

Foundations of Computing

Module Introduction

Emmanuel Hebrard (adapted from) João Marques Silva

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

Outline

- Constraint Programming
- 2 Clause Learning in CP

- Constraint Programming
- 2 Clause Learning in CP

Constraint Programming

.

Constraint Programming

- Constraint Satisfaction Problems are generalization of Boolean satisfiability to non-Boolean domains
- Standard constraint programming solvers are similar to DPLL
 - ▶ No clause learning (Clause-learning CSP solvers existed before CDCL but were not that successful)
 - ▶ But stronger propagation

Constraint Propagation

Given a constraint c = (R(c), S(c)), a propagator is an algorithm that reduce the domains so that the constraint is arc consistent.

• A constraint solver is a library of constraints, each with its dedicated propagator

Arc Consistency

A constraint c is Arc Consistent on domain \mathcal{D} if and only if for every $x \in S(c)$ and for every $j \in \mathcal{D}(x)$, there exists a tuple $\sigma \in R(c) \cap \prod_{x \in \mathcal{X}} \mathcal{D}(x)$ such that $\sigma(x) = j$.

- The constraint can be a clause: arc consistency corresponds to unit propagation
- The constraint can be a primitive relation (e.g., \leq) and arc consistency is easy and efficient
 - ▶ Propagation of $x \le y$:
 - \bigstar Event lower bound of x (min(x)) has changed: update min(y) to min(x)
 - \star Event upper bound of y has changed: update $\max(x)$ to $\max(y)$
 - ★ Do not wake up on other events
- Can be a much larger and more complex relation, even an NP-hard relation
 - \triangleright E.g., "the graph given by the incidence matrix x is a clique of size greater than or equal to y"
 - Arc consistency is not required for correctness (and is NP-hard when the constraint relation is NP-hard)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

onstraint Programming

E / 20

ALLDIFFERENT

- AllDifferent $(x_1, ..., x_n) \Leftrightarrow \forall 1 \leq i < j \leq n, \ x_i \neq x_j$
- For instance: ALLDIFFERENT (x_1, x_2, x_3, x_4)
 - ▶ $\mathcal{D}(x_1) = \{1\}$
 - \triangleright $\mathcal{D}(x_2) = \{1, 2, 3\}\mathcal{D}(x_2) = \{2, 3\}$
 - \triangleright $\mathcal{D}(x_3) = \{1, 2, 3\}\mathcal{D}(x_3) = \{2, 3\}$
 - $\mathcal{D}(x_4) = \{1, 2, 3, 4\} \mathcal{D}(x_4) = \{4\}$
- \bullet Only two solutions: (1,2,3,4) and (1,3,2,4), therefore:
 - $x_2 = 1$, $x_3 = 1$, $x_4 = 1$, $x_4 = 2$, $x_4 = 3$ are not viable
- How can we compute that efficiently?
 - Generating and testing the validity all permutations would take exponential time

- AllDifferent $(x_1, ..., x_n) \Leftrightarrow \forall 1 \leq i < j \leq n, \ x_i \neq x_j$
- For instance: ALLDIFFERENT($x_1, x_2, x_3, x_4, x_5, x_6$)
 - $\mathcal{D}(x_1) = \{1, 2, 3, 5\}$
 - $\mathcal{D}(x_2) = \{2, 3, 4\}$
 - ▶ $\mathcal{D}(x_3) = \{3, 5\}$
 - \triangleright $\mathcal{D}(x_4) = \{1, 2, 3, 4, 5\}$
 - ▶ $\mathcal{D}(x_5) = \{3, 5\}$
 - $\mathcal{D}(x_6) = \{4, 5, 6, 7\}$

Constraint Programming

- / --

ALLDIFFERENT

- A solution of the ALLDIFFERENT constraint is a maximal matching of the graph
- We can compute a maximal matching in $O(n^{\frac{3}{2}}m)$ (Hopcroft Karp)
- Cycle: alternative matching. Strongly Connected Components are set of vertices all pairwise connected by a cycle. Tarjan's Algorithm finds them all in O(nm)
- An edge (x, v) belongs to a strongly connected component iff the value v is viable for $x \Rightarrow$ pruning!

- AllDifferent $(x_1, \ldots, x_n) \Leftrightarrow \forall 1 \leq i < j \leq n, \ x_i \neq x_j$
- For instance: ALLDIFFERENT $(x_1, x_2, x_3, x_4, x_5, x_6)$
 - \triangleright $\mathcal{D}(x_1) = \{1, 2, 3, 5\}$
 - \triangleright $\mathcal{D}(x_2) = \{2, 3, 4\}$
 - \triangleright $\mathcal{D}(x_3) = \{3, 5\}$
 - \triangleright $\mathcal{D}(x_4) = \{1, 2, 3, 4, 5\}$
 - ▶ $\mathcal{D}(x_5) = \{3, 5\}$
 - \triangleright $\mathcal{D}(x_6) = \{4, 5, 6, 7\}$
 - ▶ $\mathcal{D}(x_1) = \{1, 2\}$
 - ▶ $\mathcal{D}(x_2) = \{2, 4\}$
 - ▶ $\mathcal{D}(x_3) = \{3, 5\}$
 - \triangleright $\mathcal{D}(x_4) = \{1, 2, 4\}$
 - ▶ $\mathcal{D}(x_5) = \{3, 5\}$
 - ▶ $\mathcal{D}(x_6) = \{6,7\}$

Constraint Programming

.

Constraint Propagation

- When and how propagators are called?
- Typically via a Constraint Queue and an Event Stack
- The event stack contains events corresponding to domain *reduction*
 - ▶ Variable x is assigned a value v
 - ► The lower (resp. upper) bound of variable *x* has increased (resp. decreased)
 - ▶ The domain of variable x has lost at least one value
 - ► The domain of variable x has lost at value v
- Every propagator watches some events

Algorithm 0: Constraint Propagation

```
repeat
```

```
while Event-Stack \neq \emptyset do

e \leftarrow \text{Event-Stack.pop-back}();
foreach c \in \text{Watchers}(e) do

Constraint-Queue.add(c);

if Constraint-Queue \neq \emptyset then

c \leftarrow \text{Constraint-Queue.pop-priority}();
c.\text{propagate}(e);
/* \text{ might push events on the event stack */}

until Event-Stack = \emptyset;
```


7 8 9 4 5 6 1 2 3	2	7 8 9 4 5 6 1 2 3	5	7 8 9 4 5 6 1 2 3	1	7 8 9 4 5 6 1 2 3	9	7 8 9 4 5 6 1 2 3
8	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	2	7 8 9 4 5 6 1 2 3	3	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	6
7 8 9 4 5 6 1 2 3	3	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	6	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	7	7 8 9 4 5 6 1 2 3
7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	1	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	6	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3
5	4	7 8 9 4 5 6 1 2 3	1	9				
7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	2	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	7	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3
7 8 9 4 5 6 1 2 3	9	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	3	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	8	7 8 9 4 5 6 1 2 3
2	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	8	7 8 9 4 5 6 1 2 3	4	7 8 9 4 5 6 1 2 3	7 8 9 4 5 6 1 2 3	7
7 8 9 4 5 6 1 2 3	1	7 8 9 4 5 6 1 2 3	9	7 8 9 4 5 6 1 2 3	7	7 8 9 4 5 6 1 2 3	6	7 8 9 4 5 6 1 2 3

11 / 28

Sudoku $AC(\neq)$

7 4 6	2	7 4 6	5	7 8	1	8 4 3	9	8 4 3
8	7 5	7 9 4 5	2	7 9	3	4 5 1	4 5	6
9	3	9 5	4	6	8 9	8 5 1 2	7	8 5 1 2
7 9 3	7 8	1	7 3	7 8 9 4 5 2	8 9 5 2	6	4 5 2 3	8 4 5 2 3
5	4	7 8 6 3	7 6 3	7 8	8 6 2	8 2 3	1	9
9 6 3	8 6	2	6 1 3	8 9 4 5 1		7	4 5 3	8 4 5 3
7 4 6	9	7 4 5 6	6	3	5 6 2	4 5 1 2	8	4 5 1 2
2	5 6	5 6 3	8	5 1	4	9 5 1 3	5 3	7
4 3	1	8 4 5 3	9	5 2	7	4 5 2 3	6	4 5 2 3

Sudoku BC(AllDifferent)

7 4 6	2	7 4 6	5	7 8	1	8 4 3	9	8 4 3
8	7 5	7 9 4 5	2	7 9	3	4 5 1	4 5	6
1	3	9 5	4	6	8 9	8 5 1 2	7	8 5 1 2
7 9 3	7 8	1	7	7 8 9 4 5	8 9 5	6	2	8 4 5 3
5	4	7 6 3	7 6 3	7 8	8 6 2	8 3	1	9
9 6 3	8 6	2	6 1 3	8 9 4 5 1	8 9 5 6	7	4 5 3	8 4 5 3
7 4 6	9	7 4 5 6	6	3	5 6 2	4 5 1 2	8	4 5 1 2
2	5 6	5 6 3	8	5 1	4	9	5 3	7
4 3	1	8	9	5 2	7	4 5 2 3	6	4 5 2 3

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Sudoku AC(ALLDIFFERENT)

7 4 6	2	7 4 6	5	7 8	1	8 4 3	9	8 4 3
8	7 5	7 9 4 5	2	7 9	3	1	4 5	6
1	3	9 5	4	6	8 9	8 5 2	7	8 5 2
7 9 3	7 8	1	7	8 9 4 5	8 9 5	6	2	8 4 5 3
5	4	7 6 3	7 3	8	8 6 2	8	1	9
9 6 3	8 6	2	1	8 9 4 5		7	4 5 3	8 4 5 3
7 4	9	7 4 5	6	3	5 2	4 5 2	8	1
2	5 6	5 6 3	8	1	4	9	5 3	7
4 3	1	8	9	5 2	7	4 5 2 3	6	4 5 2 3

Sudoku (Solution)

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

vAS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Sum

$$\sum_{i=1}^{n} a_i x_i = K$$

- Subset Sum: given a set of integers and an integer K, does there exist a subset whose sum is equal to K
 - \triangleright A variable with domain $\{0,1\}$ for each integer, coefficients are the inetegers
- Finding a support is NP-hard
 - ► Therefore, achieving *AC* is NP-hard
 - Achieving BC is NP-hard too, since on $\{0,1\}$ domains, a bounds support is a support
- However, one can enforce BC on each conjunct of:

$$\sum_{i=1}^{n} a_i x_i \le K \text{ and } \sum_{i=1}^{n} a_i x_i \ge K$$

$$\sum_{i=1}^n a_i x_i \le K$$

- Assume that all coefficients are positive
- $max(x_i) + \sum_{j=1}^n a_j \min(x_j) min(x_i) \le K$
- $min(x_i) + \sum_{j=1}^n a_j \max(x_j) min(x_i) \ge K$

Constraint Programming

17 / 28

Kakuro

•
$$\sum_{i=1}^{6} x_i = 39$$

• AllDifferent(
$$\{x_1, \ldots, x_6\}, \{1, \ldots, 9\}$$
)

$$x_1:$$
 { 8 9}
 $x_2:$ {1 2 6 7 8 9}
 $x_3:$ { 8 9}
 $x_4:$ {1 5 6 8 9}
 $x_5:$ {1 2 6 7 8 9}
 $x_6:$ { 4 5 8 9}

Propagation

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Example: Kakuro

•
$$\sum_{i=1}^{6} x_i = 39$$

• AllDifferent
$$(x_1, \ldots, x_6), \{1, \ldots, 9\})$$

$$x_1:$$
 { 8 9}
 $x_2:$ {1 2 6 7 }
 $x_3:$ { 8 9}
 $x_4:$ {1 5 6 }
 $x_5:$ {1 2 6 7 }
 $x_6:$ { 4 5

Propagation

• AllDifferent($\{x_1, x_3\}, \{8, 9\}$)

Example: Kakuro

•
$$\sum_{i=1}^{6} x_i = 39$$

• AllDifferent(
$$\{x_1, ..., x_6\}, \{1, ..., 9\}$$
)

x_1 :	{					8	9}
<i>x</i> ₂ :	{			6	7		}
<i>x</i> ₃ :	{					8	9}
<i>x</i> ₄ :	{		5	6			}
<i>X</i> ₅ :	{			6	7		}
X6:	{	4	5				}

Propagation

•
$$\sum_{i=1}^{6} = 39$$

$$\Rightarrow \min(x_2) \ge 39 - \sum_{i \ne 2} \max(x_i)$$

$$\Rightarrow \min(x_2) \ge 3, (\& \min(x_5) \ge 3 \& \min(x_4) \ge 2)$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Example: Kakuro

•
$$\sum_{i=1}^{6} x_i = 39$$

• AllDifferent(
$$\{x_1, \ldots, x_6\}, \{1, \ldots, 9\}$$
)

Propagation

- AllDifferent($\{x_2, x_5\}, \{6, 7\}$)
- AllDifferent($\{x_4\}, \{5\}$)

- **Constraint Programming**
- Clause Learning in CP

Motivation

- Constraint programming has powerful propagation algorithm
- Example, Kakuro:

Constraint Programming

- One variable $x_{i,j} \in \{1, \dots, 9\}$ for every cell
- For every clue:
 - One ALLDIFFERENT constraint and two CARDINALITY constraints

SAT Encoding

- ▶ One variable $x_{i,j,v}$ for every cell and every $v \in \{1,\ldots,9\}$ plus a linear number of clauses (somewhat equivalent)
- For every clue of size *n*:
 - 9(n-1)n/2 binary clauses to encode ALLDIFFERENT: unit propagation is not as strong as constraint propagation on $\operatorname{AllDifferent}$
 - SAT encoding of cardinality: unit propagation is not as efficient as constraint propagation on CARDINALITY

- But no clause learning!
 - Clause learning was developed in CP (even before zChaff and GRASP) but was not as successful

- There are efficient encoding of domains, e.g., sequential counters
 - \triangleright x_v : variable x takes value v, s_v : variable x lower than or equal to v
- Same space complexity $(O(|\mathcal{D}|))$
- Domain change slightly less efficient
 - Assignement, value removal and bound change take $O(|\mathcal{D}|)$ time in the SAT encoding
 - ► They are in constant time in CP
 - However, amortized to the same worst-case down a branch (removing all values one at a time takes $O(|\mathcal{D}|)$ time in both cases)
 - ▶ There are many more *read* operations than *write* operations
- Domain events correspond to domain literals:
 - Upper bound of x has changed to v: s_v
 - ▶ Lower bound of x has changed to v: s_{v-1}
 - ▶ Value v was removed from the domain of x: $\bar{x_v}$
 - ▶ Value v has been assigned to variable x: x_v

Lazy Clause Generation

Initially only domain clauses, constraints are propagated as in CP

[Katsirelos & Bacchus]

- For every domain reduction / made by propagating a constraint generate an asserting explanation clause $(p_1 \vee p_2 \vee \ldots \vee l)$
 - Used during conflict analysis, but not for unit propagation (the propagator already does this pruning)
 - ► Learn first UIP clauses exactly as CDCL (and unit propagate them)
- Every constraint has a dedicated propagation algorithm and an explanation algorithm
 - Explanation clauses can be generated a posteriori (during conflict analysis) to avoid unecessary calls to the explanation algorithm

- Propagation of $x \le y$:
 - Event $\bar{x_v}$ (lower bound of x has changed to v+1): triggers $\bar{y_v}$
 - **\star** Explanation clause $(x_v \vee \bar{y_v})$
 - Event y_v (upper bound of y has changed): triggers x_v
 - **\star** Explanation clause $(x_v \vee \bar{y_v})$
- Suited for lazy explanation: the context is irrelevant

lause Learning in CP

24 / 28

Explaining Cardinality

- Strongly connected components that do not include t have as many variables as values (Hall sets)
 - ► The only way to a free value is via t
- Consider any edge $(v \rightarrow x)$ connecting a Hall set to a distinct SCC
 - ightharpoonup There cannot be a edge between x and the Hall set of v otherwise the SCCs would not be distinct
- A Hall set is a set of variables \mathcal{X} such that $|\bigcup_{x \in \mathcal{X}} \mathcal{D}(x)| = |\mathcal{X}|$
 - ▶ An edge $(v \rightarrow x)$ is arc inconsistent if and only if v is in a Hall set and x is not in the same SCC

Clause Learning in CP

26 / 29

Explaining ALLDIFFERENT

- For instance: ALLDIFFERENT (x_1, x_2, x_3, x_4)
 - ▶ $\mathcal{D}(x_1) = \{1, 2, 3\}$
 - \triangleright $\mathcal{D}(x_2) = \{1, 2, 3\}$
 - ▶ $\mathcal{D}(x_3) = \{1, 2, 3\}$
 - \triangleright $\mathcal{D}(x_4) = \{1, 2, 3, 4\} \mathcal{D}(x_4) = \{4\}$
- $\{1,2,3\}$ is a Hall set, therefore $\{1,2,3\}$ are not viable for x_4
- We can use the Hall set as explanation clause:

$$(s_{1,3} \wedge s_{2,3} \wedge s_{3,3}) \implies \neg s_{4,3}$$

$$\iff$$

$$(\neg s_{1,3} \vee \neg s_{2,3} \vee \neg s_{3,3} \vee \neg s_{4,3})$$

(i.e., if $x_1 \le 3$ and $x_2 \le 3$ and $x_3 \le 3$, then $x_4 > 3$)

- Mapping between CSP variables and Boolean variables (can be implicit)
- Propagation of the original constraints is done via propagators (dedicated algorithms)
- Propagators generate explanation clauses, used to encode the conflict graph
- Learn First-UIP clauses with this conflict graph
- Propagate the learnt clauses via unit-propagation