathsf{max}$ operator

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \, \forall (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0$$

 $\oplus \to \max$ operator

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \, \forall (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal }$$

 $\oplus \to \max$ operator

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \, \forall (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq \textit{val} \}$$

 $\oplus \to \max$ operator

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \backslash (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq \textit{val}\}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \Diamond (\gamma^{-\nu_0} \underline{h} p) \wedge \overline{h} \, \Diamond (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathsf{val}$$

 $\wedge \rightarrow \min \text{ operator}$ $\oplus \to \mathsf{max}$ operator

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \backslash (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq \textit{val}\}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \Diamond (\gamma^{-\nu_0} \underline{h} p) \wedge \overline{h} \, \Diamond (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathsf{val}$$

 $\oplus \to \mathsf{max} \ \mathsf{operator}$

 $\wedge o \mathsf{min} \ \mathsf{operator}$

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \setminus (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \leq val\}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \langle (\gamma^{-
u_0} \underline{h} p) \wedge \overline{h} \, \langle (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathsf{val}(p) \rangle$$

 $\oplus \to \max \text{ operator }$

 $\wedge \rightarrow \min \text{ operator}$

•
$$(\overline{h}p) \diamond (\underline{h}p) \succeq \gamma^{\nu_0} \delta^0 \iff p = p \wedge \overline{h} \diamond (\gamma^{-\nu_0} \underline{h}p)$$

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{ p \mid (\overline{h}p) \setminus (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq val \}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \langle (\gamma^{-\nu_0} \underline{h} p) \wedge \overline{h} \, \langle (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathsf{val} \rangle$$

 $\oplus \to \max \text{ operator }$

 $\wedge \rightarrow \min \text{ operator}$

- $(\overline{h}p) \diamond (hp) \succeq \gamma^{\nu_0} \delta^0 \iff p = p \wedge \overline{h} \diamond (\gamma^{-\nu_0} hp)$
- $(\overline{h}p) \diamond (hp) \succeq \gamma^0 \delta^{-\tau_0} \iff p = p \wedge \overline{h} \diamond (\delta^{\tau_0} hp)$

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \backslash (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq \textit{val}\}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \langle (\gamma^{-\nu_0} \underline{h} p) \wedge \overline{h} \, \langle (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathsf{val}$$

 $\oplus \to \max \text{ operator }$

 $\wedge \rightarrow \min \text{ operator}$

- $(\overline{h}p) \diamond (hp) \succeq \gamma^{\nu_0} \delta^0 \iff p = p \wedge \overline{h} \diamond (\gamma^{-\nu_0} hp)$
- $(\overline{h}p) \diamond (hp) \succeq \gamma^0 \delta^{-\tau_0} \iff p = p \wedge \overline{h} \diamond (\delta^{\tau_0} hp)$
- $f(x) = \overline{h} \, \langle (\gamma^{-\nu_0} h x) \wedge \overline{h} \, \langle (\delta^{\tau_0} h x) \rangle$ is isotone

Optimal controller \hat{p}

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \setminus (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, \underline{p} \text{ causal}, \underline{p} \preceq \underline{val}\}$$

is the greatest fixed point of

$$p = p \wedge \overline{h} \, \Diamond (\gamma^{-\nu_0} \underline{h} p) \wedge \overline{h} \, \Diamond (\delta^{\tau_0} \underline{h} p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathit{val}$$

 $\oplus \to \max \text{ operator }$

 $\wedge \rightarrow \min \text{ operator}$

- $(\overline{h}p) \diamond (hp) \succeq \gamma^{\nu_0} \delta^0 \iff p = p \wedge \overline{h} \diamond (\gamma^{-\nu_0} hp)$
- $(\overline{h}p) \diamond (hp) \succeq \gamma^0 \delta^{-\tau_0} \iff p = p \wedge \overline{h} \diamond (\delta^{\tau_0} hp)$
- $f(x) = \overline{h} \, \langle (\gamma^{-\nu_0} h x) \wedge \overline{h} \, \langle (\delta^{\tau_0} h x) \rangle$ is isotone

Proposition 2. Removal of the uncertainty ($\nu_0 = \tau_0 = 0$)

Optimal controller $\hat{p} \leq val$

$$\hat{p} = \bigoplus \{ p \mid (\overline{h}p) \setminus (\underline{h}p) \succeq \gamma^0 \delta^0, p \text{ causal}, p \preceq val \}$$

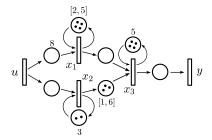
Proposition 2. Removal of the uncertainty ($\nu_0 = \tau_0 = 0$)

Optimal controller $\hat{p} \leq val$

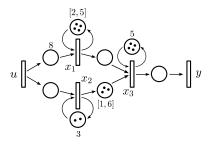
$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \backslash (\underline{h}p) \succeq \gamma^0 \delta^0, p \text{ causal}, p \preceq val\}$$

is the greatest fixed point of

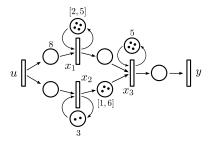
$$p = p \wedge \overline{h} \diamond (\underline{h}p) \wedge \mathsf{Pr}_{\mathsf{caus}}(p) \wedge \mathit{val}$$



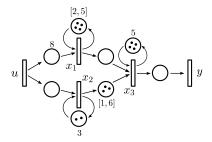
Time variations



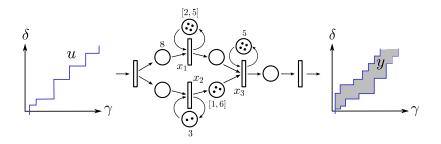
- Time variations
- Fastest behavior: minimum delays



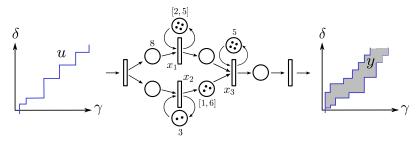
- Time variations
- Fastest behavior: minimum delays
- Slowest behavior: maximum delays



- Time variations
- Fastest behavior: minimum delays
- Slowest behavior: maximum delays



- Time variations
- Fastest behavior: minimum delays
- Slowest behavior: maximum delays

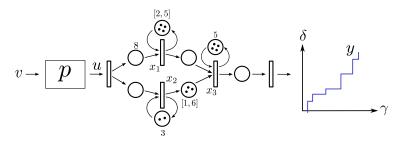


Maximal uncertainty

System alone

$$\Delta_{\gamma}(\underline{h}, \overline{h}) = 4$$
 and $\Delta_{\delta}(\underline{h}, \overline{h}) = 5$

- Time variations
- Fastest behavior: minimum delays
- Slowest behavior: maximum delays



Maximal uncertainty

Controlled system

$$\Delta_{\gamma}(hp,\overline{h}p)=0$$
 and $\Delta_{\delta}(hp,\overline{h}p)=0$

Outlines

- 1 Uncertain (max,+)-linear systems
 - Introduction
 - Linear modelling
- Control synthesis problem
 - Uncertain controlled system
 - Reduction of the uncertainty
 - Application
- Conclusions

What have we done?

• Uncertain (max,+)-linear systems $h \in [\underline{h}, \overline{h}]$

What have we done?

- Uncertain (max,+)-linear systems $h \in [\underline{h}, \overline{h}]$
- Computation of an optimal controller

$$\hat{p} = \bigoplus \{ p \mid (\overline{h}p) \setminus (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \leq val \}$$

What have we done?

- Uncertain (max,+)-linear systems $h \in [\underline{h}, \overline{h}]$
- Computation of an optimal controller

$$\hat{p} = \bigoplus \{p \mid (\overline{h}p) \backslash (\underline{h}p) \succeq \gamma^0 \delta^{-\tau_0} \oplus \gamma^{\nu_0} \delta^0, p \text{ causal}, p \preceq \textit{val}\}$$

 Decreasing of the uncertainty at the output of the controlled system Thank you for your attention ...

Questions?

Bibliography I

Baccelli F, Cohen G, Olsder GJ, Quadrat JP Synchronisation and linearity: an algebra for discrete event systems.

Wiley and sons, 1992.

http://cermics.enpc.fr/~cohen-g/documents/BCOQ-book.pdf

Heidergott B, Olsder G, Woude J

Max plus at work, modeling and analysis of synchronized systems: a course on max-Plus algebra and its applications.

Princeton University Press, 2006.

Le Boudec JY, Thiran P

Network calculus: a theory of deterministic queuing systems for the internet.

Springer, 2001.

http://ica1www.epfl.ch/PS_files/netCalBookv4.pdf

Bibliography II

Max Plus

Second order theory of min-linear systems and its application to discrete event systems.

Proceedings of the 30th IEEE Conference on Decision and Control, CDC'91, 2009

http://www-rocq.inria.fr/metalau/quadrat/cdc91.pdf