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Abstract— We present a novel approach to the computation of
symbolic abstractions of incrementally stable switched systems.
The main novelty consists in using mode sequences of given
length as symbolic states for our abstractions. We show that
the resulting symbolic models are approximately bisimilar to the
original switched system and that an arbitrary precision can
be achieved by considering sufficiently long mode sequences.
The advantage of this approach over existing ones is double:
firstly, the transition relation of the symbolic model admits a
very compact representation under the form of a shift operator;
secondly, our approach does not use lattices over the state-space
and can potentially be used for higher dimensional systems.
We provide a theoretical comparison with the lattice-based
approach and present a simple criterion enabling to choose
the most appropriate approach for a given switched system.
Finally, we show an application to a model of road traffic for
which we synthesize a schedule for the coordination of traffic
lights under constraints of safety and fairness.

I. INTRODUCTION

Over the recent years, there have been numerous stud-
ies about using discrete or symbolic abstractions for the
control of hybrid systems (see e.g. [8] and the references
therein). In particular, for switched systems, a specific class
of hybrid systems well-suited to represent physical processes
with various operation modes, the use of symbolic models
related to the original system by an approximate equivalence
relationship, namely approximate bisimulation, was proposed
in [5] and [1], under an assumption of incremental stability.
In these works, the computation of the symbolic models is
based on the use of discrete (uniform or multi-scale) lattices
approximating the state-space, and on the quantization of the
dynamics of the switched system over these lattices.

By leaning on this notion of approximate bisimulation, this
paper proposes an alternative approach to the computation of
symbolic models for incrementally stable switched systems.
The main novelty consists in using mode sequences of given
length as symbolic states for our abstractions. Intuitively, a
symbolic state represents the states that are reached by the
switched system by applying the associated mode sequence.
Then, the transition relation of the symbolic model can be
naturally and elegantly described using a symbolic shift oper-
ator. We show that by considering sufficiently long mode se-
quences, these symbolic models can approximate arbitrarily
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accurately the original incrementally stable switched system.
In addition, the fact that we do not explicitly discretize the
state-space makes our approach potentially more suitable
than [5] and [1] for higher dimensional systems. We provide
a theoretical comparison with these approaches and present
a simple criterion to choose the most appropriate approach
for a given switched system.

Our work can be related to [7] and [4] where similar
ideas of using input sequences as symbolic states in discrete
abstractions can be found. In [7], for the class of controllable
linear systems, it is shown that a symbolic model can be
computed by identifying symbolic states with bounded input
sequences. Contrarily to the present work, the resulting
symbolic models are related to the original system by an
exact bisimulation relation. In [4], input sequences are used
as symbolic states resulting in abstractions related to stable
linear systems by approximate bisimulation relations. The
present work extends this approach by applying it to a
broader class of systems.

The paper is organized as follows. Section II gives the
mathematical background of transition systems (common
framework used to model both switched and symbolic sys-
tems) and approximate bisimulation, whereas in Section III,
the class of discrete-time switched systems and the notion of
incremental stability are introduced. Then, in Section IV, we
present our novel approach to the computation of symbolic
models that are approximately bisimilar to an incrementally
stable switched system and we compare this method with
the lattice-based approach. Finally, Section V presents an
example of application to a model of road traffic for which
we synthesize a schedule for the coordination of traffic lights
under constraints of safety and fairness.

II. PRELIMINARIES

A. Transition systems

We use transition systems to describe switched systems
as well as the symbolic models we build. This common
framework allows us to compare their behaviors and evaluate
the precision of approximation of the switched system by the
symbolic model.

Definition 1: A transition system T is defined by the tuple
T = (X ,U,∆,O,H) where:

- X is the set of states;
- U is the set of inputs (an input may also be called a

label);
- ∆ : X ×U → 2X is the transition relation that provides

the successor(s) of a state for a given input;



- Y is the set of ouputs (an output may also be called an
observation);

- H : X → Y is the observation map.

A transition of T can be denoted by x′ ∈ ∆(x,u) or x u−→ x′,
and means that the system can evolve from state x ∈ X to
state x′ ∈ X under the action of input u ∈U . Then, a state
trajectory is a sequence of transitions x0

u0−→ x1
u1−→ x2

u2−→
. . . and the associated output trajectory is the sequence of
outputs y0y1y2 . . . where yk = H(xk).

T is said to be metric if its output set Y is equipped with
a metric d. It is said to be deterministic if for a given state
and a given input, there is at most one successor, and it is
said to be finite or symbolic if X and U are finite sets.

B. Approximate bisimulation relation

In the framework of metric transition systems, the notion
of approximate bisimulation [3] allows us to verify that the
distance between output trajectories of two transition systems
T1 and T2 obtained for identical input sequences, is bounded
by a given precision denoted ε .

Definition 2: Let T1 = (X1,U,∆1,Y,H1) and
T2 = (X2,U,∆2,Y,H2) be two metric transition systems
with the same input set U and the same output set Y
equipped with a metric d. Let ε ≥ 0 be a given precision.
A relation Rε ⊆ X1 × X2 is said to be an ε-approximate
bisimulation relation between T1 and T2 if for all (x,q)∈Rε :
(i) d(H1(x),H2(q))≤ ε ,

(ii) for all u ∈U and for all x′ ∈ ∆1(x,u), there exists q′ ∈
∆2(q,u) such that (x′,q′) ∈Rε ,

(iii) for all u ∈U and for all q′ ∈ ∆2(q,u), there exists x′ ∈
∆1(x,u) such that (x′,q′) ∈Rε .

While an exact bisimulation requires perfect equality be-
tween the output trajectories, the objective here is to maintain
the distance between them lower than a precision ε .

Remark 3: If transition relations ∆1 and ∆2 are such that
for any given state and input, there is exactly one successor
then conditions (ii) and (iii) are equivalent.

III. SWITCHED SYSTEMS

In this paper, we consider switched systems, a particular
class of hybrid systems for which the state is continuous and
the input is discrete. The set of inputs represents the different
operation modes of the system (a continuous dynamics is
associated with each mode); the input thus allows us to
switch between several continuous dynamics. Approaches
for computing approximately bisimilar symbolic models of
incrementally stable switched systems have been proposed
in [5] and [1], based on the use of uniform or multiscale
lattices to approximate the state space. In this paper, we
propose a novel approach which is not based on an explicit
discretization of the state-space.

A. Discrete-time switched systems

For simplicity of the exposition, we consider in this paper
discrete-time switched systems. However, similar to the work
in [5], one can easily extend the approach to continuous-time

switched systems and compute symbolic models for sampled
versions of the system where the time-sampling parameter is
a design parameter.

Definition 4: A discrete-time switched system Σ is defined
by the triple Σ = (Rn,P,F) where:

- Rn is the state space;
- P = {0, . . . ,m} is the finite set of modes;
- F = {Φ0, . . . ,Φm} is the collection of vector fields

describing the continuous dynamics in each mode.

In Σ, a switching signal is a function p : N→ P. Given a
switching signal p, a trajectory of Σ is a function x : N→Rn

such that:
∀t ∈ N, x(t +1) = Φp(t)(x(t)).

We denote by (x(t,x0,p))t∈N the trajectory of Σ associated
to initial state x0 and switching signal p.

The dynamics of Σ can be embedded in a transition system
T (Σ) = (X ,U,∆,Y,H) where the set of states is X =Rn; the
set of inputs is the set of modes U =P; the transition relation
is given by:

x′ ∈ ∆(x, p) ⇐⇒ x′ = Φp(x); (1)

the set of outputs is Y = Rn and the observation map H is
the identity map. T (Σ) is deterministic and metric when Rn

is equipped with some metric (e.g. given by some norm ‖.‖).
Moreover, Remark 3 applies to the transition system T (Σ).

B. Incremental stability of switched systems

Incremental stability was shown to be a crucial property
for the existence of approximately bisimilar symbolic models
for switched systems [5].

Definition 5: A switched system Σ is said to be incremen-
tally globally uniformly asymptotically stable (δ -GUAS) if
there exists a K L function1 β such that for all x1, x2 ∈Rn

and for all switching signals p:

∀t ∈ N, ‖x(t,x1,p)−x(t,x2,p)‖ ≤ β (‖x1− x2‖, t).

In other words, Σ is incrementally stable if all the trajec-
tories associated to the same switching signal p converge to
the same trajectory, independently of their initial conditions.
Hence, it follows that in an incrementally stable system, the
past of its behavior is progressively forgotten.

Incremental stability can be proved with the help of
Lyapunov functions.

Definition 6: A function V : Rn×Rn→R+
0 is a δ -GUAS

Lyapunov function for Σ if there exists two K∞ functions
α,α and a constant 0 < λ < 1 such that for all x1,x2 ∈ Rn:

α(‖(x1− x2)‖)≤V (x1,x2)≤ α(‖x1− x2‖), (2)
∀p ∈ P, V (Φp(x1),Φp(x2))≤ λV (x1,x2). (3)

1A continuous function α :R+
0 →R+

0 is said to belong to class K∞ if it is
strictly increasing, α(0) = 0 and α(r)→+∞ when r→+∞. A continuous
function β :R+

0 ×R
+
0 →R+

0 is said to belong to class K L if for all s∈R+
0 ,

β (.,s) is a K∞ function and for all r > 0, β (r, .) is strictly decreasing and
β (r,s)→ 0 when s→+∞.



It is fairly obvious that the existence of a δ -GUAS
Lyapunov function guarantees that the switched system Σ

is δ -GUAS. In the following, we shall assume the existence
of such a function. Similar to [5], we shall also make the
supplementary assumption that there exists a K∞ function γ

such that for all x1,x2,x3 ∈ Rn:

|V (x1,x2)−V (x1,x3)| ≤ γ(V (x2,x3)). (4)

C. Switched affine systems

In the particular case where the dynamics in each mode
is affine, that is:

∀p ∈ P, Φp(x) = Apx+bp, (5)

with Ap a n× n matrix and bp ∈ Rn, one can search for a
δ -GUAS Lyapunov function of the form:

V (x1,x2) =
√
(x1− x2)T M(x1− x2) = ||x1− x2||M, (6)

where M is a n×n positive definite symmetric matrix. Then,
(3) holds if and only if:

∀p ∈ P, AT
p MAp ≤ λ

2M. (7)

Equations (2) and (4) clearly hold for any positive definite
symmetric matrix M. Moreover, if Rn is equipped with the
norm ‖.‖M associated to the matrix M, then (2) and (4) hold
with α , α , γ all equal to the identity map.

IV. SYMBOLIC MODELS OF SWITCHED SYSTEMS

In this section, we propose a new method for computing
symbolic models for an incrementally stable switched system
Σ. Contrarily to [5] or [1], we do not use lattices to
approximate the state-space of the switched system.

In the proposed approach, the states of the symbolic model
are identified with mode sequences of a given length. Indeed,
because of the incremental stability property, for a given
switching signal, all the trajectories of Σ converge to the
same trajectory. Consequently, the latest applied modes are
more important than earlier modes that lose importance over
time. Then, the principle of approximation consists in fixing
a temporal horizon N ∈ N, and to consider that the current
state of the symbolic model only depends on the last N
applied modes. Therefore, we establish all the possible mode
sequences of length N as the symbolic states of our sym-
bolic model, a state being reached by the associated mode
sequence. In the following, we propose a construction of a
symbolic model TN(Σ) based on this idea and show that there
exists an ε-approximate bisimulation relation between T (Σ)
and TN(Σ). Moreover, we show that any abitrary precision ε

can be achieved by choosing N sufficiently large.

A. Mode sequences as symbolic states

Let N ∈N be a temporal horizon, the detailed construction
of the symbolic model TN(Σ) = (XN ,U,∆N ,Y,HN) is as
follows.

The set of states is XN = PN , that is the states are all the
possible sequences of modes of length N. The set of inputs
is the set of modes U = P and the set of outputs is Y =Rn;

these are the same as in T (Σ). This will allow us to compare
the transition systems T (Σ) and TN(Σ) in the approximate
bisimulation framework (see Definition 2).

As for the transition relation, let w ∈ XN be a state of
TN(Σ) such that w = p1 p2 . . . pN−1 pN . This state is reached
in the symbolic model, from any state, by applying the finite
sequence of inputs p1 p2 . . . pN−1 pN . Then, the transition
relation takes the form of a shift operator, that is:

w′ ∈ ∆N(p,w) ⇐⇒ w′ = p2 . . . pN−1 pN p.

Hence, it appears that the state of the symbolic model is
uniquely determined by the last N applied modes. Also, it
appears that similar to the transition systems T (Σ), Remark 3
applies to the transition system TN(Σ).

It remains to define the observation map HN . For that
purpose, we use a source state xs ∈ Rn for our symbolic
model. For any w ∈ XN , w = p1 p2 . . . pN−1 pN , the associated
output HN(w) is denoted yw and is defined by:

yw = Φw(xs) = ΦpN ◦ΦpN−1 ◦ . . .◦Φp2 ◦Φp1(xs). (8)

An example of symbolic model TN(Σ) with N = 3 and
P = {0,1}, encompassing 8 states, is illustrated Fig. 1.
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Fig. 1: Example of symbolic model TN(Σ) with N = 3 and
P = {0,1}.

B. Rounding error

Since the transition relation in T (Σ) is given in (1) by x′ =
Φp(x), TN(Σ) would be an exact representation of T (Σ) if we
had yw′ = Φp(yw) for all w ∈ XN , p ∈ P and w′ ∈ ∆N(p,w).
However, with a finite number of states w, the equality can
generally not be reached and a rounding error ζ for each
transition is unavoidable (see Fig. 2). So, we establish an
upper bound on these rounding errors.

In the following, let us assume that there exists a δ -GUAS
Lyapunov function V for Σ. Let η be the maximal rounding
error measured by the δ -GUAS Lyapunov function V for all
possible sequences w ∈ XN and all modes p ∈ P:

η = max
p,w

w′∈∆N(p,w)

V (Φp(yw),yw′). (9)



Fig. 2: Rounding error ζ between yw′ and Φp(yw).

Lemma 7: Let us assume that there exists a δ -GUAS
Lyapunov function V for Σ and let N ∈ N be a temporal
horizon. Then, the following inequality holds:

η ≤ λ
N max

p
V (Φp(xs),xs). (10)

Proof. Let w ∈ XN , w = p1 p2 . . . pN−1 pN with p ∈ P,
and let w′ ∈ ∆N(p,w). According to (8), outputs yw and
yw′ can be written as a composition of Φp from source
state xs, that is yw = ΦpN ◦ . . . ◦Φp2 ◦Φp1(xs) and yw′ =
Φp ◦ΦpN ◦ . . .Φp2(xs). Then, starting from:

V (Φp(yw),yw′) =

V (Φp ◦ΦpN ◦ . . .◦Φp2 ◦Φp1(xs),Φp ◦ΦpN ◦ . . .Φp2(xs)),

and thanks to (3) satisfied by the δ -GUAS Lyapunov func-
tion, the following inequality holds:

V (Φp ◦ΦpN ◦ . . .◦Φp2 ◦Φp1(xs),Φp ◦ΦpN ◦ . . .Φp2(xs))

≤ λV (ΦpN ◦ . . .◦Φp2 ◦Φp1(xs),ΦpN ◦ . . .◦Φp2(xs)).

Then, by iteration:

V (Φp(yw),yw′)≤ λ
NV (Φp1(xs),xs).

Since this holds for all w∈ XN and all p∈ P, it follows from
(9) that (10) holds.

�

It should be noted that since λ ∈ (0,1), η can be made
arbitrarily small by choosing N sufficiently large. Finally, we
can observe that the choice of source point xs has also an
influence on the value of η . Then, in order to obtain η as
small as possible, the objective is to minimize the largest
rounding error between xs and Φp(xs) for all points in Rn

and for all modes p:

xs = min
x∈Rn

max
p

V (Φp(x),x). (11)

C. Approximate bisimulation relation

In this section, we establish our main approximation result
which shows that the symbolic model TN(Σ) is approximately
bisimilar to the transition system T (Σ) describing the dynam-
ics of the switched system.

Theorem 8: Let us assume that there exists a δ -GUAS
Lyapunov function V for Σ and that (4) holds. Let N ∈N be
a temporal horizon and η be given by (9), let ε satisfy the
following inequality:

α(ε)≥ γ(η)

1−λ
. (12)

Then, the relation:

Rε = {(x,w) ∈ X×XN |V (x,yw)≤ α(ε)}

is an ε-approximate bisimulation between T (Σ) and TN(Σ).

Proof Let (x,w) ∈Rε , let us remark that we have:

‖H(x)−HN(w)‖ = ‖x− yw‖
≤ α

−1(V (x,yw)) ≤ ε.

Hence, the first condition of Definition 2 holds.
Remark 3 applies to T (Σ) and TN(Σ), therefore the second

and third condition of Definition 2 are equivalent. Let p ∈ P
and x′ ∈ ∆(p,x), w′ ∈ ∆N(p,w). According to (4) and (9), we
have:

V (x′,yw′) ≤ V (x′,Φp(yw))+ γ(V (Φp(yw),yw′))

≤ V (x′,Φp(yw))+ γ(η).

Then, since x′ = Φp(x) and by (3), we obtain:

V (x′,yw′) ≤ V (Φp(x),Φp(yw))+ γ(η)

≤ λV (x,yw)+ γ(η),

and so:
V (x′,yw′)≤ λα(ε)+ γ(η)≤ α(ε),

since V (x,yw) ≤ α(ε) and by (12). Therefore, it follows
that (x′,w′) ∈Rε and Rε is an ε-approximate bisimulation
relation between T (Σ) and TN(Σ).

�

As a consequence of Lemma 7 and Theorem 8, it is clear
that the precision ε of the symbolic model TN(Σ) can be
made arbitrarily small by choosing N sufficiently large.

D. Comparison with the lattice-based approach

In [5], an approach for computing approximately bisimilar
symbolic models for incrementally stable switched systems
has been proposed. It is based on the approximation of the
state space Rn by the following lattice:

[Rn]ν =

{
z ∈ Rn | zi = ki

2ν√
n
, ki ∈ Z, i = 1, . . . ,n

}
,

where ν > 0 is a state sampling parameter. Then, the
symbolic model of the switched system Σ is given by the
transition system Tν(Σ) = (Xν ,U,∆ν ,Y,Hν) where the set of
states is Xν = [Rn]ν , the set of inputs is the set of modes
U =P and the set of outputs is Y =Rn. The transition relation
is given by a quantization of the dynamics of Σ over the
lattice [Rn]ν , that is for z,z′ ∈ Xν , p ∈ P:

z′ ∈ ∆ν(p,z) ⇐⇒ ‖z′−Φp(z)‖ ≤ ν .

Finally, the observation map is the natural inclusion map:
Hν(z)= z. The following result, presented here in its discrete-
time version, is established in [5].

Theorem 9: Let us assume that there exists a δ -GUAS
Lyapunov function V for Σ and that (4) holds. Let ν > 0



be a state sampling parameter, let ε satisfy the following
inequality:

α(ε)≥ γ(ν)

1−λ
. (13)

Then, the relation:

Rε = {(x,z) ∈ X×Xν |V (x,z)≤ α(ε)}

is an ε-approximate bisimulation between T (Σ) and Tν(Σ).

In the following, we provide a discussion and a simple
criterion for helping to decide which is more appropriate for
a given switched system.

One can see from (12) and (13) that the accuracy of
the symbolic models TN(Σ) and Tν(Σ) are the same if
η = ν . Using for η the estimate given by (10), one has
that the accuracy are the same if ν = λ Nη0 where η0 =
maxp V (Φp(xs),xs).

As for the number of symbolic states in the abstractions,
there are |P|N states in TN(Σ) (where |P| is the number of
modes) while the number of states in Tν(Σ), when restraining
the dynamics on a compact subset of Rn, is given by C/νd

(where C is a positive number proportional to the volume of
the compact subset and d is the dimension of the system).
Then, for N ∈ N, the symbolic model Tν(Σ) achieving the
same accuracy as TN(Σ) has C/(λ Nη0)

d states.
Therefore, this means that it is more convenient to use

TN(Σ) rather than Tν(Σ) as soon as:

|P|N ≤ C
ηd

0

(
λ
−d
)N

.

This is asymptotically the case whenever:

|P|λ d ≤ 1. (14)

The previous inequality provides a simple criterion helping
to decide which approach is more appropriate for approx-
imating a given switched system. This criterion gives a
relation between the number of modes, the dimension of
the switched system and the contraction rate of the δ -GUAS
Lyapunov function. In particular, it appears that the approach
based on using mode sequences has interest for systems in
higher-dimension and with few modes.

V. APPLICATION TO A MODEL OF ROAD TRAFFIC

A. Model of road traffic

Now, let us see an example of a switched system and its
symbolic model obtained by the method described in this
paper.

The chosen switched system Σ illustrated Fig. 3 is the
model of a road divided in 5 cells of 250 meters each with
2 entries and 2 ways out. The two entries are controlled by
traffic lights, denoted f1 and f2, that enable (green light) or
not (red light) the vehicles to pass.

In Σ, the dynamic we want to observe is the density
of traffic ϕi, given in vehicles per cell, for each cell i
of the road. The state of Σ is the 5-dimensions vector
x = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5) and its set of modes is P = {0,1,2}
(so the number of modes is |P|= 3) where:

- mode 0 means f1 green and f2 green;
- mode 1 means f1 green and f2 red;
- mode 2 means f1 red and f2 green.

1 2 3 4 5

Fig. 3: Example of a switched system Σ that models a road
divided in 5 cells with 2 entries and 2 ways out.

Then, let T be a discrete time interval in hours (h), li be
the length of a cell in kilometers (km), and vi be the flow
speed of the vehicles in kilometers per hour (km/h). Inspired
by the work of [2], the model of a simple cell (eg. cells 3
and 5) is described by:

ϕi(t +1) = ϕi(t)−
T vi

li
ϕi(t)+

T vi−1

li−1
ϕi−1(t).

For cells 1 and 4, add the number of vehicles that can go in,
and for cell 2 substract the number of vehicles that can go
out. Moreover, in order to respect the conditions of stability
given in [6], inequality viT ≤ li has to be satisfied. Since
the length of a cell is fixed at 0.25 km, this is for instance
achieved with a flow speed of 70 km/h and the discrete time
interval equal to 10 seconds. During this time interval, we
define that 6 vehicles pass the entry controlled by green light
f1, 8 vehicles pass the entry controlled by green light f2, and
one quarter of vehicles that leave cell 1 goes out on the first
exit (ratio denoted q2).

Finally, in Σ, each mode can be described by affine
functions as in (5). Matrices A0, A1, and A2 are identical
and given by:

A0 =



1− T v1
l1 0 0 0 0

T v1
l1 1− T v2

l2 −q2 0 0 0

0 T v2
l2 1− T v3

l3 0 0

0 0 T v3
l3 1− T v4

l4 0

0 0 0 T v4
l4 1− T v5

l5


,

and associated vectors bp are the followings b0 = [6 0 8 0 0]′,
b1 = [6 0 0 0 0]′, b2 = [0 0 8 0 0]′. Also, one can find a δ -
GUAS Lyapunov function V for Σ of the form given in (6)
where the corresponding matrix M is:

M =


2.0789 0.6874 0.1471 −0.0100 0.0111
0.6874 1.6367 0.4236 0.0240 −0.0114
0.1471 0.4236 1.5768 −0.0212 0.0215
−0.0100 0.0240 −0.0212 1.5376 −0.3876
0.0111 −0.0114 0.0215 −0.3876 1.2796

 ,

and because of (7), λ = 0.8. As for the choice of the source
point xs given in (11), we use the fminimax Matlab function
that provides xs = [3.8570 3.3750 3.3750 8.5177 8.5177]′.

Remark 10: For that system, we have |P|λ d = 0.98 so the
criterion given by (14) indicates that the approach based on
the mode sequences is more appropriate than the approach
based on lattices.



B. Numerical tests

According to these caracteristics, symbolic model TN(Σ)
that approximates switched system Σ is computed as de-
scribed in Subsection IV-A.

The first test we made deals with precision ε of the
approximate bisimulation between TN(Σ) and T (Σ). Different
values of ε are so obtained by taking an increasing size N
of mode sequences from 10 to 14. The results are illustrated
in Table I where Π = |P|N is the state number of TN(Σ), η

is the rounding error defined in (9), and ε is the precision
of the abstraction given in Theorem 8. We can note that
we get a high precision quickly (ε = 0.0939 for N = 10) in
comparison to the values of densities, despite a number of
states not very large (Π = 59 049).

TABLE I: Computation of precision ε between TN(Σ) and
T (Σ), for different sizes of mode sequences N and under
safety and fairness constraints.

N 10 12 14
Π 59 049 531 441 4 782 969
Πs 35 189 305 765 2 655 400
η 0.0187 0.0019 0.00017
ε 0.0939 0.0095 0.00085

In addition to these results, we also deal with the control of
TN(Σ) thanks to constraints of safety and fairness. The former
constraint is established in order to regulate the number of
vehicles on the road and to keep the density of traffic lower
than a dangerous value. For a flow speed of 70 km/h, this
maximal density is fixed at 15 vehicles per cell. The latter
constraint is a way to alternate the accesses between the
2 entries and to allow only 3 identical consecutive modes
of red light. This ensures fairness between modes 1 and 2.
Under these two constaints, safe and controllable states Πs
of TN(Σ), given in Table I, are computed by a fixed-point
algorithm and we guarantee that all the transitions of the
controlled system keep the states in Πs.

Finally, we propose a schedule for the coordination of
traffic lights for the controlled system. The idea is to favor
mode 0 (two green lights) in order to give access on the
road to the maximum number of vehicles. For instance, when
N = 14, we obtain the following sequence of modes:

0−0−0−2−1−0−0−2−1−0−0−2−1−2,

that is applied from state w0 = 00021002100212. Then, after
state w0, the schedule passes by state w1 = 00210021002120
to state w13 = 20002100210021 and is cyclically repeated.
The corresponding traffic densities of the cells are illustrated
in Fig. 4.

VI. CONCLUSION

In this paper, a method for the computation of symbolic
abstractions of incrementally stable switched systems has
been studied.
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Fig. 4: Evolution of traffic densities of the cells under the
schedule 0−0−0−2−1−0−0−2−1−0−0−2−1−2.

Contrarily to methods of state-space discretization by
lattices, the symbolic model we build takes mode sequences
of the switched system as symbolic states. The abstraction
obtained is shown to be approximately bisimilar to the
original system with an arbitrary precision ε by considering
sufficiently long mode sequences.

We experiment this method on a model of a road where
the traffic densities of each cell (the states) are regulated
by the traffic lights (the inputs). The system is controlled
under constraints of safety, the density must be lower than a
dangerous value in each cell, and fairness, the green lights
have to be equally distributed between the two entries.

In future work, we should address the problem of devel-
oping efficient controller synthesis techniques exploiting the
specific structure of the transition relation of this kind of
symbolic models.
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