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Abstract This paper deals with the control of uncertain (min,+)-linear systems
which belong to an interval. Thanks to the residuation theory, a precompensator
controller placed upstream of the studied system is given in such a way that even
if the system’s behavior is not perfectly known, it has the property to delay the in-
put as much as possible while keeping the input/output behavior unchanged. This
precompensator is called neutral.

1 Introduction

Discrete Event Dynamic Systems (DEDS) such as production systems, computing
networks and transportation systems which are characterized by delay and synchro-
nization phenomena can be described by linear models. Thanks to the particular al-
gebraic structure called idempotent semiring (or dioid), this translation into a linear
model is possible through for instance the (min,+)-algebra. This approach, detailed
in [1] and [4], has numerous analogies with the classical automatic theory and in
particular, the control of these systems can be considered. For instance, some model
matching problems are solved by the way of different control structures (open-loop
or close-loop structures) as presented in [2], [6] and [8]. These results rely on the
residuation theory and assume that the model is perfectly known.

This paper puts forward a control synthesis problem when the system is modeled
with some parametric uncertainties. More precisely, the following conditions are
assumed:

• the system has a (min,+)-linear input/output behavior denoted h,
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• because of uncertainties, h is unknown but belongs to an interval [ h , h ], the
bounds of which are known.

Under these assumptions, a precompensator controller p for the unknown system
h is computed in order to achieve two goals:

• the precompensator p is the greatest as possible, i.e. the one which delays the
input as much as possible,

• the input/output transfer1 is unchanged, i.e. h∗ p = h.

In a manufacturing context, such a controller allows the work-in process to be re-
duced while keeping the same process output. This enables to preserve input/output
stream while decreasing internal congestions.

It is important to note that our approach is different from the one presented in [7].
Indeed, in [7], the system also belongs to an interval (h ∈ [ h , h ]) but is subject to
fluctuation2 within the interval limits and admits a precompensator p ∈ [ p , p ] such
that h ∗ p ∈ [ h , h ]. In this paper, a precompensator p is computed such that the
equality h∗ p = h is satisfied, provided that h is a stationary (min,+)-linear system.

In order to introduce this work, the paper is organized as follows. The second
section recalls some algebraic tools required to the DEDS study through idempo-
tent semiring and residuation theory. In the third section, models and controls of
(min,+)-linear systems are presented. Finally, in the fourth section, the neutral pre-
compensator controller p is proposed and an example is given.

2 Algebraic preliminaries

2.1 Dioid theory

An idempotent semiring D is a set endowed with two inner operations denoted ⊕
and⊗ (see [1, §4.2]). The sum⊕ is associative, commutative, idempotent (i.e. ∀a ∈
D ,a⊕a = a) and admits a neutral element denoted ε . The product ⊗ is associative,
distributes over the sum and accepts e as neutral element. An idempotent semiring
is said to be complete if it is closed for infinite sums and if the product distributes
over infinite sums too. Moreover, the greatest element of D is denoted T (for Top)
and represents the sum of all its elements.

Due to the sum idempotency, an order relation can be associated with D by the
following equivalences: ∀a,b ∈ D , a º b ⇐⇒ a = a⊕ b and b = a∧ b. Because
of the lattice properties of a complete idempotent semiring, a⊕b is the least upper
bound of D whereas a∧b is its greatest lower bound.

Example 1 (Zmin). The set Zmin = (Z∪{−∞,+∞}), endowed with the min operator
as sum ⊕ and the classical sum as product ⊗, is a complete idempotent semiring

1 where ∗ is the convolution product.
2 h is not necessarily (min,+)-linear.
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where ε = +∞, e = 0 and T = −∞. On Zmin, the greatest lower bound ∧ takes the
sense of the max operator.

2.2 Residuation theory

Residuation is a general notion in lattice theory which allows to define “pseudo-
inverse” of some isotone maps (see [1]). In particular, the residuation theory pro-
vides optimal solutions to inequalities such as f (x) ¹ b (respectively f (x) º b),
where f is an order-preserving mapping defined over ordered sets.

A mapping f defined over ordered sets is isotone, respectively antitone, if
a¹ b⇒ f (a)¹ f (b), respectively f (a)º f (b). Now, let f : E →F be an isotone
mapping, where (E ,¹) and (F ,¹) are ordered sets. Mapping f is said residuated
if ∀b∈F , the greatest element denoted f ](b) of subset {x∈ E | f (x)¹ b} exists and
belongs to this subset. Mapping f ] is called the residual of f . When f is residuated,
f ] is the unique isotone mapping such that f ◦ f ] ¹ IdF and f ] ◦ f º IdE , where
IdF (respectively IdE ) is the identity mapping on F (respectively on E ).

Example 2 (Left product). Mapping La : x 7→ a⊗x defined over a complete idempo-
tent semiring D is residuated. Its residual represents the optimal solution to inequal-
ity a⊗ x¹ b and is usually denoted L]

a : x 7→ a ◦\x (left quotient).

Remark 1 (Isotony and antitony). ∀x,y,a ∈ D , an ordered set, these properties are
given:

x¹ y ⇒
{

a ◦\x¹ a ◦\y (x 7→ a ◦\x is isotone),
x ◦\aº y ◦\a (x 7→ x ◦\a is antitone). (1)

3 Models and control of (min,+)-linear systems

3.1 Counter functions

Some idempotent semiring algebras enable to model DEDS which involve synchro-
nization and delay phenomena. The behavior of such systems can be represented
by discrete functions called “counter” functions. More precisely, a discrete variable
x(t) is associated to an event labeled x and represents the occurrence number x at
time t (the numbering conventionally beginning at 0). For negative values of t, these
variables are defined as constant so they can be manipulated as mappings from Z to
Zmin. Thanks to these counter functions, the studied DEDS can be modeled on the
idempotent semiring Zmin by the following linear state representation:

{
x(t) = Ax(t−1)⊕Bu(t),
y(t) = Cx(t), (2)
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where A ∈ Zn×n
min , B ∈ Zn×p

min and C ∈ Zq×n
min while n, p and q refer respectively to the

state vector (x) size, the input vector (u) size and the output one (y).
In the SISO3 case (p = 1 and q = 1), the state equation leads to the following

input/output relation:
y(t) =

⊕

τ≥0

CAτ Bu(t− τ). (3)

Moreover, setting h(τ) = CAτ B, and defining the inf-convolution (or (min,+)-
convolution) as follows (see [9] and [5]), ∀ f ,g ∈ Zmin:

( f ∗g)(t) ,
⊕

τ≥0

[ f (τ)⊗g(t− τ)] = min
τ≥0

[ f (τ)+g(t− τ)],

relation (3) can be rewritten as y(t) = (h∗u)(t), which is actually the transfer rela-
tion of the considered system, with h(t) the transfer function4.

According to [1, Theorem 5.39] and [3], a (min,+)-linear system defined as (2)
is necessarily such that h(t) is periodic and causal i.e.:

∃T0,N,T ∈ N | ∀t ≥ T0, h(t +T ) = N⊗h(t) [periodicity], (4)
{

h(t) = h(0) for t < 0
h(t)≥ 0 for t ≥ 0 [causality]. (5)

Let us note that the set of nondecreasing5 mappings from Z to Zmin endowed
with the two inner operations ⊕ as pointwise addition and ∗ as inf-convolution is
also an idempotent semiring denoted (ZZmin,⊕,∗) where ε and e are defined by:

∀t,ε : ε(t) 7→+∞ and e : e(t) 7→
{

0 for t < 0,
+∞ for t ≥ 0.

(6)

In the MIMO6 case, the input/output relation becomes Y (t) = (H ∗U)(t), where
U ∈ (ZZmin )p, Y ∈ (ZZmin )q and H ∈ (ZZmin )q×p is such that Hi j is periodic. The inf-
convolution ∗ is then naturally extended to matrices as Yj(t) = (

⊕p
i=0(Hi j ∗Ui))(t).

3.2 Precompensator control

A specific (min,+)-linear controller, called precompensator p, can be placed up-
stream of process h so that u(t) = (p ∗ v)(t) and where v is the controller input.
In (ZZmin,⊕,∗), the output of the controlled system becomes y(t) = (h ∗ p ∗ v)(t).

3 Single Input Single Output.
4 Let us note that h(t) corresponds to the impulse response of the system, i.e. the output due to the
particular input: if t < 0,u(t) = 0 and if t ≥ 0,u(t) = +∞.
5 Nondecreasing in the natural order i.e. for t1 > t2 ⇒ h(t1)≥ h(t2).
6 Multiple Inputs Multiple Outputs.
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With this configuration, the controller p aims at slowing down the system input.
Moreover, the residuation theory shows (see [8]) that there exists an optimal neutral
precompensator given by:

p̂(t) = sup{p(t) | (h∗ p)(t) = h(t)}= (h◦\h)(t),

where the mapping x 7→ a◦\x is in that case the residual of the inf-convolution prod-
uct. This optimal controller is said to be neutral since it lets the input/output behavior
unchanged. Nevertheless, it delays the process input u as much as possible in order
to avoid useless accumulations into h. The computation of p̂ requires thus the use of
the residual of the inf-convolution product (see [9]):

p̂(t) = (h ◦\h)(t) =
∧

τ∈Z
[h(τ− t)◦\h(τ)] = max

τ∈Z
[h(τ)−h(τ− t)]. (7)

Remark 2 (Periodicity). If function h(t) is periodic, (h ◦\h)(t) is periodic too.

Remark 3 (Argument of the maximum). Let us note that if h is periodic, there exists
at least a τ0 (not necessarily unique) such that maxτ∈Z [h(τ)− h(τ − t)] = h(τ0)−
h(τ0− t) and defined by:

τ0 ∈ argmax
τ∈Z

[h(τ)−h(τ− t)]. (8)

4 Neutral precompensator for unknown systems

Usually, this optimal neutral precompensator is given for (min,+)-linear system the
transfer function h of which is perfectly known. This section deals with the problem
of finding such a precompensator when h presents some parametric uncertainties
and belongs to an interval [ h , h ]. In such a case, we will see that p̂ = e⊕h ◦\h is the
greatest precompensator which is neutral for all systems, i.e. ∀h∈ [ h , h ],h∗ p̂ = h.

4.1 SISO case

Proposition 1. Let [ h , h ] be an interval with h,h ∈ ZZmin :

∀hi ∈ [ h , h ],hi ◦\hi º h ◦\h.

Proof. According to the left quotient isotony and antitony properties (1), hi ◦\hi º
h◦\hi º h ◦\h. ut

Proposition 2. Let [ h , h ] be an interval with h,h ∈ ZZmin , two periodic and causal
functions (see (4) and (5)):



6 Euriell Le Corronc, Bertrand Cottenceau and Laurent Hardouin

∀ti > 0, ∃hi ∈ [ h , h ] such that (hi ◦\hi)(ti) = (h ◦\h)(ti).

Proof. Thanks to the residual of the inf-convolution product definition (see (7) and
(8)): (h ◦\h)(ti) =

∧
τ∈Z h(τ− ti)◦\h(τ) = h(τi− ti)◦\h(τi) with τi ∈ argmaxτ∈Z[h(τ)−

h(τ− ti)]. This τi leads to the hi following definition7:

hi(t) ,
{

h(t), for t < τi,
h(t), for t ≥ τi.

(9)

On Fig. 1 is illustrated an example of the hi function for which ti = 1 and τi = 6. In
that case (hi ◦\hi)(1) = (h ◦\h)(1) = h(6)− h(5) = 4. As specified in remark 3, τi is
not unique for ti = 1 and belongs to the set {3,4,6,8,10, . . .}.

Fig. 1 Example of a hi func-
tion where ti = 1 and τi = 6.
The arrow represents the dis-
tance (= 4) between h and h
for these values.

Then, equation (7) shows that: (hi ◦\hi)(ti) =
∧

τ∈Z hi(τ − ti)◦\hi(τ). This latter ex-
pression can be factorized, since ∀τ , h(τ)¹ h(τ) and according to (1) we obtain:

∧

τ<τi

h(τ− ti)◦\h(τ)º
∧

τ<τi

h(τ− ti)◦\h(τ)º h(τi− ti)◦\h(τi),

∧

τi+ti≤τ
h(τ− ti)◦\h(τ)º

∧

τi+ti≤τ
h(τ− ti)◦\h(τ)º h(τi− ti)◦\h(τi).

Moreover:
(

h(τi− ti)◦\h(τi)
)
∧

( ∧

τi<τ<τi+ti

h(τ− ti)◦\h(τ)
)

= h(τi− ti)◦\h(τi).

Finally, by defining hi as in (9), (hi ◦\hi)(ti) = h(τi− ti)◦\h(τi) = (h◦\h)(ti). ut

7 It is important to recall that the order¹ of ZZmin is the opposite to the natural order≥ of functions.
Moreover, as illustrated in Fig. 1, hi(t) is still a nondecreasing function.
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Remark 4 . Let us note that for ti = 0, (h ◦\h)(0) = 0 whereas (h ◦\h)(0) ¹ 0 (≥ 0).
For instance, on Fig. 1 (h ◦\h)(0) = h(2)−h(2) = 4.

These preliminary results lead to the following proposition.

Proposition 3. Let [ h , h ] be an interval with h,h ∈ ZZmin , two periodic and causal
functions (see (4) and (5)):

e⊕h ◦\h =
∧

h∈[ h , h ]

h ◦\h.

Proof. According to proposition 2, ∀ti > 0,∃hi ∈ [ h , h ] such that (hi ◦\hi)(ti) =
(h ◦\h)(ti). So, thanks to proposition 1, ∀t > 0, a subset of systems H ⊂ [ h , h ]
exists such that

∧
hi∈H (hi ◦\hi)(t) = (h ◦\h)(t). Moreover, for t = 0 and according

to remark 4, ∀t ≥ 0,
∧

hi∈H (hi ◦\hi)(t) = e⊕ (h ◦\h)(t). To conclude, ∀h ∈ [ h , h ],
h◦\hº∧

hi∈H (hi ◦\hi)(t) and finally e⊕h ◦\h =
∧

h∈[ h , h ] h◦\h. ut

Proposition 3 must be interpreted as follows: the precompensator p̂ = e⊕h ◦\h is
the greatest precompensator which is neutral for all systems h∈ [ h , h ] i.e. h∗ p̂ = h.

4.2 MIMO extension

Proposition 3 given for all uncertain SISO systems belonging to an interval can be
extended to MIMO systems. For an uncertain (min,+)-linear system H ∈ (ZZmin )q×p

in an interval [ H , H ], the greatest neutral precompensator is now defined by
P̂ = I⊕H ◦\H, where I is the identity matrix of (ZZmin )p×p.

Proposition 4. Let ha,hb ∈ ZZmin :

hb ◦\ha =
∧

ha ∈ [ ha , ha ]
hb ∈ [ hb , hb ]

hb ◦\ha.

Proof. Thanks to (1). ut

Proposition 5. Let [ H , H ] be a matrix interval with H,H ∈ (ZZmin )q×p and which
represents the behavior of an uncertain p-input q-output system:

I⊕H ◦\H =
∧

H∈[ H , H ]

H ◦\H.

Proof. Thanks to [1, Equation (4.82)], ∀H ∈ [ H , H ], (H ◦\H)i j =
∧n

k=1 Hki ◦\Hk j.
On the one hand, if i = j, (H ◦\H)ii =

∧n
k=1 Hki ◦\Hki with Hki ∈ [ Hki , Hki ]. Thanks

to proposition 3, (
∧

H∈[ H , H ] H ◦\H)ii =
∧n

k=1(e⊕Hki ◦\Hki)ii. On the other hand,
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for i 6= j, (H ◦\H)i j =
∧n

k=1 Hki ◦\Hk j with Hki ∈ [ Hki , Hki ], Hk j ∈ [ Hk j , Hk j ]
and thanks to proposition 4, (

∧
H∈[ H , H ] H ◦\H)i j =

∧n
k=1(Hki ◦\Hk j)i j = Hki ◦\Hk j.

Finally, ∀i, j,(
∧

H∈[ H , H ] H ◦\H)i j = (I⊕H ◦\H)i j. ut

4.3 Example of neutral precompensator for MIMO systems

A MIMO system with H ∈ (ZZmin )1×2 (two inputs, one output) the transfer function
of which belongs to an interval ([ H11 , H11 ] [ H12 , H12 ]) is considered. The
bounds are the periodic and causal functions given in table 1.

Table 1 Bounds of H

t 0 1 2 3 4 t ≥ 5

H11 0 3 t ≥ 2, H11(t) = 3⊗H11(t−2)

H11 0 0 0 1 2 t ≥ 5, H11(t) = 3⊗H11(t−2)

H12 0 2 t ≥ 2, H12(t) = 2⊗H12(t−2)

H12 0 0 t ≥ 2, H12(t) = 1⊗H12(t−1)

As previously said, (min,+)-linear systems are always characterized by periodic
functions ([1, Theorem 5.39]) and according to remark 2, residuals of the inf-
convolution are periodic functions too. Thus, for this system and thanks to propo-
sition 5, the computation of the neutral precompensator P̂ ∈ (ZZmin )2×2 given by
P̂ = I⊕H ◦\H, is described in table 2. Let us note that for this example, P̂21 = ε with
ε defined by (6).

Table 2 Neutral precompensator P̂

t 0 1 2 t ≥ 3

P̂11 0 5 7 t ≥ 3, P̂11(t) = 3⊗P11(t−2)

P̂12 2 t ≥ 1, P̂12(t) = 1⊗P12(t−1)

P̂22 0 3 t ≥ 2, P̂22(t) = 1⊗P22(t−1)

5 Conclusion

This paper has introduced the control of unknown (min,+)-linear systems belonging
to an interval the bounds of which are known. A neutral precompensator controller
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placed upstream of these systems has been given without changing the input/output
behavior while delaying the process input as much as possible. This precompensator
is enabled both for SISO and MIMO systems and an example has been given in order
to illustrate these propositions.
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