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1 Introduction

According to the theory of Network Calculus based on the (min,+) algebra
(see [3] and [4]), analysis and measure of worst-case performance in commu-
nication networks can be made easily. In this context, this paper deals with
traffic regulation and performance guarantee of a network i.e. with flow control.
More precisely, the optimal window size of a window flow controller is given by
considering the following configuration: The data stream (from the source to
the destination) and the acknowledgments stream (from the destination to the
source) are assumed to be different and the service provided by the network is
assumed to be known in an uncertain way, more precisely it is assumed to be in
an interval.

2 Network Calculus

In the theory of Network Calculus, a communication network is seen as a black-
box denoted S, with an input flow u constrained by an arrival curve α, and an
output flow y. Moreover, the service provided by S is constrained by a lower
curve β and an upper curve β. These constraints combined with the following
operations of the (min,+) algebra (see [2]) provide bounds on worst-case per-
formance measures. Let f and g be two non-decreasing functions from R to the
dioid Rmin = (R∪ {−∞,+∞}), such that f(t) = 0 and g(t) = 0 for t ≤ 0, these
operations are:

• pointwise minimum : (f ⊕ g)(t) = min[f(t), g(t)],
• pointwise maximum : (f ∧ g)(t) = max[f(t), g(t)],
• inf-convolution : (f ∗ g)(t) = minτ≥0 {f(τ) + g(t− τ)},
• deconvolution : (f◦/g)(t) = maxτ≥0 {f(τ)− g(τ − t)},
• subadditive closure : f?(t) = minτ≥0 fτ (t) with f0(t) = e.

3 Window flow control

First, a difference is made between the data stream represented by network
S1, and the acknowledgments stream represented by network S2. Indeed, the



acknowledgments stream requires considerably less bandwidth than the data
itself (see [1]), so the computation of the window size will have benefit of this
profit of bandwidth.

Second, the service provided by the network is assumed to be included in
interval, i.e. into [ β

1
, β1 ] for S1 and [ β

2
, β2 ] for S2. In that way, the size

of the window can be computed as well as for the worst case than for the best
case of traffic without damaging the service provided.

Finally, let γw be the representative function of the window size w (γw(t) = w
for t < 0 and +∞ for t ≥ 0).

The service curve of the whole system is included in the interval:

[ β
1
(γwβ2

β
1
)? , β1(γwβ2β1)? ].

Fig. 1: Configuration of the window flow control system.

The chosen point of view is to compute a minimal window size such that the
global network behavior, i.e. the controlled one, is the same as the open-loop
network behavior, i.e. the one of S1 only. This objective can be stated as follows:

γ̂w =
⊕
{γw | β1

(γwβ2
β
1
)? = β

1
and β1(γwβ2β1)? = β1}. (1)

Proposition 1. In order to obtain a behavior of the closed-loop system un-
changed in comparison to the one of the open-loop (see equation (1)), the optimal
window size ŵ represented by function γ̂w is given below:

γ̂w = (β
1
◦\β

1
◦/(β

2
β
1
)) ∧ (β1 ◦\β1◦/(β2β1)).
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