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Abstract— This paper deals with the numerical solution of 

financial applications, more specifically the computation of 

American and European options derivatives modelled by 

boundary values problems. In such applications we have to 

solve large-scale algebraic linear systems. We concentrate on 

synchronous and asynchronous parallel iterative algorithms 

carried out on peer-to-peer networks. The properties of the 

operators arising in the discretized problem ensure the 

convergence of the parallel iterative synchronous and 

asynchronous algorithms. Computational experiments 

performed on peer-to-peer networks are presented and 

analyzed. 

 
      Keywords-component; parallel asynchronous algorithms; 
distributed computing; iterative numerical methods; peer-to-peer 
networks; European options derivatives; American options 
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I.  INTRODUCTION 

For the last years financial applications have known great 

developments. In particular, European and American 

options derivatives modelled by the classical Black and 

Scholes equation have known great interest [1]. The 

problem consists of solving a time dependant boundary 

value problem defined on an unbounded domain generally 

included in the three dimensional space. A classical artifice 

consists of solving the Black and Scholes equation on a 

bounded domain and to increase the size of the domain for 

ensuring convergence to the exact solution [2]. So, we have 

to solve boundary value problems numerically. Taking into 

account the size of the algebraic systems derived from the 

discretization process of the Black and Scholes equation, 

parallel iterative algorithms are prefered.  

 

In this paper we concentrate on asynchronous and 

synchronous iterative methods implemented on peer-to-peer 

(P2P) architectures. Recent advances in microprocessors 

architecture and networks permit one to consider new 

applications like High Performance Computing (HPC). 

Therefore, we can identify a real stake at developing new 

protocols and P2P environments for HPC since this can lead 

to economic and attractive solutions. Task parallel models 

and distributed iterative methods for large scale parallel 

numerical simulation on P2P networks gives rise to 

numerous challenges like communication management, 

scalability, heterogeneity and peer volatility on the network 

(see [3]). Some performance issues can be addressed via 

distributed asynchronous iterative algorithms (see [4] to 

[8]). The reader is referred to [5] for the solution of the 

stationary obstacle problem and to [9] for contribution to the 

development of a new protocol and an environment for P2P 

high performance computing. The approach presented in [9] 

is different from MPICH Madeleine [10] in allowing the 

modification of internal transport protocol mechanism in 

addition to switch between networks. Recently, middleware 

like BOINC [11] or OurGrid [12] have been developed in 

order to exploit the CPU cycles of computers connected to 

the network. Those systems are generally dedicated to 

applications where tasks are independent and direct 

communications between machines are not needed.  

 

In [5], we have considered a stationary problem solved by a 

Richardson like method. In the present study we consider an 

evolutive problem closer and related to the studied financial 

application, more precisely European and American options 

derivatives in which each stationary problem derived from 

the numerical time marching scheme is solved by a parallel 

block relaxation algorithm, which is more efficient than the 

Richardson’s one. This kind of algorithm corresponds in 

fact to a subdomain method without overlapping. In 

addition, due to the overhead of synchronizations the use of 

distributed asynchronous iterative algorithms [6], [7] and [8] 
seems well suited to P2P computing.  
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The present paper is structured as follows: section II deals 

with the presentation of the financial application (European 

and American options derivatives). In section III, we present 

parallel synchronous, and more generally parallel 

asynchronous iterative schemes. In section IV, environment 

for peer-to-peer high performance computing is described. 

In section V, implementation of parallel iterative algorithms 

is detailed. Computational experiments are displayed and 

analysed in section VI, in particular the pertinence to apply 

such parallel asynchronous iterative methods is presented 

for the solution of the model problems. Finally concluding 

remarks are presented in section VII. 

II. THE PROBLEM OF OPTIONS DERIVATIVES 

The classical Black and Scholes equation is a boundary 

value problem describing the evolution of call or put options 

in the field of mathematics of financial derivatives [1]. 
Among the many descriptions of financial option contracts, 

we can consider: 

- the European option, which may only be exercised at 

expiry, i.e. when the time τ takes the value T of the final 

expiry date, 

- the American option, which may be exercised at any time 

prior to expiry. 

 

These two kinds of options are modelled by retrograde time 

dependent convection – diffusion equations. From a 

mathematical point of view, the main difference between 

them consists in the fact that European option is defined on 

a normed vectorial space while the American option is 

defined on a closed convex set included in a normed 

vectorial space; consequently, the determination of 

American option needs the projection of the computed 

values on the convex set.  

 

Classically, an European option is modeled by the following 

time dependent linear equation: 

 

∂v(τ,x)

∂τ
+ (r −

σ 2

2
).∇v +

σ 2

2
.Δv − rv = 0, everywhere in 0,T[ ]xRn

v(T,x) =ψ(x)

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

where ψ(x)= Max(x-K,0) (in the case of call option) or ψ(x) 

= Max(K-x,0) (in the case of put option); in the above 

equations, K denotes the exercise price – called classically 

strike, v denotes the value of the considered option, i.e. a 

“call” or a  “put” option; v = v(τ,x) is a function of the 

current value of the underlying asset x and of the time τ. 

Note also that the considered option also depends on the 

following parameters: 

- r the interest rate, 

- σ the volatility of the underlying asset, σ being in fact the 

instantaneous standard deviation of the price with respect to 

K fixed beforehand; in fact σ characterizes the uncertainly 

of the behavior of the option. 

Using the same previous notations, the American option is 

modeled by the following nonlinear equation: 

 

∂v(τ,x)
∂τ

+ (r −
σ 2

2
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σ 2
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⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

One of the main difficulty lies on the fact that the Black and 

Scholes equation is not defined on a bounded domain, but is 

defined on the unbounded domain R
n
, n ≥ 1. This difficulty 

overcome by considering the problem defined on a bounded 

domain Ω ⊆ R
n
 with appropriate boundary conditions. Then 

it can be proved that the solution of the equation defined on 

the bounded domain Ω converges to the solution of the 

model problem when the measure of Ω tends to infinity [2].  
Another particularity of the problem to solve, is that the 

value of the option is not known at the initial time τ = 0; 

only the final value v(T,x) is known. So the problem 

consists of computing v(0,x). 

 

These previous two particularities can be treated, first by 

considering problems defined on a bounded large domain Ω 

and secondly by a change of variable, such that the variable 

τ is replaced by a variable t = T - τ. Thus, the model 

problem of the European option is replaced by the following 

linear problem: 

 

∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv = 0, everywhere in 0,T[ ]x Ω

v(0,x) =ψ(x)

B.C. of v(t,x) defined on ∂Ω

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

 

where B.C. describes the boundary conditions on the 

boundary ∂Ω of the domain Ω. Practically, the Dirichlet 

condition where v is fixed on ∂Ω or the Neumann condition 

where the normal derivative of v is fixed on ∂Ω is 

classically considered. 

 

Concerning the American option, by the same way, we have 

to solve the following nonlinear problem: 

 
∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv ≥ 0, v(t,x) ≥ψ(x),  everywhere in 0,T[ ]xΩ 

(
∂v(t,x)

∂t
− (r −

σ 2

2
).∇v −

σ 2

2
.Δv + rv)(v(t,x) −ψ(x)) = 0, everywhere in 0,T[ ]xΩ

v(0,x) =ψ(x)

B.C.of v(t,x) defined on ∂Ω
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⎪ 
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III. NUMERICAL SOLUTION OF THE PROBLEMS OF OPTIONS 

DERIVATIVES 

For the numerical solution of the financial problems, we 

consider that the temporal part is discretized by implicit or 

semi – implicit scheme. While, for the spatial part of the 

problem, the bounded domain Ω ⊆ R
3 

is discretized with an 

uniform mesh. Note also that the spatial differential 

operators are discretized by appropriate schemes as follows: 

- the Laplacian is discretized by using the classical seven 

points scheme, 

- the first derivatives, corresponding to the convection 

phenomenon, are discretized by using decentered scheme; 

more precisely, if the coefficient of the considered first 

derivative is strictly positive, then the forward-difference 

formula is used, otherwise backward–difference formula is 

considered. 

 

Thus, if good accuracy is wanted, then the full discretization 

of the Black and Scholes problem leads to the solution of a 

very large linear algebraic system at each time step.  

 

Let A denote the discretization matrix of the model 

problem. It follows from the considered appropriate 

discretization of the Black and Scholes equations, that the 

diagonal entries of the matrix A are strictly positive and that 

the off-diagonal entries are nonpositive. Moreover, the 

matrix A is strictly diagonally dominant. Thus, A is an M – 

matrix [13]. This very interesting property of the matrices to 

invert, at each time step, has a consequence regarding to the 

behaviour of the parallel iterative algorithms considered in 

the sequel; indeed the convergence of the iterative scheme is 

ensured (see [4] and [6] to [8]). 
 

Note also, that due to the large size of the linear algebraic 

system to invert at each time step, it is necessary to use 

iterative methods. More precisely, we consider in the 

present study iterative parallel synchronous and 

asynchronous block relaxation algorithms studied in [6], [7] 
and [8], implemented in the present study on peer-to-peer 

distributed architecture. In the sequel, let us recall the 

formulation of parallel synchronous and more generally 

asynchronous block relaxation algorithms for the solution of 

a large linear algebraic system. 

 

Let us consider the solution of the linear algebraic system 

associated, for example to the solution of the discretized 

European option 

 

A.V=F 

 

where V and F are respectively, a vector whose components 

approximate the values of the exact solution and the right 

hand side of the partial differential equation respectively, at 

each point of the mesh. We consider now a block 

decomposition from the previous linear algebraic system 

and associate the following fixed-point mapping: 

 

Vi = Ai,i

−1 (Fi − Ai, jV j
j≠i
∑ ) = Φ i (V ),  i = 1,L,m, 

where m is an integer denoting the number of blocks. This 

kind of fixed point problem can be considered, at each time 

step, for the solution of the problem of European option. 

For the solution of the discretized American option problem, 

we have to consider now the projection on a convex set (see 

[1]) as follows: 

 

  
Vi =  Proj( Ai,i

−1 (Fi − Ai, jV j
j≠i
∑ )) = Φ i (V ),  i = 1,L,m. 

Then, by considering the appropriate operator as well as, the 

European option than the American option, the problems 

consist of solving the following fixed point problem: 

 

Find V* such that

V* = Φ(V*)

⎧ 
⎨ 
⎩ 

                                          (1) 

 

where V → Φ(V) is a fixed point mapping defined in a 

finite dimensional space. For all V, consider the following 

block-decomposition of the mapping Φ associated to the 

parallel distributed implementation: 

 

Φ (V) =(Φ1 (V) ,…., Φm (V) ) 

 

We consider the distributed solution of the fixed point 

problem (1) via a parallel asynchronous block relaxation 

method defined as follows (see [6] to [8]): let the initial 

guess V
(0)

 be given and for every p ∈ N assume that we can 

get V
(1)

  ,……, V
(p)

; then V
(p+1)  

is defined recursively by: 

 

Vi

( p+1)  =  
Vi

( p )  if i ∉  J(p)

Φ i (...,Vj

( s j ( p )) ,...) if i ∈  J(p) 

⎧ 
⎨ 
⎩ 

                          (2) 

 

where  J = ⎨J(p)⎬ , p ∈ Ν, is a sequence of nonempty sets 
such that: 
 

J (p) ⊂ 1,...,m
�

€,  J (p) ≠ ∅,  ∀p ∈  N,

∀i ∈ 1,...,m
�

€,  Card( p ∈  N  i ∈ J (p)� €) = +∞

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
                (3) 

 

and 

 

∀p∈ N ,  ∀j ∈ 1,...,m{ },  sj (p) ∈ N ,  0 ≤ sj (p) ≤ p,

∀p∈ N ,  si (p) = p if i ∈ J(p),

∀p∈ N ,  ∀j ∈ 1,...,m{ },  lim
p → ∞

(s j (p)) =  +∞.

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

          (4) 

 

The previous asynchronous iterative scheme models 

computations that are carried out in parallel without order 
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nor synchronization and describes in fact a subdomain 

method without overlapping. Particularly, it permits one to 

consider distributed computations whereby peers go at their 

own pace according to their intrinsic characteristics and 

computational load. The parallelism between the peers is 

well described by J since J(p) contains the number of 

components relaxed by each processor on a parallel way 

while the use of delayed components in (2) permits one to 

model nondeterministic behavior and does not imply 

inefficiency of the considered distributed scheme of 

computation. Note that, theoretically, each component of the 

vector must be relaxed an infinite number of time. The 

choice of the relaxed components may be guided by any 

criterion, and, in particular, a natural criterion is to pick-up 

the most recently available values of the components 

computed by the processors.  

 
Remark: The algorithm (2) – (4) describes a computational 

method where the communications between peers can be 

synchronous or asynchronous. Among them parallel 

synchronous methods, when s(p) ≡ p, ∀ p ∈ Ν ; moreover if  

J(p) = ⎨1,…, m⎬ and s(p)=p, ∀ p ∈ Ν, then (2) – (4) 

describes the sequential block Jacobi method while if  J(p) 

=p.mod(m) +1 and s(p)=p, ∀ p ∈ Ν, then  (2) – (4) models 

the sequential block Gauss – Seidel method. So, the 

previous model of parallel asynchronous algorithm appears 

like a general model. 

 

For the solution of the evolution Black and Scholes 

equations, a numerical time marching scheme is 

implemented and, at each time step, we have to solve a large 

scale algebraic system by using either parallel synchronous 

or asynchronous algorithms.  

 

Then, for the solution of stationary problems derived from 

European and American options derivatives, the 

convergence of classical synchronous or asynchronous 

relaxation algorithms has been established by various ways, 

using contraction techniques (see [6] and [7]) or partial 

ordering techniques (see [8]). To summarize, as previously 

said, since the discretization matrix is an M-matrix then 

thanks to various results established in [6], [7] and [8], the 

iterative process described by (2) – (4) converges to V
*
, for 

every initial guess V
(0)

. The reader
 
is referred to these 

previous references for more details. Moreover assume that 

the algebraic system is split into q blocks, q ≤ m, 

corresponding to a coarser subdomain decomposition 

without overlapping; then using results in [7], it can be 

shown by using the same arguments, that the parallel 

asynchronous block relaxation methods converge for this 

coarser decomposition. Furthermore, if the subdomain 

decomposition associated with m blocks is a point 

decomposition, then classical parallel asynchronous block 

relaxation methods converge for every subdomain coarser 

decomposition and for every numbering (lexicographical or 

red-black) of the blocks.  

IV. ENVIRONMENT FOR PEER TO PEER HIGH PERFORMANCE 

COMPUTING 

P2PDC [5] is an environment for peer to peer high 

performance computing that was developed at LAAS-CNRS. 

Contrarily to existing solutions, P2PDC environment allows 

directed communications between peers by using the 

P2PSAP Peer To Peer Self Adaptive communication 

Protocol (see [9]). The P2PSAP protocol chooses

dynamically the most appropriate communication mode 

between any peers according to schemes of computation and 

elements of context like topology. In the present study, note 

that the self adaptive capability is not used. In the following,

we shall briefly present the P2PSAP protocol and the P2PDC 

environment.  

A. Protocol P2PSAP 
 

The P2PSAP protocol is based on the Cactus framework 

(see [14] and [15]) and makes use of micro-protocols. Figure 

1 shows the architecture of P2PSAP; the protocol consists of

a Socket interface and two channels: a control channel and a 

data channel.  

A Socket API is placed on the top of the protocol in 

order to facilitate programming. Session management 

commands like listen, open, close, setsockoption and 

getsockoption are directed to Control channel; while data 

exchange commands, i.e. send and receive commands are 

directed to Data channel. 

 

The Data channel based on Cactus framework, transfers 

data packets between peers. It has two levels: the physical 

layer and the transport layer. The physical layer is 
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encompassed to support communications on different 

networks, i.e. Ethernet, InfiniBand and Myrinet; the data 

channel can be triggered between the different types of 

networks. The transport layer is made of several micro-

protocols; it can be reconfigured by substituting or removing 

and adding micro-protocols. The behavior of the data 

channel is triggered by the control channel.

 

The Control channel manages session opening, closure 

and data channel configuration. The TCP/IP protocol is used 

to exchange control messages since those messages must not 

be lost. The control channel has four main components. The 

Context monitor collects context data like schemes of 

computation, peers location or machine loads. The 

Controller manages session opening and end through TCP 

connection opening and closure; it also combines and 

analyzes context information so as to choose the 

configuration (at session opening) or to take reconfiguration 

decision (during session operation) for Data channel. 

 

Reconfiguration of Data channel is carried out via the 

dedicated Cactus functions by substituting or removing and 

adding micro-protocols. 

B. Environment P2PDC 
Figure 2 illustrates the global architecture of the 

environment P2PDC. We describe now its main components 

- User daemon is the interaction interface between the 

application and the environment; it allows users to submit 

their tasks and retrieve final results. 

-  Topology manager organizes connected peers into clusters 

and maintains links between clusters and peers.  

- Task manager is responsible for subtasks distribution and 

results collection. 

- Task execution executes subtasks and exchanges 

intermediate results. 

- Load balancing estimates peer workload and migrates a 

part of work from overloaded peer to non-loaded peer. 

- Fault tolerance ensures the integrity of the calculation in 

case of peer or link failure.

- Communication provides support for directed data 

exchange between peers using protocol P2PSAP. 
 

 

In order to allow programmers to develop their own 

application easily, P2PDC proposes a programming model 

with a reduced set of communication operations and some 

deployment activities carried out automatically by the 

environment. 

Communication operations: There are only three classical 

operations: P2P_Send, P2P_Receive and P2P_Wait. The 

idea is to facilitate programming of large-scale P2P 

applications and to hide the complexity of communication 

management as much as possible. The operation P2P_Wait
is particular and used in order to wait for the arrival of a 

message from another peer. 

Messages exchanged between peers can be decomposed 

into two classes: data messages and control messages. Data 

messages are used to exchange boundary values of block 

components at interfaces between peers; while control 

messages are used to exchange computational state like 

local termination criteria, termination command, etc. A flags
parameter is added to communication operations in order to 

distinguish two classes of messages: the CTRL_FLAG
indicates control messages and the DATA_FLAG indicates 

data messages. The control channel of P2PSAP exchanges 

not only messages for protocol configuration but also 

messages from P2PDC application with the so-called 

CTRL_FLAG flag. Then messages from P2PDC application 

with DATA_FLAG will be handled by data channel and 

messages from P2PDC application with CTRL_FLAG will 

be handled by control channel. Thus, the communication 

mode for data exchange is chosen according to the context 

of the user choice; while note that the communication mode 

for exchange of control messages is always asynchronous 

and reliable. 

 

Application programming model: In order to develop an 

application, programmers have to write code for only three

functions: Problem_Definition(), Calculate() and 

Results_Aggregation(). Others deployment activities like 

subtasks distribution or results collection are carried out 

automatically by the environment. In the 

Problem_Definition() function, programmers define the 

problem in indicating the number of subtasks and subtask 

data, computational scheme and number of peers necessary. 

In the Calculate() function, programmers write subtasks 

code; they can use P2P_Send() and P2P_Receive() to send 

or receive updates. Finally, programmers define how 

subtasks results are aggregated and the type of output, i.e. a 

console or a file, in the Results_Aggregation() function. 

 

For further details about P2PSAP protocol and P2PDC 

environment, reference is made to [9] and [5] respectively. 
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V. IMPLEMENTATION 

The implementation of the considered financial application 

is carried out with the P2PDC environment taking into 

account the computational scheme on one hand and the 

stopping criterion of the iterative algorithm, on the other 

hand. The computation scheme (synchronous, 

asynchronous) is chosen at the beginning of the solution. 

Each node updates its assigned sub-blocks of components of 

the iterate vector in the lexicographical order. Then, the 

transmission of the boundary blocks assigned to each 

computational node to the contiguous blocks is delayed so 

as to reduce the waiting time in the case of the use of 

synchronous method. The parallel algorithm is based on the 

SPMD paradigm, which is commonly used for parallel and 

distributed application. In our case, each process initializes 

its own data set. The principle of the implementation of the 

parallel algorithm is summarized below; in this flow chart, r 

is the time step index, V0 is the initial condition of the time 

dependant problem and Fr+1 is the right hand side computed 

at time r+1. 

 

In the Calculate() function of P2PDC, P2P_Send() and 

P2P_Receive() operations will not have the same property 

according to the computation scheme used. The operation 

P2P_Wait() is used in order to synchronize the peers at each 

time step before the computation of the right-hand side. In 

the synchronous (resp. asynchronous) scheme, the 

P2P_Send() and P2P_Receive() operations are blocking 

(resp. not blocking). Note that this implementation of the 

parallel asynchronous method simplifies the exchange of 

boundary blocks in the block relaxation method but it is not 

adapted to the synchronized part at each time step. The 

P2PDC communication API (Application Programming 

Interface) does not offer a real synchronization barrier but 

only a function, which wait for the arrival of a message 

from another peer. 

 

We specify that in the implementation of the application 

concerning the computation of European and American 

options, we use the classical block-relaxation method in 

which the blocks are numbered using the lexicographical 

ordering. More precisely, in the considered implementation 

several adjacent tridiagonal blocks are gathered; so, this 

kind of method can be viewed as a subdomain method 

without overlapping between the subdomains. Note also that 

each tridiagonal algebraic subsystem is solved using the 

TDMA method well adapted to the solution of tridiagonal 

subsystems. Moreover, the considered implementation 

allows having a multiplicative subdomain method. Finally, 

in the considered implementation of the subdomain 

relaxation method without overlapping the data are split into 

regular polygons. 

 

  

 

Algorithm: on computing peers 

 // Initial condition V0 
 Input V0 
 For each time step r do 
     // synchronized part 
     Compute δt*Fr+1 + V0 

     While no convergence do  
// by synchronous or asynchronous algorithm  

Solve by block relaxation method A.V=δt*Fr+1 + V0 

// Project in the case of American options 

V0 ← V 

Send local convergence to convergence manager 
peer 
Receive global convergence from convergence 
manager peer 

End while 
If on barrier manager peer Then 

Wait all peers 
Send notification restart to computing peer 

Else 
Send notification message to barrier manager peer 
Wait notification restart from barrier manager peer 

End If 

End for 

Send final notification message to convergence manager 

peer. 

 
For the implementation of the time marching scheme, the 

parallel synchronous algorithm is easy to implement, since 

the P2P_Send and the P2P_Receive are blocking operations. 

In the case of the asynchronous scheme, the implementation 

is more difficult. Due to the specificity of the implicit time 

marching scheme and to P2PDC conception, it is necessary 

to implement an additional synchronisation barrier when a 

new time step is considered. At the end of a time step, all 

the peers are synchronized thanks to the P2P_Wait 
operation and send a message to a barrier manager peer 

dedicated among all the computing peers. Then this 

manager barrier peer restarts each computing peer. An 

additional level of synchronization is performed only when 

the first relaxation is started.  

 

With respect to [5], the Richardson solver is replaced by the 

subdomain without overlapping solver and a new efficient 

stopping criterion is implemented using a supplementary 

convergence manager peer only devoted to this task. Indeed, 

we have compared the efficiency of the stopping criterion 

proposed by [16] based on the use of a decentralized method 

and the centralized one presented in [17]. The comparison 

of the two stopping criteria has shown that the number of 

relaxations are not the same and we have finally chosen the 

stopping criterion proposed by [17] since more relaxations 

are performed and better numerical quality of the computed 
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solution is obtained. For a current time step, when a local 

convergence is reached by a computing peer, a message is 

sent to the convergence manager peer; a local convergence 

corresponds to the fact that the uniform norm of the 

difference between two successive updates is less than a 

given threshold, fixed here to 10
-6

. This last manager peer 

stops the iterative process when all the computing peers 

have reached convergence then the next time step is 

performed.  

 

When all time steps are performed, the computation is 

ended; in this case, a final notification message is sent by 

the computing peers to the convergence manager peer. Note 

that the principle of the centralized stopping criterion is the 

same as well as for the synchronous algorithm than the 

asynchronous one; nevertheless, the only difference between 

synchronous and asynchronous convergence detection lies 

in the way that the convergence manager answers to 

computing peers. In the synchronous case, the convergence 

manager waits for the convergence message of all 

computing peers at each relaxation; while in the 

asynchronous case, the answer is sent dynamically after 

receipt of any convergence message. 

VI. PEER-TO-PEER EXPERIMENTS 

Computational schemes have been implemented in C 

language as a parallel algorithm using the P2PDC 

environment.  Computational experiments have been carried 

out on the Grid5000 platform. This French grid platform is 

composed of 2970 processors with a total of 6906 cores 

distributed over 9 sites in France. Most of them have at least 

a Gigabit Ethernet network for local machines. Nodes 

between the different sites range from 2.5 Gflops up to 10 

Gflops. Several site of Grid5000 have several clusters with 

different performances.  

 

Table I displays the characteristics of the machine used in 

the computational experiments. 

 

Site Cluster Processors 

Type 

Speed 

GHz 

CPU Core R

A

M 

Lille ChinqChint Intel Xeon 

E5440 QC 

2,83 2 8 8 

Orsay Gdx AMD 

Opteron250 

2,4 2 2 2 

TABLE I. CHARACTERISTICS OF MACHINES ON EACH SITE. 

We have considered a cubic domain Ω contained in the 3D 

space, Ω being discretized with S = s
3
 points where s=256 

denotes the number of points considered on each edge of the 

cube. The iterate vector is decomposed into m = s
2
 sub-

blocks with s components. A set of sub-blocks is assigned to 

each node and is updated using a sequential Gauss-Seidel 

block relaxation like algorithm performed in the 

lexicographical order. Concerning the time marching 

scheme, only three time steps are considered. 

 

The results of the sequential computational experiments are 

summarized in Table II. 

 
European Options American Options 

Lille Orsay Lille Orsay 

Time Relax Time Relax Time Relax Time Relax 

7669 1004 12668 1004 8534 1108 14362 1108 

TABLE II. ELAPSED TIME AND RELAXATIONS WITH 

SEQUENTIAL ALGORITHM ON EACH SITE. 

The parallel computational experiments are summarized in 

Table III, IV, V and VI in which 2, 4, 8, 16, 32, 64 and 128 

computing machines are used (not including the 

convergence manager peer). In Table III and in Table V the 

number of relaxations is mentioned; note that for only the 

asynchronous experiments, Min, Max and Average number 

of relaxations are taken over the processors. 

 

 Asynchronous Synchronous 

Peers Time/s Relaxations Time/s Relaxations 

  Min Max Average   

2 5492 996 1439 1217 4904 1004 

4 3158 1019 1695 1353 3158 1015 

8 1289 995 1572 1309 1370 1015 

16 515 1010 2363 1502 589 1030 

32 195 822 1866 1486 297 1035 

64 90 1074 1823 1478 292 1053 

128 65 949 2316 1380 303 1091 

TABLE III. ELAPSED TIME AND AVERAGE RELAXATIONS FOR 

EUROPEAN OPTIONS. 

 

 Asynchronous Synchronous 

Peers Speedup Efficiency Speedup Efficiency 

2 1.40 0.70 1.56 0.78 

4 2.43 0.61 2.43 0.61 

8 5.95 0.74 5.60 0.70 

16 14.89 0.93 13.02 0.81 

32 39.39 1.23 25.82 0.81 

64 85.21 1.33 26.26 0.41 

128 117.90 0.92 25.31 0.20 

TABLE IV. SPEEDUP AND EFFICIENCY FOR EUROPEAN OPTIONS. 

For the considered application and architecture used, when 

the number of machines is greater than 8 for European 

options and 4 for American options, the asynchronous 

scheme of computation, scales better than the synchronous 

one. For example, with 128 peers, the asynchronous 

computation scheme clearly performs about five times 

(European options) and about three times (American 

options) better than the synchronous one. This feature shows 

that asynchronous algorithms are less sensitive to 

granularity network latency. Moreover the asynchronous 
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algorithms do not generate idle time. Therefore load 

balancing is not necessary for decreasing the elapsed time. 

 

 Asynchronous Synchronous 

Peers Time/s Relaxations Time/s Relaxations 

  Min Max Average   

2 7169 1106 1862 1484 6526 1123 

4 3209 1161 1709 1431 3681 1138 

8 1464 1096 1720 1400 1659 1138 

16 581 1153 2574 1748 626 1138 

32 285 1069 2157 1712 361 1145 

64 102 495 1469 1049 318 1165 

128 109 1284 2685 1704 337 1208 

TABLE V. ELAPSED TIME AND AVERAGE RELAXATIONS FOR 

AMERICAN OPTIONS. 

 

 Asynchronous Synchronous 

Peers Speedup Efficiency Speedup Efficiency 

2 1.19 0.59 1.31 0.65 

4 2.66 0.66 2.32 0.58 

8 5.83 0.73 5.14 0.64 

16 14.67 0.92 13.63 0.85 

32 29.94 0.94 23.64 0.74 

64 83.72 1.31 26.84 0.42 

128 78.29 0.61 25.32 0.20 

TABLE VI. SPEEDUP AND EFFICIENCY FOR AMERICAN OPTIONS. 

In both cases of synchronous or asynchronous scheme, the 

speedup of computation is calculated using the shortest 

sequential elapsed time (see Table II); note that on a 

heterogeneous architecture the notion of speedup and 

efficiency is inappropriate, but this is a good indicator of 

performance. Nevertheless, note that the obtained values of 

speedup are high, particularly for the asynchronous scheme 

with large number of machine. Note also that super-linear 

acceleration has been obtained for asynchronous schemes of 

computation but not in the synchronous case. This feature 

shows that the communication overhead induced by the 

parallelisation is small enough, so that positive effects of 

parallelism on memory management can be seen. Indeed, 

the more peers are used, the less data is involved in the 

computation on each single peer. Therefore, the proportion 

of data that fits in cache memory is higher when granularity 

is fine. 

 

The efficiency of asynchronous scheme of computation is 

better compared to the efficiency of synchronous scheme of 

computation. Note that for the considered size of the 

algebraic system to solve, 128 peers are sufficient.  

VII. CONCLUSION 

In the presented study, for the solution of the evolution 

European and American options derivatives, we have 

studied the use and the implementation of parallel 

synchronous and asynchronous iterative algorithm [18] on 

an environment of peer-to-peer architecture. It follows from 

the computational experiments that the choice of 

communication mode (synchronous or asynchronous) has 

important impact on the efficiency of the distributed 

methods. The computational results show that the use of 

P2PDC carried out on the Grid5000 platform permits one to 

obtain good efficiency, particularly when the number of 

processors is large except for the synchronous method when 

the number of processors is greater or equal to 64. 

Moreover, using parallel iterative asynchronous methods, 

compared to the synchronous ones, is well adapted to the 

use of heterogeneous and distant distributed large number of 

machines. Finally, the difference of performance is mainly 

due to the weight of synchronisations between the 

processors.  
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