
Asynchronous peer-to-peer distributed computing for financial applications

Thierry GARCIA

Université de Toulouse

INP – ENSEEIHT – IRIT

BP 7122, 2 Rue Camichel

F-31071 Toulouse Cedex, France

e-mail: thierry.garcia@enseeiht.fr

The Tung Nguyen, Didier El-Baz

CNRS - LAAS 7 avenue du colonel Roche

F-31077 Toulouse, France

Université de Toulouse; UPS, INSA, INP, ISAE.

e-mail: ttnguyen@laas.fr elbaz@laas.fr

Ming CHAU

Advanced Solutions Accelerator

199 Rue de l’Oppidum

F-34170 Castelnau le Lez, France

e-mail: mchau@advancedsolutionsaccelerator.com

Pierre SPITERI

Université de Toulouse

INP – ENSEEIHT – IRIT

BP 7122, 2 Rue Camichel

F-31071 Toulouse Cedex, France

e-mail: pierre.spiteri@enseeiht.fr

Abstract— This paper deals with the numerical solution of

financial applications, more specifically the computation of

American and European options derivatives modelled by

boundary values problems. In such applications we have to

solve large-scale algebraic linear systems. We concentrate on

synchronous and asynchronous parallel iterative algorithms

carried out on peer-to-peer networks. The properties of the

operators arising in the discretized problem ensure the

convergence of the parallel iterative synchronous and

asynchronous algorithms. Computational experiments

performed on peer-to-peer networks are presented and

analyzed.

 Keywords-component; parallel asynchronous algorithms;
distributed computing; iterative numerical methods; peer-to-peer
networks; European options derivatives; American options
derivatives.

I. INTRODUCTION

For the last years financial applications have known great

developments. In particular, European and American

options derivatives modelled by the classical Black and

Scholes equation have known great interest [1]. The

problem consists of solving a time dependant boundary

value problem defined on an unbounded domain generally

included in the three dimensional space. A classical artifice

consists of solving the Black and Scholes equation on a

bounded domain and to increase the size of the domain for

ensuring convergence to the exact solution [2]. So, we have

to solve boundary value problems numerically. Taking into

account the size of the algebraic systems derived from the

discretization process of the Black and Scholes equation,

parallel iterative algorithms are prefered.

In this paper we concentrate on asynchronous and

synchronous iterative methods implemented on peer-to-peer

(P2P) architectures. Recent advances in microprocessors

architecture and networks permit one to consider new

applications like High Performance Computing (HPC).

Therefore, we can identify a real stake at developing new

protocols and P2P environments for HPC since this can lead

to economic and attractive solutions. Task parallel models

and distributed iterative methods for large scale parallel

numerical simulation on P2P networks gives rise to

numerous challenges like communication management,

scalability, heterogeneity and peer volatility on the network

(see [3]). Some performance issues can be addressed via

distributed asynchronous iterative algorithms (see [4] to

[8]). The reader is referred to [5] for the solution of the

stationary obstacle problem and to [9] for contribution to the

development of a new protocol and an environment for P2P

high performance computing. The approach presented in [9]

is different from MPICH Madeleine [10] in allowing the

modification of internal transport protocol mechanism in

addition to switch between networks. Recently, middleware

like BOINC [11] or OurGrid [12] have been developed in

order to exploit the CPU cycles of computers connected to

the network. Those systems are generally dedicated to

applications where tasks are independent and direct

communications between machines are not needed.

In [5], we have considered a stationary problem solved by a

Richardson like method. In the present study we consider an

evolutive problem closer and related to the studied financial

application, more precisely European and American options

derivatives in which each stationary problem derived from

the numerical time marching scheme is solved by a parallel

block relaxation algorithm, which is more efficient than the

Richardson’s one. This kind of algorithm corresponds in

fact to a subdomain method without overlapping. In

addition, due to the overhead of synchronizations the use of

distributed asynchronous iterative algorithms [6], [7] and [8]
seems well suited to P2P computing.

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.292

1457

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.292

1453

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.292

1453

The present paper is structured as follows: section II deals

with the presentation of the financial application (European

and American options derivatives). In section III, we present

parallel synchronous, and more generally parallel

asynchronous iterative schemes. In section IV, environment

for peer-to-peer high performance computing is described.

In section V, implementation of parallel iterative algorithms

is detailed. Computational experiments are displayed and

analysed in section VI, in particular the pertinence to apply

such parallel asynchronous iterative methods is presented

for the solution of the model problems. Finally concluding

remarks are presented in section VII.

II. THE PROBLEM OF OPTIONS DERIVATIVES

The classical Black and Scholes equation is a boundary

value problem describing the evolution of call or put options

in the field of mathematics of financial derivatives [1].
Among the many descriptions of financial option contracts,

we can consider:

- the European option, which may only be exercised at

expiry, i.e. when the time τ takes the value T of the final

expiry date,

- the American option, which may be exercised at any time

prior to expiry.

These two kinds of options are modelled by retrograde time

dependent convection – diffusion equations. From a

mathematical point of view, the main difference between

them consists in the fact that European option is defined on

a normed vectorial space while the American option is

defined on a closed convex set included in a normed

vectorial space; consequently, the determination of

American option needs the projection of the computed

values on the convex set.

Classically, an European option is modeled by the following

time dependent linear equation:

∂v(τ,x)

∂τ
+ (r −

σ 2

2
).∇v +

σ 2

2
.Δv − rv = 0, everywhere in 0,T[]xRn

v(T,x) =ψ(x)

⎧

⎨
⎪

⎩ ⎪

where ψ(x)= Max(x-K,0) (in the case of call option) or ψ(x)

= Max(K-x,0) (in the case of put option); in the above

equations, K denotes the exercise price – called classically

strike, v denotes the value of the considered option, i.e. a

“call” or a “put” option; v = v(τ,x) is a function of the

current value of the underlying asset x and of the time τ.

Note also that the considered option also depends on the

following parameters:

- r the interest rate,

- σ the volatility of the underlying asset, σ being in fact the

instantaneous standard deviation of the price with respect to

K fixed beforehand; in fact σ characterizes the uncertainly

of the behavior of the option.

Using the same previous notations, the American option is

modeled by the following nonlinear equation:

∂v(τ,x)
∂τ

+ (r −
σ 2

2
).∇v +

σ 2

2
.Δv − rv ≥ 0, v(τ,x) ≥ψ(x), everywhere in 0,T[]xRn

(
∂v(τ,x)

∂τ
+ (r −

σ 2

2
).∇v +

σ 2

2
.Δv − rv)(v(τ,x) −ψ(x)) = 0, everywhere in 0,T[]xRn

v(T,x) =ψ(x)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

One of the main difficulty lies on the fact that the Black and

Scholes equation is not defined on a bounded domain, but is

defined on the unbounded domain R
n
, n ≥ 1. This difficulty

overcome by considering the problem defined on a bounded

domain Ω ⊆ R
n
 with appropriate boundary conditions. Then

it can be proved that the solution of the equation defined on

the bounded domain Ω converges to the solution of the

model problem when the measure of Ω tends to infinity [2].
Another particularity of the problem to solve, is that the

value of the option is not known at the initial time τ = 0;

only the final value v(T,x) is known. So the problem

consists of computing v(0,x).

These previous two particularities can be treated, first by

considering problems defined on a bounded large domain Ω

and secondly by a change of variable, such that the variable

τ is replaced by a variable t = T - τ. Thus, the model

problem of the European option is replaced by the following

linear problem:

∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv = 0, everywhere in 0,T[]x Ω

v(0,x) =ψ(x)

B.C. of v(t,x) defined on ∂Ω

⎧

⎨

⎪
⎪

⎩

⎪
⎪

where B.C. describes the boundary conditions on the

boundary ∂Ω of the domain Ω. Practically, the Dirichlet

condition where v is fixed on ∂Ω or the Neumann condition

where the normal derivative of v is fixed on ∂Ω is

classically considered.

Concerning the American option, by the same way, we have

to solve the following nonlinear problem:

∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv ≥ 0, v(t,x) ≥ψ(x), everywhere in 0,T[]xΩ

(
∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv)(v(t,x) −ψ(x)) = 0, everywhere in 0,T[]xΩ

v(0,x) =ψ(x)

B.C.of v(t,x) defined on ∂Ω

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

145814541454

III. NUMERICAL SOLUTION OF THE PROBLEMS OF OPTIONS

DERIVATIVES

For the numerical solution of the financial problems, we

consider that the temporal part is discretized by implicit or

semi – implicit scheme. While, for the spatial part of the

problem, the bounded domain Ω ⊆ R
3

is discretized with an

uniform mesh. Note also that the spatial differential

operators are discretized by appropriate schemes as follows:

- the Laplacian is discretized by using the classical seven

points scheme,

- the first derivatives, corresponding to the convection

phenomenon, are discretized by using decentered scheme;

more precisely, if the coefficient of the considered first

derivative is strictly positive, then the forward-difference

formula is used, otherwise backward–difference formula is

considered.

Thus, if good accuracy is wanted, then the full discretization

of the Black and Scholes problem leads to the solution of a

very large linear algebraic system at each time step.

Let A denote the discretization matrix of the model

problem. It follows from the considered appropriate

discretization of the Black and Scholes equations, that the

diagonal entries of the matrix A are strictly positive and that

the off-diagonal entries are nonpositive. Moreover, the

matrix A is strictly diagonally dominant. Thus, A is an M –

matrix [13]. This very interesting property of the matrices to

invert, at each time step, has a consequence regarding to the

behaviour of the parallel iterative algorithms considered in

the sequel; indeed the convergence of the iterative scheme is

ensured (see [4] and [6] to [8]).

Note also, that due to the large size of the linear algebraic

system to invert at each time step, it is necessary to use

iterative methods. More precisely, we consider in the

present study iterative parallel synchronous and

asynchronous block relaxation algorithms studied in [6], [7]
and [8], implemented in the present study on peer-to-peer

distributed architecture. In the sequel, let us recall the

formulation of parallel synchronous and more generally

asynchronous block relaxation algorithms for the solution of

a large linear algebraic system.

Let us consider the solution of the linear algebraic system

associated, for example to the solution of the discretized

European option

A.V=F

where V and F are respectively, a vector whose components

approximate the values of the exact solution and the right

hand side of the partial differential equation respectively, at

each point of the mesh. We consider now a block

decomposition from the previous linear algebraic system

and associate the following fixed-point mapping:

Vi = Ai,i

−1 (Fi − Ai, jV j
j≠i
∑) = Φ i (V), i = 1,L,m,

where m is an integer denoting the number of blocks. This

kind of fixed point problem can be considered, at each time

step, for the solution of the problem of European option.

For the solution of the discretized American option problem,

we have to consider now the projection on a convex set (see

[1]) as follows:

Vi = Proj(Ai,i

−1 (Fi − Ai, jV j
j≠i
∑)) = Φ i (V), i = 1,L,m.

Then, by considering the appropriate operator as well as, the

European option than the American option, the problems

consist of solving the following fixed point problem:

Find V* such that

V* = Φ(V*)

⎧
⎨
⎩

 (1)

where V → Φ(V) is a fixed point mapping defined in a

finite dimensional space. For all V, consider the following

block-decomposition of the mapping Φ associated to the

parallel distributed implementation:

Φ (V) =(Φ1 (V) ,…., Φm (V))

We consider the distributed solution of the fixed point

problem (1) via a parallel asynchronous block relaxation

method defined as follows (see [6] to [8]): let the initial

guess V
(0)

 be given and for every p ∈ N assume that we can

get V
(1)

 ,……, V
(p)

; then V
(p+1)

is defined recursively by:

Vi

(p+1) =
Vi

(p) if i ∉ J(p)

Φ i (...,Vj

(s j (p)) ,...) if i ∈ J(p)

⎧
⎨
⎩

 (2)

where J = ⎨J(p)⎬ , p ∈ Ν, is a sequence of nonempty sets
such that:

J (p) ⊂ 1,...,m
�

€, J (p) ≠ ∅, ∀p ∈ N,

∀i ∈ 1,...,m
�

€, Card(p ∈ N i ∈ J (p)� €) = +∞

⎧
⎨
⎪

⎩ ⎪
 (3)

and

∀p∈ N , ∀j ∈ 1,...,m{ }, sj (p) ∈ N , 0 ≤ sj (p) ≤ p,

∀p∈ N , si (p) = p if i ∈ J(p),

∀p∈ N , ∀j ∈ 1,...,m{ }, lim
p → ∞

(s j (p)) = +∞.

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

 (4)

The previous asynchronous iterative scheme models

computations that are carried out in parallel without order

145914551455

nor synchronization and describes in fact a subdomain

method without overlapping. Particularly, it permits one to

consider distributed computations whereby peers go at their

own pace according to their intrinsic characteristics and

computational load. The parallelism between the peers is

well described by J since J(p) contains the number of

components relaxed by each processor on a parallel way

while the use of delayed components in (2) permits one to

model nondeterministic behavior and does not imply

inefficiency of the considered distributed scheme of

computation. Note that, theoretically, each component of the

vector must be relaxed an infinite number of time. The

choice of the relaxed components may be guided by any

criterion, and, in particular, a natural criterion is to pick-up

the most recently available values of the components

computed by the processors.

Remark: The algorithm (2) – (4) describes a computational

method where the communications between peers can be

synchronous or asynchronous. Among them parallel

synchronous methods, when s(p) ≡ p, ∀ p ∈ Ν ; moreover if

J(p) = ⎨1,…, m⎬ and s(p)=p, ∀ p ∈ Ν, then (2) – (4)

describes the sequential block Jacobi method while if J(p)

=p.mod(m) +1 and s(p)=p, ∀ p ∈ Ν, then (2) – (4) models

the sequential block Gauss – Seidel method. So, the

previous model of parallel asynchronous algorithm appears

like a general model.

For the solution of the evolution Black and Scholes

equations, a numerical time marching scheme is

implemented and, at each time step, we have to solve a large

scale algebraic system by using either parallel synchronous

or asynchronous algorithms.

Then, for the solution of stationary problems derived from

European and American options derivatives, the

convergence of classical synchronous or asynchronous

relaxation algorithms has been established by various ways,

using contraction techniques (see [6] and [7]) or partial

ordering techniques (see [8]). To summarize, as previously

said, since the discretization matrix is an M-matrix then

thanks to various results established in [6], [7] and [8], the

iterative process described by (2) – (4) converges to V
*
, for

every initial guess V
(0)

. The reader

is referred to these

previous references for more details. Moreover assume that

the algebraic system is split into q blocks, q ≤ m,

corresponding to a coarser subdomain decomposition

without overlapping; then using results in [7], it can be

shown by using the same arguments, that the parallel

asynchronous block relaxation methods converge for this

coarser decomposition. Furthermore, if the subdomain

decomposition associated with m blocks is a point

decomposition, then classical parallel asynchronous block

relaxation methods converge for every subdomain coarser

decomposition and for every numbering (lexicographical or

red-black) of the blocks.

IV. ENVIRONMENT FOR PEER TO PEER HIGH PERFORMANCE

COMPUTING

P2PDC [5] is an environment for peer to peer high

performance computing that was developed at LAAS-CNRS.

Contrarily to existing solutions, P2PDC environment allows

directed communications between peers by using the

P2PSAP Peer To Peer Self Adaptive communication

Protocol (see [9]). The P2PSAP protocol chooses

dynamically the most appropriate communication mode

between any peers according to schemes of computation and

elements of context like topology. In the present study, note

that the self adaptive capability is not used. In the following,

we shall briefly present the P2PSAP protocol and the P2PDC

environment.

A. Protocol P2PSAP

The P2PSAP protocol is based on the Cactus framework

(see [14] and [15]) and makes use of micro-protocols. Figure

1 shows the architecture of P2PSAP; the protocol consists of

a Socket interface and two channels: a control channel and a

data channel.

A Socket API is placed on the top of the protocol in

order to facilitate programming. Session management

commands like listen, open, close, setsockoption and

getsockoption are directed to Control channel; while data

exchange commands, i.e. send and receive commands are

directed to Data channel.

The Data channel based on Cactus framework, transfers

data packets between peers. It has two levels: the physical

layer and the transport layer. The physical layer is

146014561456

encompassed to support communications on different

networks, i.e. Ethernet, InfiniBand and Myrinet; the data

channel can be triggered between the different types of

networks. The transport layer is made of several micro-

protocols; it can be reconfigured by substituting or removing

and adding micro-protocols. The behavior of the data

channel is triggered by the control channel.

The Control channel manages session opening, closure

and data channel configuration. The TCP/IP protocol is used

to exchange control messages since those messages must not

be lost. The control channel has four main components. The

Context monitor collects context data like schemes of

computation, peers location or machine loads. The

Controller manages session opening and end through TCP

connection opening and closure; it also combines and

analyzes context information so as to choose the

configuration (at session opening) or to take reconfiguration

decision (during session operation) for Data channel.

Reconfiguration of Data channel is carried out via the

dedicated Cactus functions by substituting or removing and

adding micro-protocols.

B. Environment P2PDC
Figure 2 illustrates the global architecture of the

environment P2PDC. We describe now its main components

- User daemon is the interaction interface between the

application and the environment; it allows users to submit

their tasks and retrieve final results.

- Topology manager organizes connected peers into clusters

and maintains links between clusters and peers.

- Task manager is responsible for subtasks distribution and

results collection.

- Task execution executes subtasks and exchanges

intermediate results.

- Load balancing estimates peer workload and migrates a

part of work from overloaded peer to non-loaded peer.

- Fault tolerance ensures the integrity of the calculation in

case of peer or link failure.

- Communication provides support for directed data

exchange between peers using protocol P2PSAP.

In order to allow programmers to develop their own

application easily, P2PDC proposes a programming model

with a reduced set of communication operations and some

deployment activities carried out automatically by the

environment.

Communication operations: There are only three classical

operations: P2P_Send, P2P_Receive and P2P_Wait. The

idea is to facilitate programming of large-scale P2P

applications and to hide the complexity of communication

management as much as possible. The operation P2P_Wait
is particular and used in order to wait for the arrival of a

message from another peer.

Messages exchanged between peers can be decomposed

into two classes: data messages and control messages. Data

messages are used to exchange boundary values of block

components at interfaces between peers; while control

messages are used to exchange computational state like

local termination criteria, termination command, etc. A flags
parameter is added to communication operations in order to

distinguish two classes of messages: the CTRL_FLAG
indicates control messages and the DATA_FLAG indicates

data messages. The control channel of P2PSAP exchanges

not only messages for protocol configuration but also

messages from P2PDC application with the so-called

CTRL_FLAG flag. Then messages from P2PDC application

with DATA_FLAG will be handled by data channel and

messages from P2PDC application with CTRL_FLAG will

be handled by control channel. Thus, the communication

mode for data exchange is chosen according to the context

of the user choice; while note that the communication mode

for exchange of control messages is always asynchronous

and reliable.

Application programming model: In order to develop an

application, programmers have to write code for only three

functions: Problem_Definition(), Calculate() and

Results_Aggregation(). Others deployment activities like

subtasks distribution or results collection are carried out

automatically by the environment. In the

Problem_Definition() function, programmers define the

problem in indicating the number of subtasks and subtask

data, computational scheme and number of peers necessary.

In the Calculate() function, programmers write subtasks

code; they can use P2P_Send() and P2P_Receive() to send

or receive updates. Finally, programmers define how

subtasks results are aggregated and the type of output, i.e. a

console or a file, in the Results_Aggregation() function.

For further details about P2PSAP protocol and P2PDC

environment, reference is made to [9] and [5] respectively.

146114571457

V. IMPLEMENTATION

The implementation of the considered financial application

is carried out with the P2PDC environment taking into

account the computational scheme on one hand and the

stopping criterion of the iterative algorithm, on the other

hand. The computation scheme (synchronous,

asynchronous) is chosen at the beginning of the solution.

Each node updates its assigned sub-blocks of components of

the iterate vector in the lexicographical order. Then, the

transmission of the boundary blocks assigned to each

computational node to the contiguous blocks is delayed so

as to reduce the waiting time in the case of the use of

synchronous method. The parallel algorithm is based on the

SPMD paradigm, which is commonly used for parallel and

distributed application. In our case, each process initializes

its own data set. The principle of the implementation of the

parallel algorithm is summarized below; in this flow chart, r

is the time step index, V0 is the initial condition of the time

dependant problem and Fr+1 is the right hand side computed

at time r+1.

In the Calculate() function of P2PDC, P2P_Send() and

P2P_Receive() operations will not have the same property

according to the computation scheme used. The operation

P2P_Wait() is used in order to synchronize the peers at each

time step before the computation of the right-hand side. In

the synchronous (resp. asynchronous) scheme, the

P2P_Send() and P2P_Receive() operations are blocking

(resp. not blocking). Note that this implementation of the

parallel asynchronous method simplifies the exchange of

boundary blocks in the block relaxation method but it is not

adapted to the synchronized part at each time step. The

P2PDC communication API (Application Programming

Interface) does not offer a real synchronization barrier but

only a function, which wait for the arrival of a message

from another peer.

We specify that in the implementation of the application

concerning the computation of European and American

options, we use the classical block-relaxation method in

which the blocks are numbered using the lexicographical

ordering. More precisely, in the considered implementation

several adjacent tridiagonal blocks are gathered; so, this

kind of method can be viewed as a subdomain method

without overlapping between the subdomains. Note also that

each tridiagonal algebraic subsystem is solved using the

TDMA method well adapted to the solution of tridiagonal

subsystems. Moreover, the considered implementation

allows having a multiplicative subdomain method. Finally,

in the considered implementation of the subdomain

relaxation method without overlapping the data are split into

regular polygons.

Algorithm: on computing peers

 // Initial condition V0
 Input V0
 For each time step r do
 // synchronized part
 Compute δt*Fr+1 + V0

 While no convergence do
// by synchronous or asynchronous algorithm

Solve by block relaxation method A.V=δt*Fr+1 + V0

// Project in the case of American options

V0 ← V

Send local convergence to convergence manager
peer
Receive global convergence from convergence
manager peer

End while
If on barrier manager peer Then

Wait all peers
Send notification restart to computing peer

Else
Send notification message to barrier manager peer
Wait notification restart from barrier manager peer

End If

End for

Send final notification message to convergence manager

peer.

For the implementation of the time marching scheme, the

parallel synchronous algorithm is easy to implement, since

the P2P_Send and the P2P_Receive are blocking operations.

In the case of the asynchronous scheme, the implementation

is more difficult. Due to the specificity of the implicit time

marching scheme and to P2PDC conception, it is necessary

to implement an additional synchronisation barrier when a

new time step is considered. At the end of a time step, all

the peers are synchronized thanks to the P2P_Wait
operation and send a message to a barrier manager peer

dedicated among all the computing peers. Then this

manager barrier peer restarts each computing peer. An

additional level of synchronization is performed only when

the first relaxation is started.

With respect to [5], the Richardson solver is replaced by the

subdomain without overlapping solver and a new efficient

stopping criterion is implemented using a supplementary

convergence manager peer only devoted to this task. Indeed,

we have compared the efficiency of the stopping criterion

proposed by [16] based on the use of a decentralized method

and the centralized one presented in [17]. The comparison

of the two stopping criteria has shown that the number of

relaxations are not the same and we have finally chosen the

stopping criterion proposed by [17] since more relaxations

are performed and better numerical quality of the computed

146214581458

solution is obtained. For a current time step, when a local

convergence is reached by a computing peer, a message is

sent to the convergence manager peer; a local convergence

corresponds to the fact that the uniform norm of the

difference between two successive updates is less than a

given threshold, fixed here to 10
-6

. This last manager peer

stops the iterative process when all the computing peers

have reached convergence then the next time step is

performed.

When all time steps are performed, the computation is

ended; in this case, a final notification message is sent by

the computing peers to the convergence manager peer. Note

that the principle of the centralized stopping criterion is the

same as well as for the synchronous algorithm than the

asynchronous one; nevertheless, the only difference between

synchronous and asynchronous convergence detection lies

in the way that the convergence manager answers to

computing peers. In the synchronous case, the convergence

manager waits for the convergence message of all

computing peers at each relaxation; while in the

asynchronous case, the answer is sent dynamically after

receipt of any convergence message.

VI. PEER-TO-PEER EXPERIMENTS

Computational schemes have been implemented in C

language as a parallel algorithm using the P2PDC

environment. Computational experiments have been carried

out on the Grid5000 platform. This French grid platform is

composed of 2970 processors with a total of 6906 cores

distributed over 9 sites in France. Most of them have at least

a Gigabit Ethernet network for local machines. Nodes

between the different sites range from 2.5 Gflops up to 10

Gflops. Several site of Grid5000 have several clusters with

different performances.

Table I displays the characteristics of the machine used in

the computational experiments.

Site Cluster Processors

Type

Speed

GHz

CPU Core R

A

M

Lille ChinqChint Intel Xeon

E5440 QC

2,83 2 8 8

Orsay Gdx AMD

Opteron250

2,4 2 2 2

TABLE I. CHARACTERISTICS OF MACHINES ON EACH SITE.

We have considered a cubic domain Ω contained in the 3D

space, Ω being discretized with S = s
3
 points where s=256

denotes the number of points considered on each edge of the

cube. The iterate vector is decomposed into m = s
2
 sub-

blocks with s components. A set of sub-blocks is assigned to

each node and is updated using a sequential Gauss-Seidel

block relaxation like algorithm performed in the

lexicographical order. Concerning the time marching

scheme, only three time steps are considered.

The results of the sequential computational experiments are

summarized in Table II.

European Options American Options

Lille Orsay Lille Orsay

Time Relax Time Relax Time Relax Time Relax

7669 1004 12668 1004 8534 1108 14362 1108

TABLE II. ELAPSED TIME AND RELAXATIONS WITH

SEQUENTIAL ALGORITHM ON EACH SITE.

The parallel computational experiments are summarized in

Table III, IV, V and VI in which 2, 4, 8, 16, 32, 64 and 128

computing machines are used (not including the

convergence manager peer). In Table III and in Table V the

number of relaxations is mentioned; note that for only the

asynchronous experiments, Min, Max and Average number

of relaxations are taken over the processors.

 Asynchronous Synchronous

Peers Time/s Relaxations Time/s Relaxations

 Min Max Average

2 5492 996 1439 1217 4904 1004

4 3158 1019 1695 1353 3158 1015

8 1289 995 1572 1309 1370 1015

16 515 1010 2363 1502 589 1030

32 195 822 1866 1486 297 1035

64 90 1074 1823 1478 292 1053

128 65 949 2316 1380 303 1091

TABLE III. ELAPSED TIME AND AVERAGE RELAXATIONS FOR

EUROPEAN OPTIONS.

 Asynchronous Synchronous

Peers Speedup Efficiency Speedup Efficiency

2 1.40 0.70 1.56 0.78

4 2.43 0.61 2.43 0.61

8 5.95 0.74 5.60 0.70

16 14.89 0.93 13.02 0.81

32 39.39 1.23 25.82 0.81

64 85.21 1.33 26.26 0.41

128 117.90 0.92 25.31 0.20

TABLE IV. SPEEDUP AND EFFICIENCY FOR EUROPEAN OPTIONS.

For the considered application and architecture used, when

the number of machines is greater than 8 for European

options and 4 for American options, the asynchronous

scheme of computation, scales better than the synchronous

one. For example, with 128 peers, the asynchronous

computation scheme clearly performs about five times

(European options) and about three times (American

options) better than the synchronous one. This feature shows

that asynchronous algorithms are less sensitive to

granularity network latency. Moreover the asynchronous

146314591459

algorithms do not generate idle time. Therefore load

balancing is not necessary for decreasing the elapsed time.

 Asynchronous Synchronous

Peers Time/s Relaxations Time/s Relaxations

 Min Max Average

2 7169 1106 1862 1484 6526 1123

4 3209 1161 1709 1431 3681 1138

8 1464 1096 1720 1400 1659 1138

16 581 1153 2574 1748 626 1138

32 285 1069 2157 1712 361 1145

64 102 495 1469 1049 318 1165

128 109 1284 2685 1704 337 1208

TABLE V. ELAPSED TIME AND AVERAGE RELAXATIONS FOR

AMERICAN OPTIONS.

 Asynchronous Synchronous

Peers Speedup Efficiency Speedup Efficiency

2 1.19 0.59 1.31 0.65

4 2.66 0.66 2.32 0.58

8 5.83 0.73 5.14 0.64

16 14.67 0.92 13.63 0.85

32 29.94 0.94 23.64 0.74

64 83.72 1.31 26.84 0.42

128 78.29 0.61 25.32 0.20

TABLE VI. SPEEDUP AND EFFICIENCY FOR AMERICAN OPTIONS.

In both cases of synchronous or asynchronous scheme, the

speedup of computation is calculated using the shortest

sequential elapsed time (see Table II); note that on a

heterogeneous architecture the notion of speedup and

efficiency is inappropriate, but this is a good indicator of

performance. Nevertheless, note that the obtained values of

speedup are high, particularly for the asynchronous scheme

with large number of machine. Note also that super-linear

acceleration has been obtained for asynchronous schemes of

computation but not in the synchronous case. This feature

shows that the communication overhead induced by the

parallelisation is small enough, so that positive effects of

parallelism on memory management can be seen. Indeed,

the more peers are used, the less data is involved in the

computation on each single peer. Therefore, the proportion

of data that fits in cache memory is higher when granularity

is fine.

The efficiency of asynchronous scheme of computation is

better compared to the efficiency of synchronous scheme of

computation. Note that for the considered size of the

algebraic system to solve, 128 peers are sufficient.

VII. CONCLUSION

In the presented study, for the solution of the evolution

European and American options derivatives, we have

studied the use and the implementation of parallel

synchronous and asynchronous iterative algorithm [18] on

an environment of peer-to-peer architecture. It follows from

the computational experiments that the choice of

communication mode (synchronous or asynchronous) has

important impact on the efficiency of the distributed

methods. The computational results show that the use of

P2PDC carried out on the Grid5000 platform permits one to

obtain good efficiency, particularly when the number of

processors is large except for the synchronous method when

the number of processors is greater or equal to 64.

Moreover, using parallel iterative asynchronous methods,

compared to the synchronous ones, is well adapted to the

use of heterogeneous and distant distributed large number of

machines. Finally, the difference of performance is mainly

due to the weight of synchronisations between the

processors.

VIII. ACKNOWLEDGMENT

Part of this study has been made possible by ANR grant:

ANR-07-CIS7-011 and support of Grid5000.

REFERENCES

[1] Paul Wilmott, Jeff Dewyne, Sam Howison, Option pricing -

mathematical models and computation - Oxford financial press –

1993.

[2] P. Jaillet, D. Lamberton, B. Lapeyre, “Variational inequalities and the

pricing of american options”, Acta Applicandae Mathematicae, vol.

21, pp. 263 – 289, 1990.

[3] D. El Baz, G. Jourjon, “Some solutions for Peer to Peer Global

Computing”, in Proceedings of 13th Euromicro conference on
Parallel, Distributed and Network-Base Processing, 2005, pp. 49-58.

[4] P. Spitéri, M. Chau, “Parallel asynchronous Richardson method for

the solution of obstacle problem” in Proceedings of the 16th Annual
International Symposium on High Performance Computing Systems
and Applications, pp. 133-138, 2002.

[5] T.T. Nguyen, D. El Baz, P. Spiteri, G. Jourjon, M. Chau, “High

Performance Peer-to-Peer Distributed Computing with Application to

Obstacle Problem”, in Proceedings of IEEE IPDPS 2010 Conference,
Atlanta, 2010.

[6] L. Giraud, P. Spiteri, “Parallel resolution of non-linear boundary

value problems”, Mathematical Modeling and Numerical Analysis,

vol. 25, n° 5, pp. 579-606, 1991.

[7] J.C. Miellou. P. Spiteri, “A criterion of convergence for general fixed

point methods”, Mathematical Modeling and Numerical Analysis,

vol. 19, pp. 645-669, 1985.

[8] J.C. Miellou, D. El Baz, P. Spiteri, “A new class of asynchronous

iterative algorithms with order interval”, Mathematics of

Computation, vol. 67, n° 221, pp. 237-255, 1998.

[9] D. El Baz, T.T. Nguyen, “A self-adaptive communication protocol

with application to high performance peer to peer distributed

computing”, in Proceedings of the 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing,

Pisa, pp. 327-333, 2010.

[10] Aumage, G. Mercier, "MPICH/Madeleine: a True Multi-Protocol MPI

for High Performance Networks", 15th International Parallel and
Distributed Processing Symposium (IPDPS'01), 2001.

[11] David P. Anderson, “BOINC: A System for Public-Resource

Computing and Storage”, 5th IEEE/ACM International Workshop on
Grid Computing, Pittsburgh, USA, 2004.

[12] N. Andrade, W. Cirne, F. Brasileiro, P. Roisenberg, “OurGrid: An

approach to easily assemble grids with equitable resource sharing”, in

146414601460

Proceedings of the 9th Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 61-86, 2003.

[13] J.M. Ortega, W. Rheinboldt, Iterative solution of nonlinear equations

in several variables, Academic press, 1970.

[14] Matti A. Hiltunen, “The Cactus Approach to Building Configurable

Middleware Services”, in DSMGC2000, Nuremberg, Germany, 2000.

[15] G.T Wong, M.A Hiltunen, R.D Schlichting, “A configurable and

extensible transport protocol” in Proceedings of IEEE INFOCOM
’01, Anchorage, Alaska, pp. 319–328, 2001.

[16] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and distributed computation:

numerical methods, in Prentice Hall, Englewood Cliffs, N.J., 1987.

[17] J.M. Bahi, S. Contassot-Vivier, R. Couturier, Parallel iterative

algorithms: from sequential to grid computing, in Chapman &

Hall/CRC, 2007.

[18] Pierre Spiteri, "Parallel optimization and financial mathematics", in

Proceedings of COSI'09 and Microsoft summer school, Annaba, pp.

257 - 270, 2009.

146514611461

