Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

Outline

1. The Complexity of SAT
2. The Tractability of SAT Fragments
1. **The Complexity of SAT**
 - P and NP
 - Cook-Levin Theorem

2. **The Tractability of SAT Fragments**
 - Tractable Fragments

Cook-Levin Theorem

SAT is NP-complete

- SAT is “at least as hard” as any problem in NP
 - If there exists a polynomial algorithm for SAT then there exists one for every problem in NP
 - If SAT ∈ P then NP = P
Recall:

P
Set of problems that are solved by a polynomial *Turing Machine* (running in $O(n^c)$ time for a constant c)

NP
Set of problems that are solved by a polynomial *Non-determinist* Turing Machine (running in $O(n^c)$ time for a constant c)

NP-hardness

NP-hard problem
A problem Q is NP-hard if it is “at least as hard as the hardest problem in NP”: if Q can be solved in $O(T)$ time then any problem in NP can be solved in $O(Tn^c)$ time for some constant c.

- If an NP-hard problem can be solved in polynomial time, then $P = NP$

NP-complete problem
A problem Q is NP-complete if it is NP-hard and is in NP
Turing Machines

- An infinite tape, where we can read/write the symbols 0 and 1 and a head

- A “program”
 - A finite set of states with an initial state \(q_0 \) and a final state \(q_f \).
 - A transition table associating a triplet \(\langle \text{state, symbol, \{←, →\} } \rangle \) to every pair \(\langle \text{state, symbol} \rangle \)

- Meaning: “if reading symbol \(x \) in state \(q \) then write \(x' \), change to state \(q' \) and move right/left”

Turing Machines, example

<table>
<thead>
<tr>
<th>état</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_f, 0, *)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_2, 0, \to)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3, 1, \leftarrow)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_4, 0, \leftarrow)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(q_0, 1, \to)</td>
</tr>
</tbody>
</table>
Non-determinist Turing Machines

- A non-determinist Turing Machine can have several transitions in the same configuration
- We assume that it makes the right choice (or explore all possible choices in parallel)
- It is sufficient to have up two transitions for any one configuration

<table>
<thead>
<tr>
<th>état</th>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>$q_f, 0, *$</td>
<td>$q_1, 0, \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td>$q_2, 0, \rightarrow$ ou $q_4, 1, \leftarrow$</td>
<td>$q_1, 1, \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td>$q_3, 1, \leftarrow$</td>
<td>$q_2, 1, \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td>$q_4, 0, \leftarrow$</td>
<td>$q_3, 1, \leftarrow$</td>
<td></td>
</tr>
<tr>
<td>q_4</td>
<td>$q_0, 1, \rightarrow$</td>
<td>$q_4, 1, \leftarrow$</td>
<td></td>
</tr>
</tbody>
</table>

The Complexity of SAT

Proof of the Cook-Levin theorem (1)

- Consider a problem Q and a Turing machine that solves it in polynomial time: $O(n^c)$
- This machine executes $O(n^c)$ instructions and therefore requires a tape of length $O(n^c)$
- We build the propositional logic formula with the following variables:
 - A variable $R_{i,t}$ for every cell i of the tape, every symbol k and every time step t: true iff the symbol written on cell i at time t is k ($O(1)$ symbols, hence $O(n^c)$ variables)
 - A variable $L_{i,t}$ for every cell i of the tape and every time step t: true iff the head is at position i at time t ($O(n^c)$ variables)
 - A variable $Q_{j,t}$ for every state q_j of the program and every time step t: true iff the machine is in state q_j at time t ($O(1)$ states, hence $O(n^c)$ variables)
- For a transition $(q_2, 0) \rightarrow (q_3, 1, \leftarrow)$, we add the following clauses, for all i and all t:
 - $Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow Q_{3,t+1}$
 - $Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow L_{i-1,t+1}$
 - $Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow R_{i,1,t+1}$
- $O(n^c)$ other clauses
Proof of the Cook-Levin theorem (2)

- Consider a problem \(Q \in \mathbf{P} \)
- \(Q \) admits a Turing machine that runs in \(O(|x|^c) \) time
- For any input \(x \), there exists a Horn Formula \(\phi(Q, x) \) such that:
 - \(\phi(Q, x) \) is satisfiable if and only if \(Q(x) = \text{true} \)
 - \(|\phi(Q, x)| \in O(|x|^c) \)
- An algorithm for Horn-SAT can solve any problem in \(\mathbf{P} \) in polynomial time
 - Not so useful in itself (though Horn-SAT is \(\mathbf{P} \)-complete for log space reductions)

Proof of the Cook-Levin theorem (3)

- Can we come up with a similar encoding for non-deterministic machines?
- There are \(O(1) \) non-deterministic transitions (in the program)
- We add a variable \(X_{i,t} \) for every non-deterministic transition \(i \) and for every time \(t \)
- The transition clauses become:
 - \(X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow Q_{3,t+1} \)
 - \(X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow L_{i-1,t+1} \)
 - \(X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow R_{i,1,t+1} \)
 - \(\neg X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow Q_{3,t+1} \)
 - \(\neg X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow L_{i-1,t+1} \)
 - \(\neg X_{i,t} \land Q_{2,t} \land L_{i,t} \land R_{i,0,t} \Rightarrow R_{i,1,t+1} \)
- They are not Horn anymore
 - Otherwise we would have shown \(\mathbf{P} = \mathbf{NP}! \)
Proof of the Cook-Levin theorem (conclusion)

Preuve

Consider a problem \(Q \in P \)

\(Q \) admits a non-determinist Turing machine that runs in \(O(|x|^{c_1}) \) time

For any input \(x \) there exists a Boolean formula \(\phi(Q, x) \) such that:

\[\phi(Q, x) \text{ is satisfiable if and only if } x \in \text{true}(Q) \text{ et } |\phi(Q, x)| \in O(|x|^{c_2}) \]

All problems in \(NP \) reduce to \(SAT \)

- If \(SAT \) is in \(P \), then all problems in \(NP \) can be solved in polynomial time and therefore \(P = NP \)
- If \(SAT \) is not in \(P \), then \(P \neq NP \)

Si \(SAT \in P \) alors on peut trouver une interprétation de \(\phi(Q, x) \) en temps polynomial, et donc résoudre \(Q \) en temps polynomial, quel que soit \(Q \in NP \)

Donc \(SAT \in P \) implique \(P = NP \)!
SAT is NP-complete (Cook’s theorem)

3-SAT is hard: Exercise
 - Encoding:
 \[(p_1 \lor p_2 \lor x) \land (\neg x \lor p_3 \lor \ldots \lor p_k) \iff (p_1 \lor p_2 \lor \ldots \lor p_k)\]

2-SAT is easy (Resolution)

Horn-SAT is easy (Unit propagation)

Intermediate Problems

Ladner’s Theorem
If P = NP, then there are problems in NP that are neither in P nor NP-complete.

For instance GraphIsomorphism may be such problem; or Factorisation

What about fragments of SAT?
 - We know some are easy (2-SAT, Horn-SAT), are there others?
 - How do we know which ones are hard and which ones are easy?
 - Are there some in the intermediate class?
Constraint Satisfaction Problem (CSP)

Data: a triplet \((X, D, C)\) where:
- \(X\) is a ordered set of variables
- \(D\) is a domain
- \(C\) is a set of constraints, where for \(c \in C\):
 - its scope \(S(c)\) is a list of variables
 - its relation \(R(c)\) is a subset of \(D^{\mid S(c)\mid}\)

Question: does there exist a solution \(\sigma \in D^{\mid X\mid}\) such that for every \(c \in C\), \(\sigma(S(c)) \in R(c)\)?

Projection

The projection \(\sigma(X)\) of a tuple \(\sigma\) on a set of variables \(X = (x_{i_1}, \ldots, x_{i_k}) \subseteq X\) as the tuple \((\sigma(x_{i_1}), \ldots, \sigma(x_{i_k}))\)

- Example: the constraint \(x + y = z\) (on the Boolean ring)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(S(x + y = z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CNF and Generalized Relations

- A relation \(R(c)\) over some variables can easily be expressed in clausal form
- Each clause excludes exactly one tuple, example: \(x + y + z \neq 2\)

<table>
<thead>
<tr>
<th>(x + y + z \neq 2)</th>
<th>(x + y + z = 2)</th>
<th>(\iff)</th>
<th>CNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) (y) (z)</td>
<td>(x) (y) (z)</td>
<td>(\iff)</td>
<td>(\land)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- A clause is a particular case of relation on the Boolean domain
We can define fragments of CSP via restrictions on the **domain**, the **structure** or on the **language**

- **Domain**: Boolean CSPs: $D = \{0, 1\}$, Three-valued CSPs, CSP on \mathbb{Z}, etc.
- **Structure**: e.g., the incidence graph (bipartite graph variables / constraints) is a *tree* or has a bounded *treewidth*
- **Language**: the library of relations is restricted to a given set Γ

Language fragment

CSP(Γ) is the problem of deciding the satisfiability of a CSP whose constraints all have relations in Γ.

- For instance, Three-valued CSP($\{\neq\}$) is NP-hard since 3-Coloration is NP-hard

Definability

pp-definability

A relation R over x_1, \ldots, x_k on domain D is *(pp-)definable* from a set of relation Γ if and only if there exists a CSP $\mathcal{N} = (\mathcal{X}, D, \mathcal{C})$ such that:

- $\{x_1, \ldots, x_k\} \subseteq \mathcal{X}$
- $c \in \mathcal{C} \implies R(c) \in \Gamma \cup \{=\}$
- $R(x_1, \ldots, x_k) \iff (x_1, \ldots, x_k)$ can be extended to a solution of \mathcal{N}

- i.e., the relation R can be encoded using relations in Γ

 - $<$ is definable from $\{\leq, \neq\}$
 - A k-clause ($p_1 \lor \ldots \lor p_k$) is definable from 3-clauses
 - All k-ary relations are definable from k-clauses
Closure

$\ll \Gamma \gg$ is the set of relations that are definable from Γ

- $\text{CSP}(\Gamma)$ and $\text{CSP}(\ll \Gamma \gg)$ have the same complexity
- Boolean CSPs whose incidence graph is such that constraints vertices have degree 2 (constraints are on at most 2 variables) is in \mathbf{P}
 - Any binary relation is definable by binary clauses
 - If Γ is the languages composed of 2-clauses, $\{(x \lor y), (\bar{x} \lor y), (\bar{x} \lor \bar{y})\}$, then:
 - $\text{CSP}(\Gamma)$ is 2-\text{-SAT}
 - $\text{CSP}(\ll \Gamma \gg)$ is “Boolean binary CSP”

Schaefer’s Dichotomy Theorem

Boolean CSP($\ll \Gamma \gg$) is in \mathbf{P} if:
- Γ are 2-clauses
- Γ are Horn-clauses
- Γ are dual Horn-clauses
- $\Gamma = \{\oplus\}$ (i.e., XOR. Also known as “Affine-SAT”)
- Every relation in Γ accepts the tuple with only 0
- Every relation in Γ accepts the tuple with only 1
and is NP-hard otherwise

- Dichotomy: we know the complexity of all the language-based fragments of SAT, and none of them is an intermediate problem