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Abstract Based on the (min,+)-linear system theory, the work developed here takes
the set membership approach as a starting point in order to obtain a container
for ultimately pseudo-periodic functions representative of Discrete Event Dynamic
Systems. Such a container, by approximating the exact system, ensures to entirely
include it in a guaranteed way. To reach that point, the container introduced in this
paper is given as an interval, the bounds of which are a convex function for the upper
approximation and a concave function for the lower approximation. Thanks to the
characteristics of the bounds, the aim is both to reduce data storage (that can be very
high when exact functions are handled) and to reduce the algorithm complexity of
the operations of sum, inf-convolution and subadditive closure. These operations are
integrated into inclusion functions, the algorithms of which are of linear or quasi-
linear complexity.

Keywords (Max,+) algebra · Discrete Event Dynamic Systems ·
Set membership approach · Algorithms · Computational complexity

1 Introduction

The theory of (max,+) algebra deals with the study of Discrete Event Dynamic
Systems (DEDS) characterized by delay and synchronization phenomena, through
the particular algebraic structure called idempotent semiring or dioid (Baccelli et al.
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1992). The areas of application of this theory are various. We can cite the production
systems (Cottenceau et al. 2001), communication networks (Le Boudec and Thiran
2001; Chang 2000) and the transportation systems (Heidergott et al. 2006). More
precisely, some control problems have already been solved in the context of pro-
duction systems (Maia et al. 2003) and in the context of communication networks
(Le Corronc et al. 2010). We can also recall that the theory of Network Calculus
aims at analyzing and measuring the worst-case performance of a network.

These works on control and performance analysis share the feature that the
underlying model relies on ultimately pseudo-periodic functions (denoted Fcp in
this paper). Nowadays, some tools enable these kinds of functions to be handled (an
overview for the Network Calculus is given in Boyer (2010)). A non-exhaustive list
includes: the MinMaxGD toolbox (created by the LISA laboratory, see Cottenceau
et al. (2000)), COINC software1 and the DISCO toolbox for Network Calculus (see
respectively Bouillard et al. (2009) and Schmitt and Zdarsky (2006)), and the RTC
toolbox for an extension of the Network Calculus called Real-Time Calculus (see
Wandeler and Thiele (2006)). The main operations of the (min,+) algebra such as
the sum and the inf-convolution2 are available in MinMaxGD, COINC, DISCO
and RTC, whereas the operation of subadditive closure3 is only available with
MinMaxGD and COINC. Moreover, for MinMaxGD and COINC, the algorithms
of these operations are described in Gaubert (1992) and Cottenceau (1999) for the
former, and in Bouillard and Thierry (2008) for the latter. In these toolboxes, the
complexity of sum and inf-convolution operations is linear or quasi-linear, whereas
the one for subadditive closure tends to be polynomial. However, because of the
characteristics of ultimately pseudo-periodic functions, the transient phenomena of
handled functions can be significantly long. In this case, the amount of storage
data overloads and the exact computations are not always possible within a reason-
able time.

It can therefore be helpful to use alternative models with less complex algorithms
and reduced data size. This paper follows this point of view by defining an original
container for ultimately pseudo-periodic functions (see also the thesis of Le Corronc
(2011)). The idea proposed here considers:

• a particular algebraic structure denoted Fcp�L , built from the Legendre–
Fenchel transform4 L (specially well-suited for convex functions, see Rockafellar
1997; Baccelli et al. 1992; Fidler and Recker 2006),

• associated to the set membership approach (see Jaulin et al. (2001) and Moore
(1979) for a general introduction, Litvinov and Sobolevskiı̄ 2001; Lhommeau
et al. 2005; Hardouin et al. 2009 in the semiring context).

More precisely, the upper bound of the container is the greatest element of the
equivalence class modulo L of the approximated function: it is a convex function.
Similarly, the lower bound of the container is a concave function that will contract
this equivalence class since the approximated function necessarily belongs to the

1Name of a research project dealing with COmputational Issues in Network Calculus.
2Operation used for the concatenation of systems.
3Also called Kleene star operation and used for systems with closed-loop architecture.
4Also called the convex conjugate function.
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container. In other words, the container is treated as the intersection between an
interval of functions that contains the exact system, and the equivalence class of
the approximated system modulo the Legendre–Fenchel transform. Thanks to the
convex characteristics of the bounds of the container, their data representations only
need small storage capacity.

Obviously, the downside is that such approximations provide results that are
not exact. But the computations made for the proposed container guarantee to
include the exact result as it is proposed in the set membership approach. Indeed,
the operations of sum, inf-convolution and subadditive closure are integrated into
inclusion functions that can be obtained by efficient algorithms thanks again to
their convex characteristics. For instance, some existing results given in Le Boudec
and Thiran (2001) and Schmitt and Zdarsky (2006), and leading to algorithms of
linear complexity will be applied to the inclusion function of the inf-convolution.
For the sum, since this operation is a minimum in (min,+) algebra, we will see that
the complexity of its inclusion function is linear too. Finally, this paper develops
new results by choosing a specific shape for the container, allowing us to deal
with subadditive closure in an efficient way. Indeed, by applying factorization and
simplification, the complexity of the inclusion function of the subadditive closure
becomes quasi-linear.

The presentation of our approach is organized as follows: Firstly, Section 2
reminds us of the useful basis of (min,+)-linear systems. More precisely, some
elements required for the study such as the idempotent semiring theory and the
problem of transfer matrix computation will be introduced. Then, in Section 3, all the
elements used to build the containers for these systems are presented with a canon-
ical representation. Section 4 provides inclusion functions for sum, inf-convolution
and subadditive closure operations, and outlines the underlying algorithms that
handle them. Finally, in Section 5, some tests are provided in order to evaluate the
toolbox called ContainerMinMaxGD5, and to compare approximated computations
to exact ones.

2 (Min,+)-linear systems

2.1 Reminder

We denote by Zmin the set of integers with a min as ⊕ operator and the classical sum
as ⊗ operator. On Zmin, the linear modeling of (min,+)-linear systems can be done
through counter functions. More precisely, for an event labeled x, the function x(t)
defined from Z to Zmin gives the cumulative number of events x that have occurred
until time t. Therefore, this work considers systems described by the following
state representation where u(t), x(t) and y(t) are vectors of counter functions that
respectively represent input events (events for which it is possible to control the
occurrence), internal and output events:{

x(t) = A ⊗ x(t − 1) ⊕ B ⊗ u(t),
y(t) = C ⊗ x(t).

(1)

5Created with the container and the algorithms described in this paper.
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Moreover, as in the classical linear system theory, an input-output description of a
(min,+)-linear system also exists. Indeed, by considering counter functions as event
trajectories6, the output y of a Single-Input Single-Output (SISO) system can be
expressed as a convolution of the input u by a particular trajectory h called a transfer
function. As in the classical theory, the transfer function of a system corresponds
to the output due to a specific input that plays the role of “impulse”. The transfer
function can therefore be seen as the impulse response of a (min,+) system.

This kind of input-output behavior can also be handled through formal series
where two operators of time-shift, denoted δ, and event-shift, denoted γ , are
involved, and so the convolution is transformed into a formal series product. An
example of this structure is idempotent semiring called M ax

in �γ, δ� (see Cohen et al.
(1989b) and Baccelli et al. (1992, Section 5.4.2)). In this framework, one of the most
important features is that the behavior of (min,+)-linear systems can be handled
thanks to finite and canonical representations that have periodic properties. Hence,
the transfer series of such a system is an ultimately pseudo-periodic series that has a
canonical representation.

In the literature, the state representation as well as the input-output model are
well suited to describe the behavior of Timed Event Graphs7 (TEG) with the “as
soon as possible” firing rule as can be seen in Cottenceau et al. (2001). These models
are also interesting to describe the behavior of some datagrams through a network
as shown in Chang (2000) and Le Boudec and Thiran (2001).

Some useful software tools are available to handle such representations. The
MinMaxGD toolbox computes the classical operations on periodic series of
M ax

in �γ, δ�. Also, the COINC software handles some piecewise affine pseudo-
periodic functions with operations of min, max, (min,+)-convolution and subadditive
closure.

2.2 Idempotent semiring theory

All the models introduced previously share some common algebraic features. In
each case, the underlying algebraic structure is an idempotent semiring for which
some reminders are given here (for more details, see Baccelli et al. 1992, Chapter 4;
Gaubert 1992; Heidergott et al. 2006).

Definition 1 (Idempotent semiring) An idempotent semiring D , also called dioid, is
a set endowed with two inner operations denoted ⊕ and ⊗. The sum ⊕ is associative,
commutative, idempotent (i.e. ∀a ∈ D, a ⊕ a = a) and admits a neutral element
denoted ε. The product8 ⊗ is associative, distributes over the sum and allows e to
be a neutral element.

When ⊗ is commutative (i.e. ∀a, b ∈ D, a ⊗ b = b ⊗ a), the idempotent semiring
D is said to be commutative. In this case, an idempotent semiring is said to be

6Which can be seen as “signals” for DEDS.
7Subclass of Timed Petri Nets in which each place has exactly one upstream and one downstream
transition.
8As in the usual algebra, operator ⊗ can be omitted: ab = a ⊗ b .
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complete if it is closed for infinite sums and if the product distributes over infinite
sums too. In this case, the greatest element of D is denoted � (for Top) and
represents the sum of all its elements (� = ⊕

x∈D x).
Furthermore, due to the idempotency of addition, a canonical order relation can

be associated with D by the following equivalences: ∀a, b ∈ D , a � b ⇔ a = a ⊕ b
and b = a ∧ b . Because of the lattice properties of a complete idempotent semiring,
a ⊕ b is the least upper bound of D whereas a ∧ b is its greatest lower bound.

Example 1 (Idempotent semirings Zmax and Rmax) The set Zmax = (Z ∪ {−∞,+∞})
endowed with the max operator as sum ⊕ and the addition as product ⊗ is a complete
idempotent semiring where ε = −∞, e = 0 and � = +∞. On Zmax, the greatest lower
bound ∧ becomes the min operator. By similarity, the set Rmax = (R ∪ {−∞,+∞}) is
a complete idempotent semiring with the same characteristics.

Example 2 (Idempotent semirings Zmin and Rmin) The set Zmin = (Z ∪ {−∞,+∞})
endowed with the min operator as sum ⊕ and the addition as product ⊗ is a complete
idempotent semiring where ε = +∞, e = 0 and � = −∞. On Zmin, the greatest lower
bound ∧ becomes the max operator. By similarity, the set Rmin = (R ∪ {−∞,+∞}) is
a complete idempotent semiring with the same characteristics.

Remark 1 It is important to note that because of operator ⊕, the canonical order
relation � on Zmin and Rmin corresponds to the reverse of the natural order ≤:

3 � 5 ⇔ 3 = 3 ⊕ 5 = min(3, 5) ⇔ 3 ≤ 5.

Theorem 1 (Baccelli et al. 1992, Theorem 4.75) The implicit equation x = ax ⊕ b
def ined on a complete idempotent semiring D admits x = a�b as the lowest solution:

∀a ∈ D, a� =
⊕
i≥0

ai where ai+1 = aia and a0 = e.

This operator is called subadditive closure or Kleene star operator9.

Numerous properties are associated with operator �. For instance, they are
proposed in Gaubert (1992) and Cottenceau (1999) for the (max,+) algebra and more
generally in Conway (1971) and Krob (1990) for the theory of rational identities.
Those used in this paper are given below.

Property 1 If D is a commutative, complete idempotent semiring, then ∀a, b ∈ D :

(ab �)� = e ⊕ a(a ⊕ b)�, (2)

(a ⊕ b)� = a�b �. (3)

9This designation is different according to the context of use: Network Calculus or TEG.
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Definition 2 (Homomorphism) A mapping � from an idempotent semiring D into
another one C is a homomorphism if ∀a, b ∈ D :

�(a ⊕ b) = �(a) ⊕ �(b) and �(ε) = ε,

�(a ⊗ b) = �(a) ⊗ �(b) and �(e) = e.

Definition 3 (Congruence) In an idempotent semiring D , a congruence is an equiv-
alence relation denoted ≡ that is compatible with operations ⊕ and ⊗, that is
∀a, b , c ∈ D :

a ≡ b ⇒
{

(a ⊕ c) ≡ (b ⊕ c),
(a ⊗ c) ≡ (b ⊗ c).

Definition 4 (Equivalence class) Let us consider an idempotent semiring D en-
dowed with a congruence ≡. The equivalence class of an element a ∈ D is denoted
[a]≡ and defined by:

[a]≡ � {x ∈ D | x ≡ a}.

Lemma 1 (Baccelli et al. 1992, Lemma 4.24) The quotient of an idempotent semiring
D by a congruence ≡ is an idempotent semiring denoted D�≡ and endowed with
operations ⊕ and ⊗ def ined as follows:

[a]≡ ⊕ [b ]≡ � [a ⊕ b ]≡,

[a]≡ ⊗ [b ]≡ � [a ⊗ b ]≡.

Lemma 2 (Baccelli et al. 1992, Corollary 4.26) If a mapping � : D �→ C is a homo-

morphism, then the relation
�≡ def ined below ∀a, b ∈ D is a congruence:

�(a) = �(b) ⇔ a
�≡ b ,

and the quotient of D by
�≡ is simply denoted D��.

Definition 5 (Projector) A projector p is defined as a mapping from D to D such
that:

p = p ◦ p.

2.3 Modeling of (min,+)-linear systems

In the rest of this paper, the (min,+) modeling over the set of real numbers is chosen.
Therefore, some counter functions from R to Rmin (see Example 2) must be classified
for the need of our study. Since these functions describe the cumulative number of
events, they are without exception nondecreasing (i.e., ∀t1 > t2, f (t1) ≥ f (t2)).

Definition 6 (Elementary function �K
T ) The elementary function denoted �K

T and
illustrated in Fig. 1, is the counter function defined by:

�K
T (t) =

{
K if t ≤ T,

+∞ otherwise.
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Fig. 1 An elementary
function �K

T

Definition 7 (Set Fc) A function f ∈ Fc (see Fig. 2a) is a function that can be
defined by an infinite sum (min) of elementary functions �K

T , i.e.:

f =
+∞⊕
i=0

�
ki
ti .

Therefore, f is a piecewise constant function.

Definition 8 (Causality) Let f be a function of Fc. Function f is said to be causal if:
{

f (t) = f (0) for t < 0,

f (t) ≥ 0 for t ≥ 0.

Remark 2 An elementary function �K
T is causal if K, T ≥ 0.

Definition 9 (Set Fcp) A function f ∈ Fcp (see Fig. 2b) is a function of Fc that is in
addition ultimately pseudo-periodic, i.e.:

∃Tp ≥ t0, ∃K ∈ R
+
min, ∃T ∈ R

+ such that ∀t ≥ Tp, f (t + T) = K ⊗ f (t) = K + f (t),

where t0 is the time of the first elementary function �
k0
t0 of f . Hence Fcp ⊂ Fc.

(a) A function f (b) An ultimately pseudo-periodic

function f

Fig. 2 Examples of piecewise constant functions
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Property 2 (Canonical representation) Each function of Fcp has a canonical form
where Tp and T are minimums.

Property 3 (Asymptotic slope σ ) Let f be a function of Fcp, its asymptotic slope is
defined by the ratio σ( f ) = K/T.

According to this classification, trajectories of a (min,+)-linear system are nat-
urally described by counter functions of Fc (i.e. nondecreasing piecewise constant
functions). In this set, considered systems are described by the state Eq. 1 and
recalled here by adding that A ∈ Z

n×n
min , B ∈ Z

n×p
min and C ∈ Z

q×n
min where n, p and q refer

respectively to the state vector size, the input vector size and the output vector size:
{

x(t) = A ⊗ x(t − 1) ⊕ B ⊗ u(t),
y(t) = C ⊗ x(t).

For SISO systems (i.e. where p = 1 and q = 1), the development of the recurrent
equations given by Eq. 1 leads to express output y as follows:

y(t) = CBu(t) ⊕ CABu(t − 1) ⊕ CA2 Bu(t − 2) ⊕ . . . ,

=
⊕
τ≥0

CAτ Bu(t − τ). (4)

In other words, the output is linked to the input by a convolution as defined below.

Definition 10 (Inf-convolution) Let f (t) and g(t) be two counter functions from R

to Rmin. The (min,+)-convolution also called inf-convolution of f by g is the counter
function defined below:

( f ∗ g)(t) �
⊕
τ≥0

{ f (τ ) ⊗ g(t − τ)} = min
τ≥0

{ f (τ ) + g(t − τ)}.

Remark 3 The inf-convolution is a commutative operation that distributes over the
sum ⊕. Its neutral element is denoted e and is defined by e = �0

0.

Thanks to this convolution product and according to Eq. 4, the input-output
behavior of a (min,+)-linear system can be expressed as follows, where function h
is called the transfer function:

y(t) = (h ∗ u)(t) and h(τ ) = CAτ B.

By extension to the Multiple-Input Multiple-Output (MIMO) case, this input-output
relation is described by:

Y(t) = (H ∗ U)(t),

where matrix H is called the transfer matrix. The inf-convolution of two matrices
Dd×l and Fl× f is defined as follows:

(D ∗ F)ij =
l⊕

k=1

{Dik ∗ Fkj}.
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2.4 Transfer matrix computation

The transfer matrix of a MIMO system can be obtained from the state representation
given by Eq. 1 as explained now. The time shifting between x(t) and x(t − 1) and
the event shifting contained in matrices A, B and C can also be expressed by inf-
convolutions with elementary functions:

x(t − 1) = (
�0

1 ∗ x
)
(t),

1 ⊗ x(t) = (
�1

0 ∗ x
)
(t).

In other words, if x ∈ Fc describes a trajectory, then:

�0
1 ∗ x = trajectory x shifted by 1 time unit,

�1
0 ∗ x = trajectory x shifted by 1 event unit.

So, by considering the idempotent semiring denoted (Fc,⊕, ∗) of nondecreasing
functions endowed with the min as sum and the inf-convolution as product, a different
expression of Eq. 1 is obtained:

{
x = A′ ∗ �0

1 ∗ x ⊕ B′ ∗ u,

y = C′ ∗ x,
(5)

where A′
ij = �

Aij

0 , B′
ij = �

Bij

0 , C′
ij = �

Cij

0 , and x, u and y are vectors of functions in Fc.
Thanks to Theorem 1, on the semiring (Fc, ⊕, ∗), these equations are solved in order
to lead to:

y = C′ ∗ (
A′ ∗ �0

1

)� ∗ B′ ∗ u,

and so y = H ∗ u with:

H = C′ ∗ (
A′ ∗ �0

1

)� ∗ B′. (6)

Remark 4 (Subadditive closure �K
T

�) Let �K
T , with K, T > 0, be an elementary

function of the semiring (Fc,⊕, ∗). Its subadditive closure �K
T

� illustrated Fig. 3,
is a function of Fcp such that:

�K
T

� =
⊕
i≥0

(
�K

T

)i
where

(
�K

T

)i+1 = (
�K

T

)i ∗ (�K
T ) and

(
�K

T

)0 = e.

Fig. 3 Subadditive closure of
an elementary function:
�K

T
� ∈ Fcp
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Moreover (�K
T )i = �iK

iT so �K
T

� = e ⊕ �K
T ⊕ �2K

2T ⊕ . . . . The asymptotic slope of this
subadditive closure is defined by σ(�K

T
�
) = K/T. If K, T ∈ N, then σ(�K

T
�
) ∈ Q

+.

The next result showing that a (min,+)-linear system has a transfer matrix that
belongs to the sub-semiring (Fcp,⊕, ∗)q×p, is a key result for (min,+)-linear systems.

Theorem 2 (Baccelli et al. 1992, Theorem 5.39) If matrices A ∈ Z
n×n
min , B ∈ Z

n×p
min and

C ∈ Z
q×n
min of the state representation (Eq. 1) are positive, then H = C′ ∗ (A′ ∗ �0

1)
� ∗ B′

given by Eq. 6 is such that ∀i, j, Hij is a causal ultimately pseudo-periodic function
of Fcp.

Sketch of proof Firstly, according to the definition of system given in Eq. 5, transfer
matrix H is obtained by doing a finite number of operations {⊕, ∗, �} on elementary
functions �K

T . Moreover, since elementary functions A′
ij, B′

ij, C′
ij and �0

1 can be seen
as functions of Fcp, technical proof consists in verifying that the set Fcp is rationally
closed (see for instance Gaubert 1992; Baccelli et al. 1992; Bouillard and Thierry
2008, Propositions 4 and 5). ��

Remark 5 It is important to note that the elementary function denoted �1
0 in the

semiring (Fcp,⊕, ∗) is nothing else but the γ shift operator of idempotent semiring
M ax

in �γ, δ�, and �0
1 corresponds to the δ shift operator. In the context of M ax

in �γ, δ�
modeling, the result of Theorem 2 is expressed by a more detailed result: the transfer
matrix of a (min,+)-linear system that is rational (i.e. it can be expressed with a finite
combination of {γ, δ} and {⊕,⊗, �}) is necessarily periodic and causal.

In conclusion of this section, due to Eq. 6, the computation of the behavior of a
(min,+)-linear system relies on an efficient computation of operations such as sum ⊕,
inf-convolution ∗ and subadditive-closure � of ultimately pseudo-periodic and causal
functions.

3 Container of (min,+)-linear systems

3.1 Objectives

The exact computation of sum, inf-convolution and subadditive closure for ultimately
pseudo-periodic and nondecreasing functions of Fcp can be really time and memory
consuming (see for instance Cottenceau et al. 1998–2006; Gaubert 1992; Bouillard
and Thierry 2008). The main objective of this work is to get some efficient algo-
rithms to handle these functions. To achieve this objective, function f ∈ Fcp is not
represented in an exact way10, but is approximated by a set, more precisely by an
interval of functions: f = [ f , f ] = { f ∈ Fcp | f � f � f }.

The operations between these sets have to be defined in order to contain the
result in a guaranteed way. These operations are inspired from the set membership
approach (Jaulin et al. 2001; Moore 1979) that proposes, for f and g two intervals of

10Which is made in the MinMaxGD toolbox.
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functions, to carry out the computation on all the f and g that respectively belong
to [ f , f ] and [ g , g ]. Formally, the interval operations denoted � ∈ {⊕, ∗, �} are
defined by:

f � g = { f � g | f ∈ f = [ f , f ] and g ∈ g = [ g , g ]}.
In order to obtain efficient algorithms, a simple idea consists in doing the com-
putation to get f � g by handling the bounds of the intervals. But this introduces
pessimism concerning the computations and does not improve the complexity of
the algorithms (we still handle ultimately pseudo-periodic functions). This is why
we headed towards inclusion functions denoted [�] ∈ {[⊕], [∗], [�]} that are such that:

f[�]g ⊃ f � g.

In other words, the inclusion function [�] contains in a guaranteed way the result of
f � g, by intrinsically adding pessimism. Hence, the aim is to find inclusion functions
with interesting algorithm complexity and allowing us to obtain intervals that are as
small as possible.

The idea is to introduce containers denoted [ f , f ]L as intervals, the bounds of
which are less memory consuming than functions of Fcp and that lead to algorithms
with lower complexity than the ones used in MinMaxGD or in COINC. In this pro-
posed container, the bound f corresponds to the greatest element of the equivalence
class of f modulo the Legendre–Fenchel transform L . Similarly, the bound f plays

the role of the lower bound of this equivalence class. Finally, the functions f and f
are piecewise affine, ultimately affine, and respectively concave and convex.

It is important to note that in Network Calculus literature, convex and concave
functions are often used in order to efficiently compute performance bounds during
the analysis of a data network. For instance in Fidler and Recker (2006), the authors
use the fact that in the convex analysis (Rockafellar 1997) the inf-convolution of
convex functions corresponds to addition in the Legendre domain (a useful result
for the concatenation of systems). However, they only propose to deal with an upper
bound of the input/output behavior whereas here we offer to deal with a container
enclosing the transfer relation in a guaranteed way. Another difference is that they
make their computations in the Legendre domain while we always stay in the (min,+)
domain and only use the properties of convex functions. Finally, one can find in
Schmitt and Zdarsky (2006) the use of a lower bound for the system in addition to the
classical upper bound. Indeed, this reference considers almost concave functions that
allow them to introduce concave lower bounds of transfer relations and to propose
an efficient computation for the inf-convolution. The definition of the lower bound
for the container proposed here is inspired from this result. Nevertheless, they do not
propose the computation of the subadditive closure as we offer to do here. Moreover,
in the definition of our container, a canonical representation is provided in order to
minimize the pessimism of its lower bound.

This section will be organized as follows. In Section 3.2, the classification of func-
tions is completed by affine functions, since they will be used to frame functions of
Fcp. The Legendre–Fenchel transform L is defined in Section 3.3 and in Section 3.4,
two operators of approximation are defined to approximate an exact function from
above and from below. Finally, Section 3.4 will introduce the container we developed
as an intersection between the interval of functions [ f , f ] and the equivalence class

of f modulo the Legendre–Fenchel transform L .
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(a) A function f (b) Which can be factorized by the inf-convolution

Fig. 4 An ultimately affine function f ∈ Faa and its factorization: f = �
κ f
τ f ∗ g

3.2 Affine and ultimately affine functions

First of all, in order to build the container of functions of Fcp, the classification of
functions needs to be completed. Until now, only piecewise constant functions have
been considered. Piecewise affine functions are now necessary. They are still defined
from R to Rmin.

Definition 11 (Set Faa) A function f ∈ Faa (see Fig. 4a) is a function that is constant
on the interval ] − ∞, τ f ], and:

– piecewise affine, i.e. composed of a finite number of intervals on which the
function is affine11,

– nondecreasing,
– ultimately affine from a time denoted Ta f : ∃Ta f ≥ τ f and ∃α, β ∈ R such

that ∀t ≥ Ta f , f (t) = αt + β,

on ]τ f ,+∞[.

Property 4 (Asymptotic slope σ ) Let f be a function of Faa, its asymptotic slope is
defined by the one of its ultimately affine parts: σ( f ) = α.

Property 5 (Factorization of a function f ∈ Faa) A function f ∈ Faa can be seen as
the following inf-convolution illustrated by Fig. 4b:

f = �
κ f
τ f ∗ g,

where κ f , τ f and g ∈ Faa are given such that:
{

κ f = lim
t→−∞ f (t),

τ f = max{ t | f (t) = κ f },
and g(t) = f (t − τ f ) − κ f ,

so g(0) = 0 and σ(g) = σ( f ). It means that a function f ∈ Faa can always be seen as
a function g (with g(0) = 0) shifted by an elementary function �

κ f
τ f : κ f is the event

shift and τ f is the time shift.

11The affine parts are linked by non-dif ferentiable points.
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Fig. 5 Examples of ultimately
affine functions

(a) A convex function f (b) A function f
that is concave on

Definition 12 (Set Facx) A function f ∈ Facx (see Fig. 5a) is a function of Faa that
is in addition convex12.

Definition 13 (Set Facv) A function f ∈ Facv (see Fig. 5b) is a function of Faa that
is in addition concave13 on ]τ f ,+∞[.

Remark 6 These kinds of concave functions can also be found in Schmitt and
Zdarsky (2006) under the name almost concave functions or in Lenzini et al. (2006)
where they are called pseudoaf f ine curves.

Definition 14 (Extremal point) In convex and concave functions, a non-
differentiable point is called an extremal point.

Proposition 1 (Factorization of f ∈ Facv) A function f ∈ Facv can be factorized as
follows (see Fig. 6):

f = �
κ f
τ f ∗  f , (7)

where  f ∈ Facv,  f (0) = 0 and σ( f ) = σ( f ).

Proof According to Property 5, f = �
κ f
τ f ∗ g with g ∈ Facv and g(0) = 0. So g =  f .

��

The function  f is the concave part of f shifted in the plane by the elementary
function �

κ f
τ f . The following theorem about functions denoted  provides some useful

equalities to deal with operations ∗ and � in the next section.

Theorem 3 (Le Boudec and Thiran 2001, Theorems 3.1.3, 3.1.6 and 3.1.9) Let 1 and
2 be two functions of Facv for which 1(0) = 2(0) = 0 (see Proposition 1), then:

1 ∗ 2 = 1 ⊕ 2, (8)

12The epigraph of a convex function is a convex set.
13The hypograph of a concave function is a convex set.
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Fig. 6 Factorization of a concave function f ∈ Facv: f = �
κ f
τ f ∗  f

with 1 ⊕ 2 ∈ Facv and (1 ⊕ 2)(0) = 0. Moreover:

1 = �
1, (9)

that is 1 is closed for the subadditive closure operation.

3.3 Legendre–Fenchel transform

The construction of the container principally relies on the Legendre–Fenchel trans-
form. This transform is well known in convex analysis (Rockafellar 1997), and
already used in Network Calculus literature to efficiently compute performance
bounds (Fidler and Recker 2006) or in the context of formal series of the idempotent
semiring M ax

in �γ, δ� (Cohen et al. 1989a; Burkard and Butkovič 2003). In this paper,
this transform is applied to the set Fcp in order to reduce the computation complexity
of operations involving these functions.

Definition 15 (Legendre–Fenchel transform L ) The Legendre–Fenchel transform
applied to f ∈ Fcp is the mapping L defined from (Fcp,⊕, ∗) to the idempotent
semiring of convex functions14 denoted (Dconvex, max, +) by:

L ( f )(s) � sup
t

{s.t − f (t)}.

Mapping L is a non injective homomorphism from (Fcp, ⊕, ∗) to (Dconvex, max,+),
that is ∀ f, g ∈ (Fcp,⊕, ∗):

L ( f ⊕ g) = max(L ( f ),L (g)),

L ( f ∗ g) = L ( f ) + L (g).

Definition 16 (Idempotent semiring Fcp�L ) Let us consider the following equiva-
lence relation ∀ f, g ∈ Fcp:

L ( f ) = L (g) ⇔ f
L≡ g,

where
L≡ is a congruence (see Lemma 2). The quotient of Fcp by

L≡ provides an
idempotent semiring denoted Fcp�L (see Lemma 1). An element of Fcp�L is an

14Dconvex is the set of convex functions endowed with the pointwise maximum as sum and the
pointwise addition as product.
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equivalence class modulo L denoted [ f ]L containing all the functions of Fcp that
have the same Legendre–Fenchel transform. Operations ⊕ and ⊗ of Fcp�L are
defined below:

[ f ]L ⊕ [g]L � [ f ⊕ g]L ,

[ f ]L ⊗ [g]L � [ f ∗ g]L .

This idempotent semiring Fcp�L will play a central role for the definition of the
convex upper bound of our container. Indeed, the following subsection goes back to
the link between the Legendre–Fenchel transform of a function and its convex hull.

3.4 Operators of approximation

In order to build the container of a function f ∈ Fcp, two operators of approximation
are defined and will be used during the computation of the inclusion functions. The
former is convex and approximates f from above (according to the � order), and the
latter is concave and approximates f from below. We recall that the order � is not
the natural order of functions but the canonical order on (Fcp,⊕, ∗) (see Section 2.2
and Remark 1), that is in accordance with the literature.

Remark 7 In regard with the notation of Property 5 and in order to help facilitate
the understanding of this and the next section, the first elementary function �

k0
t0 of a

function f = ⊕+∞
i=0 �

ki
ti ∈ Fcp (see Definition 9), will be denoted �

κ f
τ f in the sequel.

3.4.1 Convex approximation

Definition 17 (Convex hull Cvx) Let f be a function of Fcp. The convex hull of
f is denoted Cvx( f ) (also called the convex approximation in this paper) and is
the smallest convex function greater than f so Cvx( f ) � f and Cvx( f ) ∈ Facx (see
Fig. 7a).

Property 6 Mapping Cvx is a projector, i.e. Cvx( f ) = Cvx(Cvx( f )) (see Definition 5).
Moreover, the asymptotic slopes of Cvx( f ) and f are equal: σ(Cvx( f )) = σ( f ), and
the extremal points of Cvx( f ) belong to the function f . In particular �

κCvx( f )
τCvx( f ) = �

κ f
τ f .

Fig. 7 Convex approximation
of f ∈ Fcp and its equivalence
class modulo the
Legendre–Fenchel
transform L

(a) Convex approximation (b) Equivalence class
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Lemma 3 (Baccelli et al. 1992, Theorem 3.38) Let Cvx( f ) and Cvx(g) be the convex
hulls of f and g ∈ Fcp. Functions f and g have the same Legendre–Fenchel transform
if, and only if, they have the same convex hull:

L ( f ) = L (g) ⇔ Cvx( f ) = Cvx(g) ⇔ [ f ]L = [g]L .

Property 7 Functions that have the same extremal points and the same asymptotic
slope as f belong to the equivalent class [ f ]L as illustrated in Fig. 7b by the gray
zone.

According to Lemma 3, it is then possible to determine the equivalence modulo
the Legendre–Fenchel transform L by using the convex hull. As a consequence, the
computations modulo the transform L are equivalent to the computations modulo
the convex hull. Formally, we have ∀ f, g ∈ Fcp:

[ f ]L ⊕ [g]L = [ f ⊕ g]L ⇔ Cvx(Cvx( f ) ⊕ Cvx(g)) = Cvx( f ⊕ g), (10)

[ f ]L ⊗ [g]L = [ f ∗ g]L ⇔ Cvx(Cvx( f ) ∗ Cvx(g)) = Cvx( f ∗ g), (11)

[ f ]�L = [ f �]L ⇔ Cvx(Cvx( f )�) = Cvx( f �). (12)

Theorem 4 (Baccelli et al. 1992, Theorem 6.19) Let f be a function of Fcp and
[ f ]L be its equivalence class in the idempotent semiring Fcp�L (see Def inition 16).
Function Cvx( f ) ∈ Facx is the greatest representative of [ f ]L , i.e.:

[ Cvx( f ) ]L = [ f ]L and ∀g ∈ [ f ]L , g � Cvx( f ).

Hence, thanks to Theorem 4, we obtain a method to perform computations on the
idempotent semiring Fcp�L , even if in practice the Legendre–Fenchel transform L
of a function f ∈ Fcp will never be explicitly computed. Indeed, each equivalence
class of Fcp�L has a canonical representative that is the convex hull of the functions
of the class. Therefore, if we make the computations modulo the convex hull, we
carry out the computations in the quotient dioid Fcp�L , we simplify the results and
we still conserve their equivalence class modulo L .

3.4.2 Concave approximation

First of all, let us recall that a function f ∈ Fcp is constant on ] − ∞, τ f ] (see Remark
7) and then nondecreasing piecewise constant on ]τ f ,+∞[. Its concave hull denoted
conc( f ), i.e. the greatest concave function lower than f (according to the order �), is
necessarily the function ε : t �→ +∞. Hence, this concave hull is not useful to provide
a lower approximation of f .

However, a lower bound of f can be defined as a function of Facv that is constant
on ] − ∞, τ f ] and concave on ]τ f ,+∞[. This projection in Facv is called a concave
approximation and corresponds to that defined as an almost concave function in
Schmitt and Zdarsky (2006).
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Definition 18 (Concave approximation Ccv) Let f be a function of Fcp. The concave
approximation of f illustrated Fig. 8 is denoted Ccv( f ) and defined by:

Ccv( f )(t) �
{

f (t) for t ≤ τ f ,

conc( f )(t) for t > τ f ,

where τ f = max{t | f (t) = f (−∞)}. So Ccv( f ) � f and Ccv( f ) ∈ Facv.

Property 8 Mapping Ccv is a projector, i.e. Ccv( f ) = Ccv(Ccv( f )). Moreover,
σ(Ccv( f )) = σ( f ) and �

κCcv ( f )
τCcv ( f ) = �

κ f
τ f .

Remark 8 It must be noted that this concave approximation Ccv is not symmetrical
with the convex one Cvx. More precisely, the equivalences of Eqs. 10–12 are not
verified. However, Ccv is an isotone mapping so the following properties are satisfied.
Let f and g be two functions of Fcp:

{
Ccv( f ) � f
Ccv(g) � g

⇒
⎧⎨
⎩

Ccv( f ) ⊕ Ccv(g) � f ⊕ g,

Ccv( f ) ∗ Ccv(g) � f ∗ g,

Ccv( f )� � f �,

and

Ccv(Ccv( f ) ⊕ Ccv(g)) � Ccv( f ⊕ g),

Ccv(Ccv( f ) ∗ Ccv(g)) � Ccv( f ∗ g),

Ccv(Ccv( f )�) � Ccv( f �).

3.5 Definition of the container

The objective of this section is to build an approximation of ultimately pseudo-
periodic functions of Fcp, such that the computations on the approximated function
are more efficient than on the original ones. In order to do this, the container defined
below is an interval of functions associated with an equivalence class modulo L .

Definition 19 (Set F of containers) The set of containers considered in the sequel is
the set denoted F and defined by:

F � { [ f , f ]L | f ∈ Facv , f ∈ Facx , σ ( f ) = σ( f ) },

Fig. 8 Concave approximation
of f ∈ Fcp: Ccv( f ) ∈ Facv
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Fig. 9 Role of the lower
bound � f during the
construction of a container
f = [ f , f ]L ∈ F.

(a) Lower bound (b) Smallest elementof the of

equivalent class the container

with [ f , f ]L the subset defined as follows:

[ f , f ]L � [ f , f ] ∩ [ f ]L ,

= { f | f � f � f , [ f ]L = [ f ]L }.

So, a container of F is a subset of an interval [ f , f ], the bounds f and f of which

are respectively concave15 and convex. The elements of [ f , f ]L are equivalent

to f modulo the Legendre–Fenchel transform L . This means that ∀ f ∈ [ f , f ]L ,

f = Cvx( f ) (with Cvx the convex approximation given in Definition 17).

3.5.1 Canonical representation of a container of F

Among the containers of set F, we propose to define a canonical one. Its definition
is based on a lower bound of the equivalence class [ f ]L . Hence we first introduce
this lower bound.

Definition 20 (Lower bound � f ) Let [ f ]L be an equivalence class of the semiring

Fcp�L and f ∈ Facx be its greatest element, that is f = Cvx( f ) (see Theorem 4).

Function � f ∈ Fc defined below is a lower bound of [ f ]L :

� f �
n⊕

i=0

�
ki
ti and ∀t > tn, � f (t) = +∞, (13)

where pairs (ti, ki) are the coordinates of the n extremal points of f . Therefore:

∀ f ∈ [ f , f ]L , f � � f and �
k0
t0 = �

κ f
τ f

.

This lower bound is illustrated in Fig. 9a in which the gray zone represents the
equivalent class [ f ]L .

15On ]τ f ,+∞[.
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Remark 9 Even if function � f is a lower bound of [ f ]L , it must be noted that

it does not have the same asymptotic slope than f , indeed according to Eq. 13 the
asymptotic slope of � f is infinite. Therefore � f does not belong to equivalence class

[ f ]L (see Property 7 and Theorem 4).

This lower bound � f leads to the following implication: if f ∈ [ f , f ]L , then
f � f ⊕ � f . Therefore, as it is illustrated in Fig. 9b, f ⊕ � f is the smallest element

of the container [ f , f ]L , and interval [ f ⊕ � f , f ] (the gray zone in Fig. 9b)
contains the function f . Consequently, according to Definition 19, a same container
of F can be represented by different intervals, as long as f

1
⊕ � f = f

2
⊕ � f . In

other words, one can have (see Fig. 10):

[ f
1
, f ] �= [ f

2
, f ] while [ f

1
, f ]L = [ f

2
, f ]L .

In order to avoid such ambiguities, a canonical representation for these containers is
defined by doing the concave approximation of f ⊕ � f .

Definition 21 (Canonical representation of a container) The canonical representa-
tion of a container f = [ f , f ]L ∈ F is written as follows:

[ Ccv
(

f ⊕ � f

)
, f ]L = [ f ′ , f ]L ,

with �
κ f ′
τ f ′ = �

κ f
τ f

, and Ccv the concave approximation given in Definition 18. In

Fig. 10, this canonical representation is given by the container [ f
3

, f ]L since
f

3
= Ccv

(
f

1
⊕ � f

) = Ccv
(

f
2
⊕ � f

)
.

Remark 10 This canonical representation will also be the one chosen for the soft-
ware representation. Indeed, in addition to offering the advantage of representing
unambiguously a container of F, it also allows useless points of f to be removed. In
the example of Fig. 10, the points of f

1
and f

2
located below f

3
can so be removed

in order to keep only the canonical representation [ f
3
, f ]L .

Fig. 10 Canonical
representation [ f

3
, f ]L of

the identical containers
[ f

1
, f ]L and [ f

2
, f ]L
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Fig. 11 Maximal uncertainty
�f = { Dmax , Bmax } of a
container f ∈ F

(a) Case (b) Caseand and
max max

3.5.2 Maximal uncertainty of a container of F

Thanks to the canonical form of a container, f = [ f , f ]L ∈ F for which �
κ f
τ f = �

κ f
τ f

and σ( f ) = σ( f ) (see Definitions 21 and 19), the maximal distances in time and event

domains between f and f are finite and the loss of precision due to approximations
is bounded. This uncertainty is defined below.

Definition 22 (Maximal uncertainty �f of a container f) Let f = [ f , f ]L be a
container of F. Its maximal uncertainty denoted �f is defined as follows:

�f = { Dmax , Bmax },
where Dmax and Bmax (see Fig. 11) are respectively called the delay and the backlog
of the container16. The former element of �f corresponds to the maximal distance
between f and f in the time domain:

Dmax � inf
τ≥0

{τ | f (t0) ≤ f (t0 + τ)} where t0 =
{

Ta f if f (Ta f ) > f (Ta f
),

Ta f
otherwise.

The latter element corresponds to the maximal distance between f and f in the event
domain:

Bmax � f (t0) − f (t0) where t0 = max{Ta f , Ta f
}.

These computations, according to Bouillard et al. (2007, Lemmas 3 et 4), are quite
simple because of the convex characteristics of functions f and f . Indeed, since the

bounds f and f are ultimately affine from Ta f and Ta f
(see Definition 11), and with

identical asymptotic slope, it is enough to know where are their last points before
their ultimately affine parts i.e. (Ta f , f (Ta f )) and (Ta f

, f (Ta f
)), and to compare the

obtained coordinates. So, the maximal uncertainty �f can be computed from these
points as illustrated in Fig. 11.

16These designations come from the Network Calculus.
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4 Operations between containers: inclusion functions

In this section, we consider operations between the containers of F (see Definition
19). These operations between two elements f and g ∈ F are monotonic, nondecreas-
ing operations � ∈ {⊕, ∗, �}, and are defined in Section 3.1 by:

[ f � g , f � g ].
Unfortunately, F is not closed for these operations. Hence, we will use inclusion
functions that are internals to F, as in the set membership approach (Moore 1979;
Jaulin et al. 2001).

Definition 23 (Inclusion functions of operators {⊕, ∗, �}) Let f = [ f , f ]L and g =
[ g , g ]L be two containers belonging to F and � ∈ {⊕, ∗, �} be a set of operations.
Inclusion functions of these operators for containers of F denoted:

[�] ∈ {[⊕], [∗], [�]} are such that

{
f[�]g ⊃ f � g,

f[�]g ∈ F.
(14)

In order to ensure condition f[�]g ∈ F and in particular for functions [⊕] and [�],
the set f � g will be upper and lower rounded by the convex and concave approxima-
tions Cvx and Ccv . These approximations are interesting since they lead to operations
having a linear or quasi-linear complexity as it will be shown in the sequel.

Moreover, depending on the needs of operations, the canonical form of container
[Ccv

(
f ⊕ � f

)
, f ]L (see Definition 21) will be used for functions [⊕] and [∗],

whereas for function [�], the interval without the concave approximation [ f ⊕ � f , f ]
will be picked. This choice is relevant in order to obtain in all cases a weak level of
complexity.

4.1 Convex and concave approximations Cvx and Ccv

Firstly, the complexity of the algorithm giving the convex and concave approxima-
tions of a function f ∈ Faa is proposed below.

Proposition 2 (Algorithmic complexity of Cvx and Ccv) Let N f (respectively Ng) be
the number of non-dif ferentiable points of f (respectively g) in Faa. The computation
of Cvx( f ) (respectively Ccv(g)) is of linear complexity, namely O(N f ) (respectively
O(Ng)).

Proof Convex and concave approximations rely on known algorithms of convex hull
computation in the computational geometry (Graham 1972). In the worst case, only
two scans of the list of non-differentiable points are required. ��

Remark 11 According to Definitions 18 and 17, let us recall that:

– Ccv( f ) ∈ Facv, Ccv( f ) � f , σ(Ccv( f )) = σ( f ) and �
κCcv ( f )
τCcv ( f ) = �

κ f
τ f ,

– Cvx( f ) ∈ Facx, Cvx( f ) � f , σ(Cvx( f )) = σ( f ) and �
κCvx( f )
τCvx( f ) = �

κ f
τ f ,

– Ccv and Cvx are projectors.
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By the way, these projections can be applied to either functions of Fcp or functions
of Faa.

4.2 Inclusion function of the sum: [⊕]

Prior to studying inclusion function [⊕], it must be remembered that operator ⊕ is
order-preserving, i.e. f � g ⇒ a ⊕ f � a ⊕ g and as a consequence f ⊕ g � f ⊕ g.

Proposition 3 (Inclusion function [⊕]) Let f = [ f , f ]L and g = [ g , g ]L be
two containers of F given in their canonical forms. The operation denoted [⊕] and
def ined by:

f[⊕]g = [ f[⊕]g , f[⊕]g ] � [ Ccv( f ⊕ g) , Cvx( f ⊕ g) ]L ,

is an inclusion function for the sum ⊕, i.e.:

∀ f ∈ [ f , f ]L and ∀g ∈ [ g , g ]L ⇒
{

f ⊕ g ∈ f[⊕]g,

f[⊕]g ∈ F.

Proof According to Remark 11 and since ⊕ is order-preserving, ∀ f ∈ [ f , f ]L and

∀g ∈ [ g , g ]L , Ccv( f ⊕ g) � f ⊕ g � Cvx( f ⊕ g), and projections Ccv( f ⊕ g) and

Cvx( f ⊕ g) respectively belong to the sets Facv and Facx. Then, since σ( f ) = σ( f )
and σ(g) = σ(g), that the sum ⊕ is the minimum operation, and that σ(Ccv( f ⊕
g)) = σ( f ⊕ g) (ibid for f , g and Cvx), then σ(Ccv( f ⊕ g)) = min(σ ( f ), σ (g)) =
min(σ ( f ), σ (g)) = σ(Cvx( f ⊕ g)). ��

This inclusion function [⊕] does not necessarily provide a canonical result. This
requires the concave approximation of (f[⊕]g ⊕ �f[⊕]g) and we thus obtain the
following container:

[ Ccv(f[⊕]g ⊕ �f[⊕]g) , f[⊕]g ]L = [ Ccv(Ccv( f ⊕ g) ⊕ �Cvx( f⊕g)) , Cvx( f ⊕ g) ]L .

Proposition 4 (Algorithmic complexity of [⊕]) Let N f , N f , Ng and Ng be the number

of extremal points of respectively f , f , g and g. The computation of f[⊕]g is of linear
complexity, namely O(N f + N f + Ng + Ng).

Proof The minimum of two ultimately affine functions is of linear complexity since
it requires in the worst case only one scan of extremal points for each function.
Moreover, according to Proposition 2 the complexity of convex and concave approx-
imations is linear. ��

4.3 Inclusion function of the inf-convolution: [∗]

The inf-convolution ∗ is order-preserving, hence f ∗ g � f ∗ g.

Proposition 5 If f and g ∈ Facv, then f ∗ g ∈ Facv.



FOR A
PPROVAL

Discrete Event Dyn Syst

Proof Thanks to the factorization of functions of Facv:

f ∗ g =
(
�

κ f
τ f ∗  f

)
∗

(
�

κg
τg ∗ g

)
see Eq. 7,

=
(
�

κ f
τ f ∗ �

κg
τg

)
∗

(
 f ∗ g

)
see Remark 3,

=
(
�

κ f +κg

τ f +τg

)
∗

(
 f ⊕ g

)
see Eq. 8, (15)

= �
κ f∗g
τ f∗g ∗  f∗g.

According to Theorem 3, the sum of concave functions  f and g belongs to Facv.

Hence, f ∗ g is also a function of Facv with  f∗g =  f ⊕ g and �
κ f∗g
τ f∗g = �

κ f +κg

τ f +τg
. Let

us note that a similar result can be found in Schmitt and Zdarsky (2006, Lemma 2)
and in Pandit et al. (2006, Theorem 3.2). ��

Proposition 6 If f and g ∈ Facx, then f ∗ g ∈ Facx.

Proof According to Le Boudec and Thiran (2001, Theorem 3.1.6) and Bouillard et al.
(2008, Theorem 5), if a and b are convex functions of Facx, so is a ∗ b . Moreover, the
computation of a ∗ b is obtained by putting end-to-end the different linear pieces of
a and b , sorted by nondecreasing slopes. ��

Proposition 7 (Inclusion function [∗]) Let f = [ f , f ]L and g = [ g , g ]L be
two containers of F given in their canonical forms. The operation denoted [∗] and
def ined by:

f[∗]g = [ f[∗]g , f[∗]g ] � [ f ∗ g , f ∗ g ]L ,

is an inclusion function for the inf-convolution ∗, i.e.:

∀ f ∈ [ f , f ]L and ∀g ∈ [ g , g ]L ⇒
{

f ∗ g ∈ f[∗]g,

f[∗]g ∈ F.

Proof Proof is found firstly thanks to the order-preserving of operator ∗ where ∀ f ∈
[ f , f ]L and ∀g ∈ [ g , g ]L : f ∗ g � f ∗ g � f ∗ g; secondly thanks to Propositions

5 and 6 where f ∗ g ∈ Facv and f ∗ g ∈ Facx. Finally, for the asymptotic slopes σ( f ∗
g) and σ( f ∗ g):

– thanks to Proposition 1 and to Eq. 15, σ( f ∗ g) = σ( f ⊕ g). Since  f ⊕
g = min( f , g), that σ( f ) = σ( f ) and that σ(g) = σ(g), then σ( f ∗ g) =
min(σ ( f ), σ (g)),

– thanks to the proof of Proposition 6, the computation of f ∗ g is obtained by
putting end-to-end the different linear pieces of f and g. Since f and g are
ultimately affine, this handling stops when the lowest asymptotic slope between
f and g is reached, i.e. until min(σ ( f ), σ (g)).

Therefore, since σ( f ) = σ( f ) and σ(g) = σ(g), then σ( f ∗ g) = min(σ ( f ), σ (g)) =
min(σ ( f ), σ (g)) = σ( f ∗ g). ��
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Again, this inclusion function [∗] does not necessarily provide a canonical result.
The canonical form of f[∗]g is given by:

[ Ccv(f[∗]g ⊕ �f[∗]g) , f[∗]g ]L = [ Ccv(( f ∗ g) ⊕ � f∗g) , f ∗ g ]L .

Proposition 8 (Algorithmic complexity of [∗]) Let N f , N f , Ng and Ng be the number

of extremal points of respectively f , f , g and g. The computation of f[∗]g is of linear
complexity, namely O(N f + N f + Ng + Ng).

Proof According to the proof of Proposition 6, the computation of f ∗ g is obtained
by putting end-to-end the different linear pieces of f and g, sorted by nondecreasing
slopes. Hence, the computation only requires a simple scan of functions17. Regarding
the lower bound, the inf-convolution is defined as in Eq. 15 by:

f ∗ g =
(
�

κ f +κg

τ f +τg

)
∗

(
 f ⊕ g

)
,

it is enough to make the minimum of the concave parts with a linear complexity, and
the shift in the plane by the elementary function �

κ f +κg

τ f +τg
in a constant time, namely

in O(1). ��

4.4 Inclusion function of the subadditive closure: [�]

The subadditive closure � is order-preserving, hence f � � f
�
.

Lemma 4 (Asymptotic slope of Cvx( f
�
)) The asymptotic slope of Cvx( f

�
) is given

below:

σ(Cvx( f
�
)) = min

(
σ( f ),

n
min
i=0

(ki

ti

))
,

where pairs (ti, ki) are the n extremal points of f .

Proof Thanks to the characteristics of both the convex approximation and the
subadditive closure, function Cvx( f

�
) belongs to the set Facx with only one extremal

point. Hence, according to Property 5, Cvx( f
�
) = (

�
κ Cvx( f �

)

τ Cvx( f �
)

) ∗ g where κCvx( f
�
)
= 0,

τCvx( f
�
)
= 0 and g is a half line with σ(Cvx( f

�
)) as its slope (see Fig. 12), then, the

slope of g comes either from the computations ki/ti or from σ( f ). ��

Proposition 9 (Inclusion function [�]) Let f = [ f , f ]L be a container of F. The
operation denoted [�] and def ined by:

f[�] = [ f[�] , f[�] ],

17The sorting of the function slopes is assumed to be made by the data structure used for their
representation.
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Fig. 12 Upper bound f of a
container f ∈ F and the convex
approximation of its
subadditive closure Cvx( f

�
)

with f[�] � ⊕n
i=0 Ccv(�

ki
ti

�
) ⊕ Ccv

(
e ⊕ �

κ f
τ f ∗ (

Ccv(�
κ f
τ f

�
) ⊕  f

))
and f[�] � Cvx( f

�
), is

an inclusion function for the subadditive closure �, i.e.:

∀ f ∈ [ f , f ]L ⇒
{

f � ∈ f[�],
f[�] ∈ F,

where pairs (ti, ki) of f[�] are the n extremal points of f , �
κ f
τ f is the elementary function

of f and  f is the concave part of f (see Proposition 1).

Proof Firstly, since f[�] = Cvx( f
�
), then f[�] ∈ Facx. Moreover, ∀ f ∈ [ f , f ]L , f �

f ⇒ f � � f
� ⇒ f � � Cvx( f �) � Cvx( f

�
) so f � � f[�].

Secondly, for the computation of f[�], contrary to inclusion functions [⊕] and [∗],
Proposition 9 does not perform the computation of f[�] with the canonical form of the
container but with the following interval:

f = [ f ⊕ � f , f ].
Let us recall that f ⊕ � f is the smallest element of the container. Hence, if f ∈
[ f , f ]L , then f ∈ [ f ⊕ � f , f ] and f ⊕ � f � f ⇒ ( f ⊕ � f )

� � f �. The
development of ( f ⊕ � f )

� is detailed below:

( f ⊕ � f )
� =

((
�

κ f
τ f ∗  f

)
⊕ ( n⊕

i=0

�
ki
ti

))�

see Eqs. 7 and 13,

=
(
�

k0
t0 ⊕ �

k1
t1 ⊕ . . . ⊕ �

kn
tn ⊕ �

κ f
τ f ∗  f

)�

,

=
(
�

k0
t0 ⊕ �

k1
t1 ⊕ . . . ⊕ �

kn
tn ⊕ �

κ f
τ f ∗  �

f

)�

see Eq. 9,

= �
k0
t0

� ∗ �
k1
t1

� ∗ . . . ∗ �
kn
tn

� ∗
(
�

κ f
τ f ∗  �

f

)�

see Eq. 3,

= �
k0
t0

� ∗ �
k1
t1

� ∗ . . . ∗ �
kn
tn

� ∗
(

e ⊕ �
κ f
τ f ∗ �

κ f
τ f

� ∗  f

)
(16)

see Eqs. 2, 3 and 9.

Then, by introducing concave approximations Ccv in Eq. 16, we will approach this
computation from below (indeed Ccv( f ) � f ) that so becomes:

Ccv

(
�

k0
t0

�
)

∗ Ccv

(
�

k1
t1

�
)

∗ . . . ∗ Ccv

(
�

kn
tn

�
)

∗ Ccv

(
e ⊕ �

κ f
τ f ∗ Ccv

(
�

κ f
τ f

�
)

∗  f

)
. (17)
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Furthermore, the following functions are closed for the subadditive closure
operation:

– the concave approximation of the subadditive closure of elementary functions:
Ccv(�

ki
ti

�
) (see Fig. 13),

– the concave approximation of a function containing e: Ccv(e ⊕ �
κ f
τ f ∗ Ccv(�

κ f
τ f

�
) ∗

 f ),
– the concave function:  f .

So, by applying Theorem 3, the definition of the lower bound f[�] is given by:

f[�] � Ccv

(
�

k0
t0

�
)
⊕Ccv

(
�

k1
t1

�
)
⊕. . .⊕Ccv

(
�

kn
tn

�
)
⊕Ccv

(
e⊕�

κ f
τ f ∗

(
Ccv

(
�

κ f
τ f

�
)
⊕ f

))
,

=
n⊕

i=0

Ccv

(
�

ki
ti

�
)
⊕Ccv

(
e ⊕ �

κ f
τ f ∗

(
Ccv

(
�

κ f
τ f

�
)
⊕ f

))
. (18)

Since ( f ⊕ � f )
� � f � and since the concave approximations applied to ( f ⊕ � f )

�

approximate the functions from below (Ccv( f ) � f ), then f[�] � ( f ⊕ � f )
� � f �.

The function f[�] is composed of sums of concave functions, therefore f[�] ∈ Facv.
Lastly, regarding the asymptotic slopes, let us first deal with the one of f[�]. The

subadditive closure of elementary functions �
ki
ti

�
(from f ) provides an ultimately

pseudo-periodic function of Fcp (see Remark 4) with σ(�
ki
ti

�
) = ki/ti as asymptotic

slope. Moreover, according to Cottenceau et al. (1998–2006), let f and g be two
functions of Fcp, then σ( f ∗ g) = min(σ ( f ), σ (g)). Finally, σ( f ) = σ( f ) = σ( f )
(see Proposition 1 and Definition 19). So, the asymptotic slope of f[�] is given by:

σ(f[�]) = σ(( f ⊕ � f )
�) = min

(
σ( f ),

n
min
i=0

(ki

ti

))
,

where pairs (ti, ki) are the n extremal points of f . According to Lemma 4, this
asymptotic slope is the same as the one of f[�], i.e. σ(f[�]) = σ(f[�]). ��

To conclude, the algorithm complexity of the computation of these bounds are
given below.

Fig. 13 Concave
approximation of the
subadditive closure of an
elementary function:
Ccv(�

K
T

�
) ∈ Facv.
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Proposition 10 (Algorithmic complexity of f[�]) Let N f be the extremal point number

of f . The computation of f[�] is of linear complexity, namely O(N f ).

Proof According to Lemma 4, the computation of f[�] only requires some research
of its asymptotic slope by checking the N f extremal points of f and the asymptotic

slope σ( f ). ��

Remark 12 One can see that in the proof of Proposition 9, the computation of f[�]
does not come from Eq. 17 but from Eq. 18 with concave approximations. These
approximations are necessary to obtain an efficient algorithm for this inclusion func-
tion of the subadditive closure. Indeed, the computation of ( f ⊕ � f )

� involves inf-
convolutions of ultimately pseudo-periodic functions of Fcp that are very memory-
and time-consuming. Formally, let f = �

k0
t0

�
and f ′ = �

k1
t1

�
be two subadditive

closures of elementary functions with σ( f ) < σ( f ′). These functions are stair case
functions of the set Fcp, and since they have different asymptotic slopes, the inf-
convolution of f by f ′ is given by:

f ∗ f ′ =
(

e ⊕ �
k1
t1 ⊕ . . . ⊕ �

(K−1)k1
(K−1)t1

)
∗

(
�

k0
t0

)�

,

with K a positive integer conditioning from which moment function f is permanently
above function f ′ (see Cottenceau et al. (1998–2006) and Le Corronc (2011, Theorem
A.28)). The algorithm complexity of this computation is linear depending on the size
of K, namely in O(K), but without conditions on how large the value of K is. The
algorithm complexity of this computation can not be controlled and the tentatives
undertaken in order to achieve simple and efficient computations become useless by
using this method.

Proposition 11 (Algorithmic complexity of f[�]) Let n be the number of elementary
functions �

ki
ti of ( f ⊕ � f ) and N f be the number of extremal points of  f . The

computation of f[�] is in O((n + N f )log(n + N f )).

Proof In order to prove this proposition, we will divide Eq. 18 into two parts.

– Firstly, let us consider
⊕n

i=0 Ccv(�
ki
ti

�
).

According to Proposition 4, the sum of two functions of Facv is of linear com-
plexity. But, since the computation of f[�] needs to make the sum of n functions,
the complexity will be normally extended to n2. Nevertheless, thanks to algorithms
such as “divide and conquer” where recursion is used in order to break down a
problem into sub-problems until these become simple enough to be solved directly,
this complexity can be reduced to a quasi-linear problem. Then, if a two by two min
of Ccv(�

ki
ti

�
) is made, this part of the equation is solved in O(n log(n)).

– Secondly, for the part Ccv

(
e ⊕ �

κ f
τ f ∗ (

Ccv(�
κ f
τ f

�
) ⊕  f

))
.
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The sum of Ccv(�
κ f
τ f

�
) and  f is made in linear time, namely O(N f ) where N f

is the number of extremal points of  f . Then, the shift of �
κ f
τ f is in O(1) as well as

the addition of e. The concave approximation does not modify this result since its
computation is in linear time (see Proposition 2). So, the complexity of this part of
equation is in O(N f ).

Therefore, the complexity of evaluating the expression in Eq. 18 is in O((n +
N f )log(n + N f )). ��

To summarize, this section has shown that all inclusion functions [�] ∈ {[⊕], [∗],
[�]} applied to containers of F can be computed with a linear complexity for the sum
and the inf-convolution, and a quasi-linear complexity for the subadditive closure.
Of course, the results of computations also belong to the set F. These advantageous
algorithmic complexities are possible only thanks to the convex characteristics of the
bounds of the containers.

It is also important to keep in mind that in all these proposed inclusion functions,
the upper bound f is the canonical representative of the equivalence class [ f ]L
of the elements of the container. Therefore, one can see these operations on the
containers of F as operations on the semiring Fcp�L , for which the handled

equivalence classes are restricted: a container [ f , f ]L only describes the elements

of the equivalence class of [ f ]L greater than f . Finally, since in the container the

equivalence class of the exact system is also preserved ([ f ]L = [ f ]L ), some of
its important characteristics are kept such as the asymptotic slope and the extremal
points of the upper bound that really belong to the exact system.

5 Tests and applications

The container and the algorithms of inclusion functions introduced in this paper have
been implemented in a toolbox called ContainerMinMaxGD. It is a set of C++
classes, available at the following address: http://www.istia.univ-angers.fr/∼euriell.
lecorronc/Recherche/softwares.php.

Below, several tests of this toolbox are proposed. They have been carried out
by using a computer with the following configuration: 2.9 GB of memory and 4
processors (Intel(R) Core(TM) i7 CPU L640 @ 2.13 GHz).

5.1 Pessimism of computations and gain in memory consumption

In order to evaluate the pessimism introduced by the inclusion functions and the
performance according to memory consumption, we consider two containers S and
R of F. The former is the container built from the exact computation S = f � g (with
f, g ∈ Fcp two exact systems), that is S = [ Ccv(S) ,Cvx(S) ]L . The latter contains the
result of the computation R = f[�]g (with f, g ∈ F two containers that respectively
contain f and g). So S ∈ S ⊂ R.

A first criterion deals with pessimism due to the approximated computations, in
other words, how close are the approximated computations to the real ones? The
inclusion functions handle containers that are composed of convex and concave

http://www.istia.univ-angers.fr/~euriell.lecorronc/Recherche/softwares.php
http://www.istia.univ-angers.fr/$sim $euriell.lecorronc/Recherche/softwares.php
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approximations hence, to evaluate the pessimism they introduced, we will compare
S, the container of S, and R, the result of the inclusion functions.

Definition 24 (Pessimism of computations) The pessimism between S and R is
defined by the formula:

�R,S

�R
,

where �R,S is the maximal distance between R and S, and �R is the maximal
uncertainty of R. These quantities are illustrated in Fig. 14.

This indicator can be completed by another criterion about the gain in memory
consumption we can do with these approximated computations. Indeed, as shown
previously, the complexity of the computations depends of the number of points
in the containers. We can thereby observe the difference of the number of points
between the exact system S and the container R obtained with inclusion functions.

Definition 25 (Ratio of memory consumption saved) The memory consumption
saved between S and R is evaluated by the following ratio:

1 − NR

NS
,

where NR is the number of points of the container R, that is the number of extremal
points of R and R, and NS is the number of points of S = f � g, this being the number
of its elementary functions until the periodic part plus the number of points necessary
for one periodicity has been reached. These quantities are also illustrated in Fig. 14,
with circles for the points of S (the last two circle points are for the periodicity in
this example) and triangles for the points of R. In this case, the ratio is equal to
1 − 4/8 = 50 %.

Fig. 14 Pessimism and
memory consumption between
the approximated
computations R and the exact
ones S ∈ S
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Remark 13 One can note that since the bound f of a container is the greatest
element of [ f ]L (the equivalent class of f modulo the Legendre–Fenchel transform),
the pessimism between R and S does not come from this upper approximation:
R = Cvx(S) (see Fig. 14). However, the error between these two containers comes
from the inequalities obtained with concave approximations: R � Ccv(S) (see
Remark 8).

Below we propose three examples to analyze the evolution of these two criteria.

5.2 Examples of application

5.2.1 Computation of a transfer function

Firstly, we give first an example of the computation of a transfer function by
comparing the toolbox ContainerMinMaxGD versus the toolbox MinMaxGD where
functions of Fcp are used.

For this example, let us consider a SISO system (p = q = 1) described by the
following state representation: {

x = A ∗ x ⊕ B ∗ u,

y = C ∗ x.

Matrices A, B and C are given such that:

A =

⎛
⎜⎜⎜⎜⎝

�39
19 �45

29 �22
14 �20

40

�1
23 �27

5 �36
20 �12

1

�9
48 �43

46 �22
35 �39

32

�10
6 �27

27 �32
30 �32

9

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎝

e
ε

ε

ε

⎞
⎟⎟⎠ and C = (ε ε ε e),

where the entries of matrices belong to sub-semiring (Fcp,⊕, ∗). Thanks to Theorem
1, transfer matrix H1×1 of the system is obtained by:

H = C ∗ A� ∗ B.

On the one hand, with MinMaxGD, the computations are made from the exact
values of A, B and C with classical operations of (min,+) algebra i.e. {⊕, ∗, �}. On the
other hand, with ContainerMinMaxGD, each entry of matrices is lower and upper
approximated by a container belonging to F. The handled matrices are A, B, C ∈
F and the performed operations are inclusion functions {[⊕], [∗], [�]}. We can note
that entries of matrices are elementary functions, hence there is no uncertainty18 in
these containers: Ccv(�

K
T ) = Cvx(�

K
T ) = �K

T . Therefore, the computation of transfer
matrix H is:

H = C[∗]A[�][∗]B = [ H , H ].

18The construction of a container f from one elementary function �K
T provides two identical bounds

f = f with only one extremal point of (T, K) coordinates, and an infinite asymptotic slope σ( f ) =
σ( f ) = +∞.
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Table 1 Script files for
computations in toolboxes
MinMaxGD and
ContainerMinMaxGD

// Script for the example // Script for the example
// with Scilab/MinMaxGD // with ContainerMinMaxGD

A = smatrix(4,4); MCserie A
A(1,1) = series([39,19]); A(1,1) = (19 39);
A(1,2) = series([45,29]); A(1,2) = (29 45);
A(1,3) = series([22,14]); A(1,3) = (14 22);
A(1,4) = series([20,40]); A(1,4) = (40 20);
A(2,1) = series([1,23]); A(2,1) = (23 1);
A(2,2) = series([27,5]); A(2,2) = (5 27);
A(2,3) = series([36,20]); A(2,3) = (20 36);
A(2,4) = series([12,1]); A(2,4) = (1 12);
A(3,1) = series([9,48]); A(3,1) = (48 9);
A(3,2) = series([43,46]); A(3,2) = (46 43);
A(3,3) = series([22,35]); A(3,3) = (35 22);
A(3,4) = series([39,32]); A(3,4) = (32 39);
A(4,1) = series([10,6]); A(4,1) = (6 10);
A(4,2) = series([27,27]); A(4,2) = (27 27);
A(4,3) = series([32,30]); A(4,3) = (30 32);
A(4,4) = series([32,9]) A(4,4) = (9 32)

B = smatrix(4,1); MCserie B
B(1,1) = series(e) B(1,1) = (0 0);

B(4,1) = (eps)

C = smatrix(1,4); MCserie C
C(1,4) = series(e) C(1,4) = (0 0)

H = C ∗ stargd(A) ∗ B MCserie H
H = C ∗ Star(A) ∗ B

Fig. 15 Transfer matrix H1×1 ∈ Fcp and its container H = [ H , H ] ∈ F
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Table 1 describes the lines written with toolboxes MinMaxGD and ContainerMin-
MaxGD, and the results obtained are illustrated in Fig. 15.

First of all, the pessimism of container H versus the container that approximates
the exact system S = [ Ccv(H) , Cvx(H) ] (see Definition 24) is:

�H,S

�H
= 8

31
= 25.8 %,

i.e. H is 25.8 % greater than the convex and concave approximations of the exact
computation. We can therefore note that the computation with MinMaxGD pro-
duces a matrix H with a sum of 80 elementary functions �K

T . Here are some of them
(during the transient and the periodic parts) as well as its asymptotic slope:

H = �10
6 ⊕ �28

50 ⊕ �40
52 ⊕ �41

78 ⊕ . . . ⊕ (
�255

494 ⊕ . . . ⊕ �285
550

) ∗ �31
62

�
, σ (H) = 31/62.

Concerning the elements of the container H, its bounds H and H have many fewer
points than H. Indeed, they have respectively 4 and 3 extremal points given below
by their pairs (time, event):⎧⎨

⎩
H = {(6, 10) ; (6+, 28) ;

(
78,

2040803
28642

)
; (148, 107)},

H = {(6, 10) ; (50, 28) ; (78, 41)}.
So, according to the number of points, the memory consumption saved (see
Definition 25) is:

1 − NH

NH
= 1 − 7

80
= 91.25 %.

Then, H and H and H have the same first elementary function:

�
κH
τH = �

κH
τH

= �κH
τH

= �10
6 ,

and the asymptotic slope of H corresponds to the reduced form to that of H:

σ(H) = σ(H) = 1/2.

Finally, the maximal uncertainty �H of H is also provided by the toolbox. Here, we
use Definition 22 which gives us:

H(TaH ) = 107 > H(TaH
) = 41 and max{TaH , TaH

} = TaH = 148.

Hence:

�H = { Dmax = 62 , Bmax = 31 }.
To conclude this example, let us recall that the exact system H truly belongs to

the grey zone i.e. H ⊕ �H � H � H.

5.2.2 Subadditive closure of a matrix

The second example comes from Olsder et al. (1998) and proposes to compute
the subadditive closure of a given matrix A ∈ (Fcp, ⊕, ∗)10×10. This matrix is a
benchmark with numerous interconnections among its elements when its subadditive
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closure is computed. Indeed, even if matrix A does not have many elements different
from ε, matrix A� is full of functions of Fcp, elements �K

T of which are given with
T ∈ [ 0 , 975 ] and K ∈ [ 0 , 21 ]. The entries of matrix A that are not function ε are
the following ones:

A(1, 4) = �1
58, A(2, 1) = �2

61, A(2, 8) = e, A(3, 2) = �1
81,

A(3, 9) = e, A(4, 3) = �2
86, A(5, 8) = �1

58, A(6, 4) = e,

A(6, 5) = �1
61, A(7, 6) = �1

35, A(7, 10) = e, A(8, 7) = �1
36,

A(9, 3) = e, A(9, 10) = �1
69, A(10, 7) = e, A(10, 9) = �2

69.

Then, let A ∈ F10×10 be the container of A. Again, since matrix A contains
only elementary functions, there is no uncertainty between A and A, i.e. Ccv(A) =
Cvx(A) = A. The computation of A[�] is made with the ContainerMinMaxGD tool-
box whereas the computation of A� is made with MinMaxGD. Finally, let S ∈ F be
the container that approximates exact matrix A�, i.e. S = [ Ccv(A�) , Cvx(A�) ]L .

For this example, we can observe that the average of pessimism of container A[�]
versus the container approximating the exact system S is:

�A[�],S

�A[�]
= 55.07 %.

This pessimistic result must be carefully linked to the average of the uncertainty �A[�]

of A[�] which is:

�A[�] = { Dmax = 286 , Bmax = 6 }.
Therefore, even if container A[�] is about 55 % larger than A�, pessimism is only of
3.3 in the event domain and 157.3 in the time domain. Finally, regarding the number
of points of A[�] and A�, the average ratio of memory consumption saved is:

1 − NA[�]

NA�

= 98 %.

5.2.3 More generally

In this example, we propose to generalize the computation of pessimism and the gain
in memory consumption of our containers. Indeed, here we carry out the subadditive
closure of matrices with various sizes, and we observe the average of error as well
as the gain in the number of points between the container obtained with inclusion
functions and either the container of the result obtained with exact computations for
the pessimism, or directly the exact system for the number of points.

Let A ∈ (Fcp,⊕, ∗)n×n and A ∈ Fn×n be two square matrices. The entries of A
are either elementary functions �K

T , where T and K are randomly-chosen integers in
interval [1, 10], or function ε : t �→ +∞. Matrix A is the container of A, that is each
entry of A is the container obtained from the respective entry of A. Hence, there is
still no uncertainty in A. Then, let R, S ∈ Fn×n and S ∈ (Fcp, ⊕, ∗)n×n be three square
matrices. The first contains the result of computation R = A[�], and the second is the
matrix container built from computation S = A�, that is S = [ Ccv(S) ,Cvx(S) ]L . So
S ∈ S ⊂ R. The experiment is carried out 5 times with a matrix size ranging from
2 × 2 to 60 × 60.
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For these tests, the average of pessimism observed between R and S is:

�R,S

�R
= 27 %,

that is R is 27 % larger than S. According to the gain in the number of points between
the exact system S and the container R, we can observe:

1 − NR

NS
= 71 %,

that is R saves 71 % of space memory in comparison with the exact representation.

5.3 Experimental complexity

A final test of the ContainerMinMaxGD toolbox is about the practical complexity of
the computation of the subadditive closure of a square matrix depending on its size.

To this end, let A be a square matrix of Fn×n. The entries of A are either
elementary functions �K

T , where T and K are integers randomly chosen in the
interval [1, 5], or the function ε : t �→ +∞. The computation of A[�] is made with
a size of matrix ranging from 2 × 2 to 60 × 60, and the average of the CPU times is
noted.

The CPU time for the computation of A[�], depending on the size of A, is
illustrated in Fig. 16. It appears that the practical complexity is approximately in
O(n3 log n), with n the size of the matrix. Moreover, we can see that for example, the
average CPU time of the computation of a 50 × 50 matrix is about 200 s.

Fig. 16 CPU time of the
computation of A[�],
depending on the size of A
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6 Conclusion

This paper has focused on the computation of the transfer function h for (min,+)-
linear systems. More precisely, since the exact computations can be time and memory
consuming, we introduced an approximated approach of the exact system h via a
container h ∈ F such that:

h = [ h , h ]L = [ h , h ] ∩ [ h ]L and [ h ]L = [h]L ,

where [h]L is the equivalent class of h modulo the Legendre–Fenchel transform L .
The bounds h and h are two ultimately affine functions with convex characteristics.
This work has also been inspired by the set membership approach since the main
operations of (min,+) algebra, i.e. the sum, the inf-convolution and the subadditive
closure, have been integrated into inclusion functions [�] ∈ {[⊕], [∗], [�]} in which
only the bounds of the intervals are handled.

Despite the approximations, since the equivalence class modulo the transform L
of the exact system is preserved, some of its important characteristics are kept, such
as the asymptotic slope and the extremal points of the upper bound that really belong
to the exact system. Furthermore, the convex characteristics of the bounds of the
interval allow us to reduce both algorithm complexity of the computations made over
these systems, and the amount of data storage. Indeed, the algorithmic complexity of
inclusion functions is linear for the sum and the inf-convolution, and quasi-linear for
the subadditive closure.

Finally, the container and its algorithms have been implemented in a toolbox
developed in C++, called ContainerMinMaxGD. The proposed tests of this toolbox
have demonstrated the performance and the computational advantage of these
containers by comparison with exact solutions.
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