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Motivation

Facility Location Problem

Suppose that a company has to decide where to install new factories from n potential
locations in order to be able to serve m clients.

Let ci denote the cost for opening a factory at location i and let dij denote the cost of serving
client j from location i .

Provide a formulation that helps the administration to decide where to open the factories such
that the overall costs (factory open and serving clients) are minimized.
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Motivation

Facility Location Problem

Problem variables

▶ xi : denotes if a factory is to be open at location i
▶ yij : denotes if client j is served from location i

Minimize
n∑

i=1

cixi +
n∑

i=1

m∑
j=1

dijyij

Subject to
n∑

i=1

yij = 1 ∀j ∈ {1 . . .m}

xi − yij ≥ 0 ∀i ∈ {1 . . . n}, j ∈ {1 . . .m}
xi ∈ {0, 1}, yij ∈ {0, 1}
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Pseudo-Boolean Optimization (PBO)

Formulation

Minimize
n∑

j=1
cjxj

Subject to
n∑

j=1
aijxj {≥,=,≤} bi

xj ∈ {0, 1} ∀j ∈ {1, 2, . . . , n}

0-1 Integer Linear Programming (0-1 ILP)
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Pseudo-Boolean Optimization (PBO)

If we identify {false, true} to {0, 1}, a clause (x ∨ y ∨ z) is equivalent to x + y + z ≥ 1

▶ (x ∨ ȳ ∨ z) is x + (1− y) + z ≥ 1

Not quite Integer Programming because the domain is Boolean

▶ Particular case
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Pseudo-Boolean Optimization (PBO)

Algorithmic Solutions

Integer Programming solvers are very powerful

▶ We are not going to discuss Integer Programming

When there is a linear objective, MaxSAT can be a good approach (we will see MaxSAT)

In some case, a CDCL-like algorithm can be better than IP

▶ Replace clauses by cutting planes
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Cutting Planes

Combination of two constraints

δ(
n∑

j=1
ajxj ≤ b)

δ
′
(

n∑
j=1

a
′
jxj ≤ b

′
)

δ
n∑

j=1
ajxj + δ′

n∑
j=1

a
′
jxj ≤ δb + δ′b′
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Cutting Planes

Rounding can also be applied

n∑
j=1

ajxj ≤ b

n∑
j=1

⌊aj⌋xj ≤ ⌊b⌋

The correctness of the rounding operation follows from ⌊x⌋+ ⌊y⌋ ≤ ⌊x + y⌋
Hence, δ coefficients in cutting plane operations do not need to be integer. Rounding can be safely applied
afterwards
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Cutting Planes

Rounding Example

0.5(3x1 + 2x2 + x3 + 2x4 + x5 ≤ 5)

1.5x1 + x2 + 0.5x3 + x4 + 0.5x5 ≤ 2.5

After rounding: x1 + x2 + x4 ≤ 2
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Cutting Planes

Cutting Planes generalize (p-simulate) CNF clause resolution

Example

(x̄1 ∨ x2 ∨ x3)
(x2 ∨ x4 ∨ x̄3)

x̄1 ∨ x2 ∨ x4

(1− x1) + x2 + x3 ≥ 1
x2 + x4 + (1− x3) ≥ 1

(1− x1) ≥ 0
x4 ≥ 0

2(1− x1) + 2x2 + 2x4 ≥ 1 addition

(1− x1) + x2 + x4 ≥ 1 division
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Cutting Planes as a Proof System

Cutting planes is a stronger proof system than resolution
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Cutting Planes

Use of Cutting Planes

Used in branch and bound algorithms for PBO

▶ And in the more general case of Integer Linear Programming (ILP)

Very common at preprocessing (i.e., at the root node of the search tree)

Algorithms that use cutting plane techniques during the search process are also known as branch and cut
algorithms

Other types of cutting planes exist (e.g., clique cuts)
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Cutting Planes

Backtrack search with Cutting Plane learning

DPLL-like algorithms for PBO can perform cutting plane learning instead of clause learning

Replace clause resolution with cutting planes in implication graph analysis

Important note: It is not guaranteed that the new constraint will be assertive
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Cutting Planes

Backtrack search with Cutting Plane learning

Consider the following constraints:

c1 : 3x1 + x2 + x7−2x8 ≤ 3
c2 : −3x1 + x3 + 2x7 + x9 ≤ 0
c3 : −x2 − x3+x6 ≤ −1− 1

Suppose you start with assignment x8 = 0 at first decision level

Next, you decide to assign x6 = 1. What happens?

Constraint propagation on c3 sets x2 = 1, x3 = 1

Constraint propagation on c2 sets x1 = 1

Constraint c1 is violated
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Backtrack search with Cutting Plane learning

c1 : 3x1 + x2 + x7 − 2x8 ≤ 3
c2 : −3x1 + x3 + 2x7 + x9 ≤ 0
c3 : −x2 − x3 + x6 ≤ −1

x8 = 0@1

x6 = 1@2 x2 = 1@2

x3 = 1@2 x1 = 1@2

Conflict

c3

c3

c2

c1

c1

c1

Conflict in constraint c1

Start backward traversal of graph

Cutting plane between c1 and c2 to remove
x1

1(3x1 + x2 + x7 − 2x8 ≤ 3)
1(−3x1 + x3 + 2x7 + x9 ≤ 0)

x2 + x3 + 3x7 − 2x8 + x9 ≤ 3

Cutting plane with c3 to remove x3

1(x2 + x3 + 3x7 − 2x8 + x9 ≤ 3)
1(−x2 +−x3 + x6 ≤ −1)

x6 + 3x7 − 2x8 + x9 ≤ 2

Backward traversal to the decision
variable x6

Learned constraint:
x6 + 3x7 − 2x8 + x9 ≤ 2

Backtrack to level 1 and assert x7 = 0
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