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Idempotent semiring

Set D endowed with two inner operations

⊕ : associative, commutative, idempotent (a⊕ a = a)
neutral element ε

⊗ : associative, distributes over the sum
neutral element e

Order relation

a � b ⇔
{

a = a⊕ b
b = a ∧ b

Example : idempotent semiring Zmin

Zmin = (Z ∪ {−∞,+∞},min,+)
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Residuation theory

Optimal solutions to inequalities

f is residuated

∀b, f (x) � b admits a greatest solution f ](b)

f ] is called the “residual of f ”

Example : left product and left quotient

La : x 7→ a⊗ x is residuated

L]a(b) = a ◦\b is the optimal solution to inequality a⊗ x � b

Isotony and antitony properties

x � y ⇒
{

a ◦\x � a ◦\y (x 7→ a ◦\x is isotone)
x ◦\a � y ◦\a (x 7→ x ◦\a is antitone)
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Counter functions

x(t) is the number of the last event x at time t

Linear modeling on Zmin

State representation
x(t) = Ax(t − 1)⊕ Bu(t)
y(t) = Cx(t)

Input/output relation (∗ = inf-convolution)

y(t) =
L
τ≥0

CAτBu(t − τ)

= (h ∗ u)(t)

= min
τ≥0

[h(τ) + u(t − τ)]

with h the transfer function
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Theorem : h(t) characteristics

Periodicity
∃T0,N,T ∈ N | ∀t ≥ T0, h(t + T ) = N ⊗ h(t)

with σ(h) = N
T

the asymptotic slope of h

Causality 
h(t) = h(0) for t < 0
h(t) ≥ 0 for t ≥ 0

t

h(t)

T

N

T

0
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Precompensator controller

Precompensator p placed upstream of process h

Transfer relation ⇒ h ∗ p

Input/output relation ⇒ y = (h ∗ p) ∗ v
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Optimal neutral precompensator controller p̂

To slow down the system input as much as possible : p is
maximized

To keep the input/output behavior unchanged : h ∗ p = h

Practical aim

Manufacturing systems or computing networks

To improve internal streams (internal stock ↘)

To avoid useless accumulations (queuing size ↘)
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Computation of p̂ ( ◦\ = residual of the inf-convolution) 5

p̂(t) = (h ◦\h)(t)

=
∧
τ∈Z

[h(τ − t) ◦\h(τ)]

= max
τ∈Z

[h(τ)− h(τ − t)]

p̂ characteristic

Periodicity

h periodic ⇒ p̂ periodic

5C.A. Maia and al. : Optimal closed-loop control. IEEE Transactions on Automatic
Control, 2003.
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Optimal neutral precompensator controller p̂

When h ∈ [ h , h ]

p̂ is neutral ∀h ∈ [ h , h ] ⇔ p̂ =
∧

h∈[ h , h ]

h ◦\h

Optimal neutral p̂ (∀hi , i ∈ {1, . . .})
p̂ = ⊕{p | h1 ∗ p = h1 and h2 ∗ p = h2 and . . .}

= ⊕{p | p � h1 ◦\h1, p � h2 ◦\h2, . . .}
= h1 ◦\h1 ∧ h2 ◦\h2 ∧ . . .

Computation problem ⇒ x ◦\x is not monotonic
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Proposition 1 : SISO case

Let [ h , h ] be an interval with h, h ∈ ZZ
min , two periodic and

causal functions

p̂ =
∧

h∈[ h , h ]

h ◦\h = e ⊕ h ◦\h
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Lemma 1

e ⊕ h ◦\h is neutral ∀h ∈ [ h , h ]∧
h∈[ h , h ]

h ◦\h � e ⊕ h ◦\h

Sketch of proof

h ◦\h � h ◦\h
because x 7→ a ◦\x isotone and x 7→ x ◦\a antitone∧

h∈[ h , h ] h ◦\h � e∧
h∈[ h , h ] h ◦\h � h ◦\h
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Lemma 2

∀t > 0, (h ◦\h)(t) = (
∧

h∈[ h , h ]

h ◦\h)(t)

Sketch of proof

h ◦\h � h ◦\h
∀t > 0, ∃h ∈ [ h , h ] such that (h ◦\h)(t) = (h ◦\h)(t)

Graphic meaning

Lemma 3

for t = 0,∀h ∈ [ h , h ], (h ◦\h)(0) = 0 ⇒ p̂(0) = 0
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Proposition 2 : MIMO case

Let [ H , H ] be an interval with H,H ∈ (ZZ
min )q×p, two matrices

with periodic and causal elements

P̂ =
∧

H∈[ H , H ]

H ◦\H = Id ⊕ H ◦\H
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Control synthesis problem

Unknown (min,+)-linear systems h ∈ [ h , h ]

Computation of an optimal neutral precompensator controller

p̂ =
∧

h∈[ h , h ]

h ◦\h = e ⊕ h ◦\h

⇒ delays the process input as much as possible
⇒ keeps the input/output relation unchanged

SISO and MIMO systems

Result limitation

If σ(h) > σ(h) (with σ the asymptotic slope)

h ◦\h = ε ⇒ e ⊕ h ◦\h = e
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