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Theory of (min,+)-linear system

@ Discrete Event Dynamic Systems (DEDS) characterized by
delay and synchronization phenomena
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Idempotent semiring

Set D endowed with two inner operations

@ @ : associative, commutative, idempotent (a ® a = a)
neutral element ¢

@ ® : associative, distributes over the sum
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Idempotent semiring

Set D endowed with two inner operations
@ @ : associative, commutative, idempotent (a ® a = a)
neutral element ¢

@ ® : associative, distributes over the sum
neutral element e

Order relation

| A

a=adb

azb & {b:a/\b

| \

Example : idempotent semiring Zomin

Lomin = (Z U {—00,+00}, min, +)

\
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o f is residuated
o Vb, f(x) < b admits a greatest solution f¥(b)

o f!is called the “residual of "

4

Example : left product and left quotient

@ L,:x+— a® x is residuated

o L%(b) = a\b is the optimal solution to inequality a® x < b
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Residuation theory

Optimal solutions to inequalities

o f is residuated
o Vb, f(x) < b admits a greatest solution f¥(b)

o f!is called the “residual of " )

Example : left product and left quotient

@ L,:x+— a® x is residuated
o L%(b) = a\b is the optimal solution to inequality a® x < b

@ Isotony and antitony properties

- _
KRy = agyx < agy (x — a¥x is |sot.one)
x%a > y{a (x — xX{a is antitone)
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Counter functions
x(t) is the number of the last event x at time t

Linear modeling on Zmin

@ State representation

{ x(t) = Ax(t — 1) @ Bu(t)
y(t) = Cx(t)
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Counter functions

x(t) is the number of the last event x at time t

Linear modeling on Zmin

@ State representation

{ x(t) = Ax(t — 1) @ Bu(t)
y(t) = Cx(t)

@ Input/output relation (* = inf-convolution)

y(t) @ CA"Bu(t — 1)

= (h+u)(t)

—  min [h(r) + u(t — 7]

with h the transfer function
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The h(t) characteristics
@ Periodicity
ATo, N, T €N |Vt > Ty, h(t+ T)= N h(t)

with o(h) = # the asymptotic slope of h
o Causality

h(t) = h(0) fort <0
>0 fort >0
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Modeling and control of (min,+)-linear systems

Controller structure

Precompensator controller

@ Precompensator p placed upstream of process h
@ Transfer relation = hx* p

e Input/output relation = y = (hx p) x v
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Optimal neutral precompensator controller p

@ To slow down the system input as much as possible : p is
maximized

@ To keep the input/output behavior unchanged : h*p = h
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Modeling and control of (min,+)-linear systems

Controller structure

Optimal n | precompensator controller p

@ To slow down the system input as much as possible : p is
maximized

@ To keep the input/output behavior unchanged : h*p = h

4

Practical aim

Manufacturing systems or computing networks

e To improve internal streams (internal stock \)

@ To avoid useless accumulations (queuing size \)
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Modeling and control of (min,+)-linear systems

Controller structure

Computation of p (§ = residual of the inf-convolutio

p(t) = (hkh)(z)
= /E\Z [h(7 — ) }h(7)]

= max [A(r) — h(r —t)]

5C.A. Maia and al. : Optimal closed-loop control. IEEE Transactions on Automatic
Control, 2003.
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DEDS linear modeling
Controller structure

5

Computation of p (§ = residual of the inf-convolution)

p(t) = (hkh)(z)
= /E\Z [A(T — t)}h(7)]
= max [A(r) — h(r —t)]

p characteristic

@ Periodicity

h periodic = p periodic

5C.A. Maia and al. : Optimal closed-loop control. IEEE Transactions on Automatic
Control, 2003.
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Neutral precompensator for uncertain systems E

Optimal neutral precompensator controller p
When h is known

p=o{plhxp=h} << p=hyh
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Optimal neutral precompensator controller p

When he [h, h]

pisneutral Vhe[h, h] < p= A hXh
h

e Optimal neutral p (Vh;,i € {1,...})
p = @{p|m*xp=~hyand hpxp=hyand ...}

= ®{p|p=hmih,p = hagha, ...}
= h1§h1/\h2§h2/\...
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Neutral precompensator for uncertain systems

Optimal neutral precompensator controller p

When he [h, h]

pisneutral Vhe[h, h] < p= A hXh
h

e Optimal neutral p (Vh;,i € {1,...})

p = ®{p|h*xp=hyand hpxp=hyand ...}

= ®{p|p=hmih,p = hagha, ...}
= h1§h1/\h2§h2/\...

e Computation problem = x%x is not monotonic
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SISO case

Example

Neutral precompensator for uncertain systems

Proposition 1 : SISO case

Z

min '

Let [ h, h] be an interval with h,h € Z
causal functions

two periodic and

R
Il

/\ hyh=e@hyh

he[ h, h]
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Neutral precompensator for uncertain systems

e® hyhis neutral Yhe [h, h]

/\ hxh=eohyh
he[ h , h]

v

Sketch of proof
o hyh>= hkh
because x — a{x isotone and x — x §a antitone

°/\he[ﬁ,ﬂ]h§h>—_e
o Anei s .7 M0 = Fkh

\
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ve >0, (hyn)(t)=( [\  hyh)(t)

he[ h, h]

<

o hyh = hyh
oVt >0, 3he[h, h]suchthat (hxh)(t) = (Axh)(t)

A

for t=0,Yhe[h, h], (hxh)(0)=0 = p(0) =0
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Introduction
SISO case
Example
MIMO case

Neutral precompensator for uncertain systems

Ve >0, (e@hyn)(t)=( [\ hyh)(t)

he[ h, h]

y

Sketch of proof

A _ (h}h)(t) fort >0 (Lemma 2)
P(E) = { 0 for t =0 (Lemma 3)
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Introduction

SISO case

Neutral precompensator for uncertain systems
Example

YVhe[h, h], hxpxv=nhxv

>

B8
s

Il
w o N
© wn

y(t)=(c =
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Neutral precompensator for uncertain systems

Example

MIMO case

Proposition 2 : MIMO ca

Let [ H, H ] be an interval with H, H € (Zim )
with periodic and causal elements

4%P two matrices

P= AN\ HyH=IdoHYH
HE[ H , H ]
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. Prospects
Conclusions and prospects F

Control synthesis problem

o Unknown (min,+)-linear systems h€ [ h, h]

e Computation of an optimal neutral precompensator controller
p= N\ hxh=e®hyh
he[ h, h]

= delays the process input as much as possible
= keeps the input/output relation unchanged

@ SISO and MIMO systems

Result limitation

| \

If o(h) > o(h) (with o the asymptotic slope)

hyh=¢ = edhyh=c¢
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What
Prospects

Conclusions and prospects

Extension to other controllers

o Feedback controller

vV —>C [haﬁ] —> Y
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Thank you for your attention ...

Questions ?
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Maximal variation between h and h in a
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For a given t, an increasing function h
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(RyA)(t) = max [h(r) — (1]

|

Link with hxh, YVhe [ h, h] /
For a given t, an increasing function h
eXiSts o 234557591011'time
hyh)(t) = (hyh)(t
(hah) () = (Ry)(2) J NI
;
. (hyh)(1) = (hyh)(1) = 4

Collection of functions h

(hxn)(e)=( A\ hyh)(®)

he[ h, h]
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