

Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

Outline

- Pseudo Boolean Optimisation
- Cutting Planes

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Extensions

- / --

Motivation

Facility Location Problem

Suppose that a company has to decide where to install new factories from n potential locations in order to be able to serve m clients.

Let c_i denote the cost for opening a factory at location i and let d_{ij} denote the cost of serving client j from location i.

Provide a formulation that helps the administration to decide where to open the factories such that the overall costs (factory open and serving clients) are minimized.

Facility Location Problem

- Problem variables
 - \triangleright x_i : denotes if a factory is to be open at location i
 - \triangleright y_{ij} : denotes if client j is served from location i

$$\begin{array}{ll} \text{Minimize} & \sum\limits_{i=1}^n c_i x_i + \sum\limits_{i=1}^n \sum\limits_{j=1}^m d_{ij} y_{ij} \\ \text{Subject to} & \sum\limits_{i=1}^n y_{ij} = 1 & \forall j \in \{1 \dots m\} \\ & x_i - y_{ij} \geq 0 & \forall i \in \{1 \dots n\}, j \in \{1 \dots m\} \\ & x_i \in \{0,1\}, y_{ij} \in \{0,1\} & \end{array}$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Extension:

5 / 17

Pseudo-Boolean Optimization (PBO)

Formulation

Minimize
$$\sum_{j=1}^{n} c_j x_j$$

Subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \qquad \{\geq, =, \leq\} \quad b_{i}$$

$$x_{j} \in \{0, 1\} \qquad \forall j \in \{1, 2, \dots, n\}$$

• 0-1 Integer Linear Programming (0-1 ILP)

- If we identify {false, true} to {0,1}, a clause $(x \lor y \lor z)$ is equivalent to $x + y + z \ge 1$
 - $(x \vee \bar{y} \vee z) \text{ is } x + (1 y) + z \ge 1$
- Not quite Integer Programming because the domain is Boolean
 - ► Particular case

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Extensions

7 / 17

Pseudo-Boolean Optimization (PBO)

Algorithmic Solutions

- Integer Programming solvers are very powerful
 - ► We are not going to discuss Integer Programming
- When there is a linear objective, MaxSAT can be a good approach (we will see MaxSAT)
- In some case, a CDCL-like algorithm can be better than IP
 - Replace clauses by cutting planes

Combination of two constraints

$$\delta\left(\sum_{j=1}^{n} a_{j} x_{j} \leq b\right)$$

$$\delta'\left(\sum_{j=1}^{n} a'_{j} x_{j} \leq b'\right)$$

$$\delta\sum_{j=1}^{n} a_{j} x_{j} + \delta'\sum_{j=1}^{n} a'_{j} x_{j} \leq \delta b + \delta' b'$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Cutting Planes

Rounding can also be applied

$$\frac{\sum\limits_{j=1}^{n}a_{j}x_{j}\leq b}{\sum\limits_{j=1}^{n}\lfloor a_{j}\rfloor x_{j}\leq \lfloor b\rfloor}$$

- The correctness of the rounding operation follows from $|x| + |y| \le |x + y|$
- Hence, δ coefficients in cutting plane operations do not need to be integer. Rounding can be safely applied afterwards

Rounding Example

$$\frac{0.5(3x_1 + 2x_2 + x_3 + 2x_4 + x_5 \le 5)}{1.5x_1 + x_2 + 0.5x_3 + x_4 + 0.5x_5 \le 2.5}$$

After rounding: $x_1 + x_2 + x_4 \le 2$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Cutting Planes

• Cutting Planes generalize (p-simulate) CNF clause resolution

Example

$$\frac{(\bar{x_1} \lor x_2 \lor x_3)}{(x_2 \lor x_4 \lor \bar{x_3})}$$
$$\frac{\bar{x_1} \lor x_2 \lor x_4}{(x_2 \lor x_4)}$$

$$(1-x_1) + x_2 + x_3 \ge 1$$
 $x_2 + x_4 + (1-x_3) \ge 1$
 $(1-x_1) \ge 0$
 $x_4 \ge 0$
 $2(1-x_1) + 2x_2 + 2x_4 \ge 1$ addition
 $(1-x_1) + x_2 + x_4 \ge 1$ division

• Cutting planes is a stronger proof system than resolution

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Extensions

12 / 17

Cutting Planes

Use of Cutting Planes

- Used in branch and bound algorithms for PBO
 - ► And in the more general case of Integer Linear Programming (ILP)
- Very common at preprocessing (i.e., at the root node of the search tree)
- Algorithms that use cutting plane techniques during the search process are also known as branch and cut algorithms
- Other types of cutting planes exist (e.g., clique cuts)

Backtrack search with Cutting Plane learning

- DPLL-like algorithms for PBO can perform cutting plane learning instead of clause learning
- Replace clause resolution with cutting planes in implication graph analysis
- Important note: It is not guaranteed that the new constraint will be assertive

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Cutting Planes

Backtrack search with Cutting Plane learning

Consider the following constraints:

 $c_1: 3x_1+x_2+x_7-2x_8 \le 3$

 $c_2: -3x_1+x_3+2x_7+x_9 \le 0$

< -1 - 1 $c_3: -x_2-x_3+x_6$

- Suppose you start with assignment $x_8 = 0$ at first decision level
- Next, you decide to assign $x_6 = 1$. What happens?
- Constraint propagation on c_3 sets $x_2 = 1, x_3 = 1$
- Constraint propagation on c_2 sets $x_1 = 1$
- Constraint c₁ is violated

Backtrack search with Cutting Plane learning

$$\begin{array}{lll} c_1: & 3x_1 + x_2 + x_7 - 2x_8 & \leq 3 \\ c_2: & -3x_1 + x_3 + 2x_7 + x_9 & \leq 0 \\ c_3: & -x_2 - x_3 + x_6 & \leq -1 \end{array}$$

- Conflict in constraint c_1
- Start backward traversal of graph

Cutting plane between c_1 and c_2 to remove x_1

$$\begin{array}{ll}
1(3x_1 + x_2 + x_7 - 2x_8 & \leq 3) \\
1(-3x_1 + x_3 + 2x_7 + x_9 & \leq 0) \\
\hline
x_2 + x_3 + 3x_7 - 2x_8 + x_9 \leq 3
\end{array}$$

Cutting plane with c_3 to remove x_3

$$\frac{1(x_2 + x_3 + 3x_7 - 2x_8 + x_9 \leq 3)}{1(-x_2 + -x_3 + x_6 \leq -1)}$$
$$\frac{x_6 + 3x_7 - 2x_8 + x_9 \leq 2}{ }$$

- Backward traversal to the decision variable x₆
- Learned constraint:

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Extensions

 $x_6 + 3x_7 - 2x_8 + x_9 \le 2$

17 / 17

• Backtrack to level 1 and assert $x_7 = 0$