Control of uncertain (min,+)-linear systems. POSTA'09

Euriell Le Corronc, Bertrand Cottenceau, Laurent Hardouin

University of Angers - LISA - France http://www.istia.univ-angers.fr/LISA/

September 2, 2009

POSTA 09

Motivations

Uncertain (min,+)-linear systems

 $(\min,+)$ -linear input/output behavior h

• h is unknown $\Rightarrow h \in [\underline{h}, \overline{h}]$

Motivations

Uncertain (min,+)-linear systems

(min,+)-linear input/output behavior h

• h is unknown $\Rightarrow h \in [\underline{h}, \overline{h}]$

Control synthesis problem

Precompensator controller p

- to delay the input as much as possible
- to keep the input/output transfer unchanged $\Rightarrow h * p = h$

Outlines

- Modeling and control of (min,+)-linear systems
 - Introduction
 - Algebraic preliminaries
 - DEDS linear modeling
 - Controller structure
- Neutral precompensator for uncertain systems
 - Introduction
 - SISO case
 - Example
 - MIMO case
- Conclusions and prospects
 - What have we done?
 - Prospects

Outlines

- Modeling and control of (min,+)-linear systems
 - Introduction
 - Algebraic preliminaries
 - DEDS linear modeling
 - Controller structure
- Neutral precompensator for uncertain systems
 - Introduction
 - SISO case
 - Example
 - MIMO case
- Conclusions and prospects
 - What have we done?
 - Prospects

Theory of (min, +)-linear system ¹

• Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

Theory of (min,+)-linear system ¹

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Linear modeling ⇒ idempotent semiring

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

Theory of (min,+)-linear system ¹

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Linear modeling ⇒ idempotent semiring
- Analogy with the classical automatic theory

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

Theory of (min,+)-linear system 1

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Linear modeling ⇒ idempotent semiring
- Analogy with the classical automatic theory
- Control matching problems $^2 \Rightarrow$ residuation theory

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

²B. Cottenceau *and al.*: Model reference control. Automatica, Elsevier, 2001.

Theory of (min, +)-linear system ¹

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Linear modeling ⇒ idempotent semiring
- Analogy with the classical automatic theory
- ullet Control matching problems $^2 \Rightarrow$ residuation theory

Application areas

- Manufacturing systems
- Computing networks ³
- Transportation systems ⁴

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

²B. Cottenceau *and al.*: Model reference control. Automatica, Elsevier, 2001.

³J.Y Le Boudec and P. Thiran: Network Calculus. Springer, 2001.

⁴B. Heidergott and al.: Max plus at work. Princeton University Press, 2006.

Theory of (min, +)-linear system ¹

- Discrete Event Dynamic Systems (DEDS) characterized by delay and synchronization phenomena
- Linear modeling ⇒ idempotent semiring
- Analogy with the classical automatic theory
- Control matching problems ² ⇒ residuation theory

Application areas

- Manufacturing systems
- Computing networks ³
- Transportation systems ⁴

¹F. Baccelli and al.: Synchronisation and Linearity. Wiley and sons, 1992.

²B. Cottenceau *and al.*: Model reference control. Automatica, Elsevier, 2001.

³J.Y Le Boudec and P. Thiran: Network Calculus. Springer, 2001.

⁴B. Heidergott and al.: Max plus at work. Princeton University Press, 2006.

Idempotent semiring

Set $\mathcal D$ endowed with two inner operations

- ullet : associative, commutative, idempotent $(a \oplus a = a)$ neutral element arepsilon
- ⊗ : associative, distributes over the sum neutral element e

Idempotent semiring

Set $\mathcal D$ endowed with two inner operations

- ullet : associative, commutative, idempotent $(a \oplus a = a)$ neutral element arepsilon
- S : associative, distributes over the sum neutral element e

Order relation

$$a \succeq b \Leftrightarrow \begin{cases} a = a \oplus b \\ b = a \wedge b \end{cases}$$

Idempotent semiring

Set $\mathcal D$ endowed with two inner operations

- ullet : associative, commutative, idempotent $(a \oplus a = a)$ neutral element arepsilon
- S : associative, distributes over the sum neutral element e

Order relation

$$a \succeq b \Leftrightarrow \begin{cases} a = a \oplus b \\ b = a \wedge b \end{cases}$$

Example : idempotent semiring $\overline{\mathbb{Z}}_{min}$

$$\overline{\mathbb{Z}}_{\textit{min}} = (\mathbb{Z} \cup \{-\infty, +\infty\}, \textit{min}, +)$$

Residuation theory

Optimal solutions to inequalities

- f is residuated
- $\forall b, f(x) \leq b$ admits a greatest solution $f^{\sharp}(b)$
- f^{\sharp} is called the "residual of f"

Residuation theory

Optimal solutions to inequalities

- f is residuated
- $\forall b, f(x) \leq b$ admits a greatest solution $f^{\sharp}(b)$
- f[#] is called the "residual of f"

Example: left product and left quotient

- $L_a: x \mapsto a \otimes x$ is residuated
- $L_a^\sharp(b) = a \ b$ is the optimal solution to inequality $a \otimes x \leq b$

Residuation theory

Optimal solutions to inequalities

- f is residuated
- $\forall b, f(x) \leq b$ admits a greatest solution $f^{\sharp}(b)$
- f^{\sharp} is called the "residual of f"

Example: left product and left quotient

- $L_a: x \mapsto a \otimes x$ is residuated
- $L_a^\sharp(b)=a\ b$ is the optimal solution to inequality $a\otimes x\preceq b$
- Isotony and antitony properties

$$x \leq y \Rightarrow \begin{cases} a \ \forall x \leq a \ \forall y & (x \mapsto a \ \forall x \text{ is isotone}) \\ x \ \forall a \geq y \ \forall a & (x \mapsto x \ \forall a \text{ is antitone}) \end{cases}$$

Introduction
Algebraic preliminaries
DEDS linear modeling
Controller structure

Counter functions

x(t) is the number of the last event x at time t

Counter functions

x(t) is the number of the last event x at time t

Linear modeling on $\overline{\mathbb{Z}}_{min}$

State representation

$$\begin{cases} x(t) = Ax(t-1) \oplus Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Counter functions

x(t) is the number of the last event x at time t

Linear modeling on $\overline{\mathbb{Z}}_{min}$

State representation

$$\begin{cases} x(t) = Ax(t-1) \oplus Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Input/output relation (* = inf-convolution)

$$y(t) = \bigoplus_{\tau \ge 0} CA^{\tau}Bu(t-\tau)$$
$$= (h * u)(t)$$
$$= \min_{\tau > 0} [h(\tau) + u(t-\tau)]$$

with h the transfer function

Theorem : h(t) characteristics

Periodicity

$$\exists T_0, N, T \in \mathbb{N} \mid \forall t \geq T_0, \ h(t+T) = N \otimes h(t)$$

with $\sigma(h) = \frac{N}{T}$ the asymptotic slope of h

Causality

$$\begin{cases} h(t) = h(0) & \text{for } t < 0 \\ h(t) \ge 0 & \text{for } t \ge 0 \end{cases}$$

Theorem : h(t) characteristics

Periodicity

$$\exists T_0, N, T \in \mathbb{N} \mid \forall t \geq T_0, \ h(t+T) = N \otimes h(t)$$

with
$$\sigma(h) = \frac{N}{T}$$
 the asymptotic slope of h

Causality

$$\begin{cases} h(t) = h(0) & \text{for } t < 0 \\ h(t) \ge 0 & \text{for } t \ge 0 \end{cases}$$

Idempotent semiring considered

Set of non-decreasing mappings from \mathbb{Z} to $\overline{\mathbb{Z}}_{min}$

$$(\overline{\mathbb{Z}}_{\textit{min}}^{\mathbb{Z}}, \oplus, *)$$

Precompensator controller

- Precompensator p placed upstream of process h
- Transfer relation $\Rightarrow h * p$
- Input/output relation $\Rightarrow y = (h * p) * v$

$$v \longrightarrow p \xrightarrow{u} h \longrightarrow y$$

- To slow down the system input as much as possible : p is maximized
- To keep the input/output behavior unchanged : h * p = h

- To slow down the system input as much as possible : p is maximized
- To keep the input/output behavior unchanged : h * p = h

Practical aim

Manufacturing systems or computing networks

- To improve internal streams (internal stock ∖)
- To avoid useless accumulations (queuing size ∑)

Computation of \hat{p} (\flat = residual of the inf-convolution) ⁵

$$\hat{p}(t) = (h \lozenge h)(t)
= \bigwedge_{\tau \in \mathbb{Z}} [h(\tau - t) \lozenge h(\tau)]
= \max_{\tau \in \mathbb{Z}} [h(\tau) - h(\tau - t)]$$

⁵C.A. Maia *and al.*: Optimal closed-loop control. IEEE Transactions on Automatic Control. 2003.

Computation of \hat{p} (\sqrt{g} = residual of the inf-convolution) ⁵

$$\hat{p}(t) = (h \lozenge h)(t)
= \bigwedge_{\tau \in \mathbb{Z}} [h(\tau - t) \lozenge h(\tau)]
= \max_{\tau \in \mathbb{Z}} [h(\tau) - h(\tau - t)]$$

p characteristic

Periodicity

h periodic $\Rightarrow \hat{p}$ periodic

⁵C.A. Maia and al.: Optimal closed-loop control. IEEE Transactions on Automatic Control. 2003.

Outlines

- Modeling and control of (min,+)-linear systems
 - Introduction
 - Algebraic preliminaries
 - DEDS linear modeling
 - Controller structure
- Neutral precompensator for uncertain systems
 - Introduction
 - SISO case
 - Example
 - MIMO case
- Conclusions and prospects
 - What have we done?
 - Prospects

When h is known

$$\hat{p} = \bigoplus \{p \mid h * p = h\} \quad \Leftrightarrow \quad \hat{p} = h \lozenge h$$

When
$$h \in [\underline{h}, \overline{h}]$$

$$\hat{p}$$
 is neutral $\forall h \in [\underline{h}, \overline{h}] \Leftrightarrow \hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \lozenge h$

When $h \in [h, \overline{h}]$

$$\hat{p}$$
 is neutral $\forall h \in [\underline{h}, \overline{h}] \Leftrightarrow \hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \lozenge h$

• Optimal neutral \hat{p} ($\forall h_i, i \in \{1, ...\}$)

$$\hat{p} = \bigoplus \{ p \mid h_1 * p = h_1 \text{ and } h_2 * p = h_2 \text{ and } \ldots \}$$

$$= \bigoplus \{ p \mid p \leq h_1 \setminus h_1, p \leq h_2 \setminus h_2, \ldots \}$$

$$= h_1 \setminus h_1 \wedge h_2 \setminus h_2 \wedge \ldots$$

When $h \in [h, \overline{h}]$

$$\hat{p}$$
 is neutral $\forall h \in [\underline{h}, \overline{h}] \Leftrightarrow \hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \lozenge h$

• Optimal neutral \hat{p} ($\forall h_i, i \in \{1, ...\}$)

$$\hat{p} = \bigoplus \{ p \mid h_1 * p = h_1 \text{ and } h_2 * p = h_2 \text{ and } \ldots \}$$

$$= \bigoplus \{ p \mid p \leq h_1 \setminus h_1, p \leq h_2 \setminus h_2, \ldots \}$$

$$= h_1 \setminus h_1 \wedge h_2 \setminus h_2 \wedge \ldots$$

• Computation problem $\Rightarrow x \, \forall x$ is not monotonic

Proposition 1: SISO case

Let $[\ \underline{h}\ ,\ \overline{h}\]$ be an interval with $\underline{h},\overline{h}\in\overline{\mathbb{Z}}_{min}^{\mathbb{Z}}$, two periodic and causal functions

$$\hat{p} = \bigwedge_{h \in [\ \underline{h}\ ,\ \overline{h}\]} h \, \delta h = e \oplus \overline{h} \, \delta \underline{h}$$

Lemma 1

 $e \oplus \overline{h} \, rac{h}{h} \, is neutral \, \forall h \in [\, \underline{h} \, \, , \, \, \overline{h} \,]$

$$\bigwedge_{h\in[\underline{h},\overline{h}]}h\,\Diamond\,h\succeq e\oplus\overline{h}\,\Diamond\underline{h}$$

Lemma 1

 $e \oplus \overline{h} \,
abla \underline{h}$ is neutral $\forall h \in [\ \underline{h}\ ,\ \overline{h}\]$

$$\bigwedge_{h\in[\ \underline{h}\ ,\ \overline{h}\]}h\, \backslash\!\!\!\backslash h\succeq e\oplus \overline{h}\, \backslash\!\!\!\backslash \underline{h}$$

Sketch of proof

- $h \lozenge h \succeq \overline{h} \lozenge \underline{h}$ because $x \mapsto a \lozenge x$ isotone and $x \mapsto x \lozenge a$ antitone
- $\bigwedge_{h \in [\underline{h}, \overline{h}]} h \lozenge h \succeq e$
- $\bigwedge_{h \in [\underline{h}, \overline{h}]} h \lozenge h \succeq \overline{h} \lozenge \underline{h}$

Lemma 2

$$\forall t > 0, \ (\overline{h} \, rac{h}{h})(t) = (\bigwedge_{h \in [\underline{h}, \overline{h}]} h \, rac{h}{h})(t)$$

$$\forall t > 0, \ (\overline{h} \, \underline{\wedge} \underline{h})(t) = (\bigwedge_{h \in [\underline{h}, \overline{h}]} h \, \underline{\wedge} h)(t)$$

Sketch of proof

- $h \lozenge h \succeq \overline{h} \lozenge \underline{h}$
- $\forall t > 0, \ \exists h \in [\underline{h}, \overline{h}] \text{ such that } (h \lozenge h)(t) = (\overline{h} \lozenge \underline{h})(t)$

Graphic meaning

$$\forall t > 0, \ (\overline{h} \, \underline{\wedge} \underline{h})(t) = (\bigwedge_{h \in [\underline{h}, \overline{h}]} h \, \underline{\wedge} h)(t)$$

Sketch of proof

- $h \lozenge h \succeq \overline{h} \lozenge \underline{h}$
- $\forall t > 0, \ \exists h \in [\underline{h}, \overline{h}] \text{ such that } (h \lozenge h)(t) = (\overline{h} \lozenge \underline{h})(t)$

Graphic meaning

Lemma 3

for
$$t = 0, \forall h \in [\underline{h}, \overline{h}], (h \lozenge h)(0) = 0 \Rightarrow \hat{p}(0) = 0$$

$$\forall t \geq 0, \ (e \oplus \overline{h} \,
abla \underline{h})(t) = (\bigwedge_{h \in [\underline{h}, \overline{h}]} h \,
abla h)(t)$$

$$\forall t \geq 0, \ (e \oplus \overline{h} \,
abla \underline{h})(t) = (\bigwedge_{h \in [\underline{h}, \overline{h}]} h \,
abla h)(t)$$

Sketch of proof

$$\hat{p}(t) = \begin{cases} (\overline{h} \setminus \underline{h})(t) & \text{for } t > 0 \text{ (Lemma 2)} \\ 0 & \text{for } t = 0 \text{ (Lemma 3)} \end{cases}$$

$$\forall h \in [\underline{h}, \overline{h}], \quad h * \hat{p} * v = h * v$$

Proposition 2: MIMO case

Let $[\underline{H}, \overline{H}]$ be an interval with $\underline{H}, \overline{H} \in (\overline{\mathbb{Z}}_{min}^{\mathbb{Z}})^{q \times p}$, two matrices with periodic and causal elements

$$\hat{P} = \bigwedge_{H \in [\underline{H}, \overline{H}]} H \backslash H = Id \oplus \overline{H} \backslash \underline{H}$$

Outlines

- - Introduction
 - Algebraic preliminaries
 - DEDS linear modeling
 - Controller structure
- - Introduction
 - SISO case
 - Example
 - MIMO case
- Conclusions and prospects
 - What have we done?
 - Prospects

ullet Unknown (min,+)-linear systems $h \in [\ \underline{h}\ ,\ \overline{h}\]$

- ullet Unknown (min,+)-linear systems $h \in [\ \underline{h}\ ,\ \overline{h}\]$
- Computation of an optimal neutral precompensator controller

$$\hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \, \backslash h = e \oplus \overline{h} \, \backslash \underline{h}$$

- ullet Unknown (min,+)-linear systems $h \in [\ \underline{h}\ ,\ \overline{h}\]$
- Computation of an optimal neutral precompensator controller

$$\hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \, b \, h = e \oplus \overline{h} \, b \, \underline{h}$$

- ⇒ delays the process input as much as possible
- ⇒ keeps the input/output relation unchanged

- ullet Unknown (min,+)-linear systems $h \in [\ \underline{h}\ ,\ \overline{h}\]$
- Computation of an optimal neutral precompensator controller

$$\hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \, b \, h = e \oplus \overline{h} \, b \, \underline{h}$$

- ⇒ delays the process input as much as possible
- \Rightarrow keeps the input/output relation unchanged
- SISO and MIMO systems

- Unknown (min,+)-linear systems $h \in [\underline{h}, \overline{h}]$
- Computation of an optimal neutral precompensator controller

$$\hat{p} = \bigwedge_{h \in [\underline{h}, \overline{h}]} h \, \langle h = e \oplus \overline{h} \, \langle \underline{h}]$$

- ⇒ delays the process input as much as possible
- ⇒ keeps the input/output relation unchanged
- SISO and MIMO systems

Result limitation

If $\sigma(h) > \sigma(\overline{h})$ (with σ the asymptotic slope)

$$\overline{h} \lozenge h = \varepsilon \quad \Rightarrow \quad e \oplus \overline{h} \lozenge h = e$$

Extension to other controllers

Feedback controller

Thank you for your attention ...

Questions?

Computation of $\overline{h} \setminus \underline{h}$

Maximal variation between \underline{h} and \overline{h} in a window of width t

$$(\overline{h} \, langle \underline{h})(t) = \max_{ au \in \mathbb{Z}} \, \left[\underline{h}(au) - \overline{h}(au - t) \right]$$

Computation of $\overline{h} \setminus \underline{h}$

Maximal variation between \underline{h} and \overline{h} in a window of width t

$$(\overline{h} \, \underline{h})(t) = \max_{\tau \in \mathbb{Z}} \, [\underline{h}(\tau) - \overline{h}(\tau - t)]$$

event

$$t=1, \ \tau=6$$

$$(\overline{h} \wedge \underline{h})(1) = \underline{h}(6) - \overline{h}(5) = 4$$

Computation of $\overline{h} \setminus \underline{h}$

Maximal variation between \underline{h} and \overline{h} in a window of width t

$$(\overline{h} \, langle \underline{h})(t) = \max_{ au \in \mathbb{Z}} \, \left[\underline{h}(au) - \overline{h}(au - t) \right]$$

Link with $h \nmid h$, $\forall h \in [\underline{h}, \overline{h}]$

For a given t, an increasing function h exists

$$(h \, \backslash h)(t) = (\overline{h} \, \backslash \underline{h})(t)$$

event

$$t = 1, \ \tau = 6$$

$$(\overline{h} \wedge \underline{h})(1) = \underline{h}(6) - \overline{h}(5) = 4$$

◆ Back

Computation of $\overline{h} \nmid \underline{h}$

Maximal variation between \underline{h} and \overline{h} in a window of width t

$$(\overline{h} \, langle \underline{h})(t) = \max_{ au \in \mathbb{Z}} \, \left[\underline{h}(au) - \overline{h}(au - t) \right]$$

Link with $h \nmid h$, $\forall h \in [\underline{h}, \overline{h}]$

For a given t, an increasing function h exists

$$(h \, \backslash h)(t) = (\overline{h} \, \backslash \underline{h})(t)$$

event

$$t = 1, \ \tau = 6$$

$$(\overline{h} \, \underline{\wedge} \, \underline{h})(1) = (h \, \underline{\wedge} \, h)(1) = 4$$

Computation of $\overline{h} \setminus \underline{h}$

Maximal variation between \underline{h} and \overline{h} in a window of width t

$$(\overline{h} \! \setminus \! \underline{h})(t) = \max_{ au \in \mathbb{Z}} \ [\underline{h}(au) - \overline{h}(au - t)]$$

Link with $h \nmid h$, $\forall h \in [\underline{h}, \overline{h}]$

For a given t, an increasing function h exists

$$(h \, b)(t) = (\overline{h} \, \underline{b})(t)$$

Thus

Collection of functions h

$$(\overline{h}\, langle \underline{h})(t) = (\bigwedge_{h \in [\,\,\underline{h}\,\,,\,\,\overline{h}\,\,]} h\, langle h)(t)$$

event

$$t = 1, \ \tau = 6$$

$$(\overline{h} \, \underline{\wedge} \, \underline{h})(1) = (h \, \underline{\wedge} \, h)(1) = 4$$

◆ Back

Bibliography I

Baccelli F, Cohen G, Olsder GJ, Quadrat JP:

Synchronisation and linearity: an algebra for discrete event systems.

Wiley and sons, 1992.

http://cermics.enpc.fr/~cohen-g/documents/BCOQ-book.pdf

Cottenceau B, Hardouin L, Boimond JL, Ferrier, JL:

Model reference control for timed event graphs in dioids.

Automatica, Elsevier 37(9):1451–1458, 2001.

Heidergott B, Olsder G, Woude J:

 $\it Max$ plus at work, modeling and analysis of synchronized systems : a course on max-Plus algebra and its applications.

Princeton University Press, 2006.

Bibliography II

Le Boudec JY. Thiran P:

Network calculus: a theory of deterministic queuing systems for the internet.

Springer, 2001.

http://icalwww.epfl.ch/PS_files/netCalBookv4.pdf

Maia CA, Hardouin L, Santos-Mendes R, Cottenceau B: Optimal closed-loop control of timed event graphs in dioids. IEEE Transactions on Automatic Control 48(12):2284-2287, 2003.