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Theory of (min,+) linear systems 1

Discrete Event Dynamic Systems (DEDS) characterized by
delay and synchronization phenomena

Application areas: communication networks 2 3,
manufacturing systems, transportation systems 4

1F. Baccelli et al.: Synchronisation and Linearity. Wiley and sons, 1992.

2CS Chang: Performance guarantees. Springer, 2000.
3JY Le Boudec and P. Thiran: Network Calculus. Springer, 2001.
4B. Heidergott et al.: Max plus at work. Princeton University Press, 2006.
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Idempotent semiring

Set D endowed with two inner operations a

⊕ → associative, commutative, idempotent (a⊕ a = a)
neutral element ε

⊗ → associative, distributes over the sum
neutral element e

a when ⊗ is commutative, D is said commutative

Order relation

a = a⊕ b ⇔ a < b
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Example: idempotent semiring Rmin

Rmin = (R ∪ {−∞,+∞},min,+)

Remark: order relation in Rmin

5⊕ 3 = 3 ⇔ 3 < 5 ⇔ 3 ≤ 5
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Commutative idempotent semiring: {F0,⊕, ∗}
Set a F0 endowed with

⊕ → pointwise minimum

∗ → inf-convolution

f , g ∈ F0 (f ∗g)(t) ,
⊕
τ≥0

{f (τ)⊗g(t−τ)} = min
τ≥0
{f (τ)+g(t−τ)}

is a commutative idempotent semiring

a non-decreasing functions f : R 7→ Rmin where f (t) = 0 for t ≤ 0
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Other operations in {F0,⊕, ∗}
deconvolution

(f ◦/g)(t) ,
∧
τ≥0

{f (τ)− g(t − τ)} = max
τ≥0
{f (τ)− g(τ − t)}

Residuation theory: x = f ◦/g is the greatest solution to x ∗ g 4 f

subadditive closure

f ?(t) ,
⊕
τ≥0

f τ (t) = min
τ≥0

f τ (t) with f 0(t) = e

Fixed point theory: f ? is the optimal solution to x = f ∗ x ⊕ e
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Network elements

Input and output flows u and y

∀t, u(t) ≥ y(t) ⇔ u 4 y

Arrival curve α?

u ≤ αu ⇔ u < αu ⇔ u = α?u

Sketch of proof

Service curve [ β , β ] ([ maximum service, minimum service ])

βu 4 y 4 βu ⇔ y ∈ [ βu , βu ]
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Delay d(k) (waiting time of the kth paquet) 5 6

∀k , d(k)

≤ ∆max

≤ Dmax

f(t)

t

f(t)

t

f(t)

t

where

∆max = inf
∆≥0
{(u◦/y)(−∆) ≤ 0}

and Dmax = inf
D≥0
{(α?◦/β)(−D) ≤ 0}

5A Bouillard et al.: Computation of a (min,+)... ValueTools’08.
6Max Plus: Second order theory... CDC’91.
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Goal

Minimum service β known

Fixed worst end-to-end delay τ or backlog ν

Upper bounds Dmax = τ and Bmax = ν

Computation of the minimal constraint α̂? s.t.

α̂?◦/β < δ−τ and α̂?◦/β < γν

f(t)

t

f(t)

t

E. Le Corronc, B. Cottenceau, L. Hardouin Flow Control with (Min,+) Algebra October 18, 2010 14 / 26



(Min,+) algebra and Network Calculus
Flow control
Conclusions

Arrival curve computation
Window flow control

Goal

Minimum service β known

Fixed worst end-to-end delay τ or backlog ν

Upper bounds Dmax = τ and Bmax = ν

Computation of the minimal constraint α̂? s.t.

α̂?◦/β < δ−τ and α̂?◦/β < γν

f(t)

t

f(t)

t

E. Le Corronc, B. Cottenceau, L. Hardouin Flow Control with (Min,+) Algebra October 18, 2010 14 / 26



(Min,+) algebra and Network Calculus
Flow control
Conclusions

Arrival curve computation
Window flow control

Goal

Minimum service β known

Fixed worst end-to-end delay τ or backlog ν

Upper bounds Dmax = τ and Bmax = ν

Computation of the minimal constraint α̂? s.t.

α̂?◦/β < δ−τ and α̂?◦/β < γν

f(t)

t

f(t)

t

E. Le Corronc, B. Cottenceau, L. Hardouin Flow Control with (Min,+) Algebra October 18, 2010 14 / 26



(Min,+) algebra and Network Calculus
Flow control
Conclusions

Arrival curve computation
Window flow control

Goal

Minimum service β known

Fixed worst end-to-end delay τ or backlog ν

Upper bounds Dmax = τ and Bmax = ν

Computation of the minimal constraint α̂? s.t.

α̂?◦/β < δ−τ and α̂?◦/β < γν

f(t)

t

f(t)

t

E. Le Corronc, B. Cottenceau, L. Hardouin Flow Control with (Min,+) Algebra October 18, 2010 14 / 26



(Min,+) algebra and Network Calculus
Flow control
Conclusions

Arrival curve computation
Window flow control

Proposition 1 (time performance)

α̂?

=
∧
{α? | α? < δ−τβ}

= (δ−τβ)?

Sketch of proof

α?◦/β < δ−τ ⇔ α? < δ−τβ

a? =
∧
{x? | x = x?, x? < a} (see lemma 1 in 9)

Proposition 2 (data performance)

α̂? =
∧
{α? | α? < γνβ} = (γνβ)?

9 CA. Maia et al.: Optimal closed-loop control... Automatic Control, 2003.
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Window Flow Control

Communication network S

Window size w → γw

Limit the amount of data
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Thank you for your attention ...

Questions ?
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Sketch of proof

Why u < αu ⇔ u = α?u?

isotony of the inf-convolution (a < b ⇔ ac < bc)

u < αu ⇒ αu < (α2u) ⇒ (α2u) < (α3u) ⇒ . . .

order relation of F0 (a < b ⇔ a = a⊕ b)

and subadditive closure (a? =
⊕

i≥0 ai )

u = u ⊕ (αu)⊕ (α2u)⊕ . . . =
⊕
n≥0

αnu

= α?u

So
u < αu ⇔ u = α?u

and
α (and α?) is an arrival curve for u iff u = α?u
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