

Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

Outline

1 Applications of SAT

- **1** Applications of SAT
 - Encoding a Problem into SAT
 - CSP Encoding
 - Analyzing Encodings
 - Encoding Global Constraints

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

CNF Encodings

- CNF-SAT is NP-complete, and therefore as powerful as general SAT as a language
- Most research has focused on algorithms for CNF-SAT
- However, if polynomial encodings necessarily exist, they are not always easy to find
- Not all encodings are equal
 - ► What is a *good* encoding ?
 - ► How to design a *good* encoding

• From SAT to CNF-SAT via the rules of Boolean algebra:

$$(a \Longrightarrow (c \land d)) \lor (b \Longrightarrow (c \land e))$$

Decompose the implications

$$(a \Longrightarrow c) \land (a \Longrightarrow d)) \lor ((b \Longrightarrow c) \land (b \Longrightarrow e))$$

• Rearrange disjunctions and conjunctions (conjunctions and disjunctions are distributive)

$$((a \Longrightarrow c) \lor (b \Longrightarrow c)) \land ((a \Longrightarrow c) \lor (b \Longrightarrow e)) \land ((a \Longrightarrow d) \lor (b \Longrightarrow c)) \land ((a \Longrightarrow d) \lor (b \Longrightarrow e))$$

Rewrite implications as disjunctions

$$(\bar{a} \lor c \lor \bar{b}) \land (\bar{a} \lor c \lor \bar{b} \lor e) \land (\bar{a} \lor d \lor \bar{b} \lor c) \land (\bar{a} \lor d \lor \bar{b} \lor e)$$

Remove subsumed clauses

$$(\bar{a} \lor c \lor \bar{b}) \land (\bar{a} \lor d \lor \bar{b} \lor e)$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

From SAT to CNF-SAT

Distributing is not efficient:

$$(x_1^1 \wedge x_2^1 \wedge \ldots \wedge x_k^1) \vee (x_1^2 \wedge x_2^2 \wedge \ldots \wedge x_k^2) \vee \ldots \vee (x_1^n \wedge x_2^n \wedge \ldots \wedge x_k^n)$$

- Up to k^n clauses of size up to n
- Tseitin's encoding is polynomial in every case. Idea?
- Add extra variables

- Rewrite implications as disjunctions
- For every nested conjunction $(a \wedge \bar{b} \wedge c)$, introduce a fresh variable f and the clauses $(a \wedge \bar{b} \wedge c) \iff f$:

$$(a \wedge \overline{b} \wedge c) \implies f : (\overline{a} \vee b \vee \overline{c} \vee f)$$

$$f \implies (a \wedge \bar{b} \wedge c) : \begin{cases} \bar{f} \vee a \\ \bar{f} \vee \bar{b} \\ \bar{f} \vee c \end{cases}$$

- $\bullet \ \, \text{For instance for } (a \implies (c \land d)) \lor (b \implies (c \land e)) = (\bar{a} \lor (c \land d)) \lor (\bar{b} \lor (c \land e)) :$
- $\bullet \begin{array}{l} (\bar{c} \vee \bar{d} \vee f_1) \wedge (\bar{f}_1 \vee c) \wedge (\bar{f}_1 \vee d) \wedge \\ (\bar{c} \vee \bar{e} \vee f_2) \wedge (\bar{f}_2 \vee c) \wedge (\bar{f}_2 \vee e) \wedge \\ (\bar{a} \vee f_1) \wedge (\bar{b} \vee f_2) \end{array}$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Applications of SAT

7 / 21

Playing Sudoku

	2		1	7	8		3	
	4		3		2		9	
1								6
		8	6		3	5		
3								4
		6	7		9	2		
9								2
	8		9		1		6 5	
	1		4	3	6		5	

• Fill empty cells such that each row, each colum and each 3x3 grid contains all of the digits 1 to 9.

- Modeling the problem with integer variables:
 - ▶ Rows: i = 1, ..., 9
 - ► Columns: j = 1, ..., 9
 - ▶ Variables: $v_{i,j} \in \{1, 2, ..., 9\}, i, j \in \{1, ..., 9\}$

Constraints:

- ► Each value used exactly once in each row:
 - \bigstar For $i \in \{1, \ldots, 9\}$, for $j < k \in \{1, \ldots, 9\}$: $v_{i,j} \neq v_{i,k}$
 - Each value used exactly once in each column:
 - ★ For $j \in \{1, ..., 9\}$, for $i < k \in \{1, ..., 9\}$: $v_{i,j} \neq v_{k,j}$
 - Each value used exactly once in each 3×3 sub-grid:
 - ★ For $i, j, k, l \in \{1, 9\}$, if $(k \neq i \text{ OR } l \neq j)$ AND $\lceil \frac{i}{3} \rceil = \lceil \frac{k}{3} \rceil$ AND $\lceil \frac{i}{3} \rceil = \lceil \frac{l}{3} \rceil$: $v_{i,j} \neq v_{k,l}$
- ► Each clue corresponds to a variable assignment:

$$\begin{array}{l} v_{1,4}=1, v_{1,6}=5, v_{1,8}=6, v_{1,9}=8, v_{2,7}=7, v_{2,9}=1 \\ v_{3,1}=9, v_{3,3}=1, v_{3,8}=3, v_{4,3}=7, v_{4,5}=2, v_{4,6}=6, \dots \end{array}$$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Constraint Satisfaction Problems

Constraint Satisfaction Problem (CSP)

Data: a triplet $\mathcal{X}, \mathcal{D}, \mathcal{C}$ where:

- \mathcal{X} is a ordered set of *variables*
- \bullet \mathcal{D} is a domain
- C is a set of *constraints*, where for $c \in C$:
 - ightharpoonup its scope S(c) is a list of variables
 - its relation R(c) is a subset of $\mathcal{D}^{|S(c)|}$

Question: does there exist a solution $\sigma \in \mathcal{D}^{|\mathcal{X}|}$ such that for every $c \in \mathcal{C}$, $\sigma(S(c)) \in R(c)$?

Projection

The projection $\sigma(X)$ of a tuple σ on a set of variables $X = (x_{i_1}, \dots, x_{i_k}) \subseteq \mathcal{X}$ as the tuple $(\sigma(x_{i_1}), \ldots, \sigma(x_{i_k}))$

• Example: the constraint x + y = z (on the Boolean ring)

$$egin{array}{c|cccc} x & y & z & S(x+y=z) \\ \hline 0 & 0 & 0 & \\ 0 & 1 & 1 & \\ 1 & 0 & 1 & \\ 1 & 1 & 0 & \\ \hline \end{array}$$

Sudoku

•
$$\mathcal{X} = (v_{1,1}, \dots, v_{9,9})$$

•
$$\mathcal{D} = \{1, \dots, 9\}$$

 \bullet C: inequalities on rows, columns and subsquares; clues

X	У	$S(x \neq y)$
1	2	
1	3	
:	:	
1	9	
2	1	$R(x \neq y)$
2	3	, , ,
:	:	
2	9	
:	:	
9	8	

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Encoding Integer Domains

- Variable x with domain $\{0, \ldots, n-1\}$:
 - ▶ Log encoding: Boolean variables $x_0, \ldots, x_{\lfloor \log n \rfloor}$ stands for $x = \sum_{j=0}^{\lfloor \log n \rfloor} 2^j$
 - ▶ Direct encoding: Boolean variable x_i stands for variable x takes value j
- Direct encoding requires *consistency clauses* because it is not a bijection:
 - ▶ $\sum_{j=1}^{n} x_j \ge 1$: encode with $(x_1 \lor x_2 \lor ... \lor x_n)$
 - $ightharpoonup \sum_{j=1}^{n} x_j \le 1$ encode with: Pairwise encoding or Sequential counters

- Encode $\sum_{j=1}^{n} x_j \le 1$ with pairwise incompatibilities:
 - \triangleright x = i implies $x \neq j$

$$\bigwedge_{1 \leq i < j \leq n} (\bar{x}_i \vee \bar{x}_j)$$

- \triangleright $\mathcal{O}(n^2)$ binary clauses
- ► Encoding relations is easy and efficient:

• Unit propagation of x = 3

j	1	2	3	4	5	6	7	8	9
$x_j(x=j)$	0	0	1	0	0	0	0	0	0

• One clause to forbid every non-tuple in the relation R(c), e.g. for $x \neq y$:

X	У	conflict clauses
1	1	$ \bar{x_1} \vee \bar{y_1} $
2	2	$\bar{x_2} \vee \bar{y_2}$
3	3	$\bar{x_3} \vee \bar{y_3}$
4	4	$\bar{x_4} \vee \bar{y_4}$
5	5	$\bar{x_5} \vee \bar{y_5}$
6	6	$\bar{x_6} \vee \bar{y_6}$
:	:	÷

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Sequential Counter Encoding

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with sequential counter
- Introduce Boolean variables s_1, \ldots, s_{n-1} with s_i standing for $x \leq i$
 - \triangleright x = i implies $x \le i$
 - \triangleright x = i implies x > i 1
 - ▶ $x \le i 1$ implies $x \le i$

$$\bigwedge_{1 < i < n} \left(\left(\neg x_i \lor s_i \right) \land \left(\neg x_i \lor \neg s_{i-1} \right) \right) \land \left(\neg s_{i-1} \lor s_i \right) \right) \\ \land \left(\neg x_1 \lor s_1 \right) \land \left(\neg x_n \lor \neg s_{n-1} \right)$$

 $ightharpoonup \mathcal{O}(n)$ binary clauses ; $\mathcal{O}(n)$ auxiliary variables

• Unit propagation of x = 3

j	1	2	3	4	5	6	7	8	9
$x_j(x=j)$	0	0	1	0	0	0	0	0	0
$x_j(x=j)$ $s_j(x \leq j)$	0	0	1	1	1	1	1	1	1

• Unit propagation of $3 \le x \le 6$

j	1	2	3	4	5	6	7	8	9
$x_j(x=j)$	0	0					0	0	0
$x_j(x=j)$ $s_j(x \leq j)$	0	0				1	1	1	1

	Х			у		conflict clauses		
<i>X</i> ₂ ²	<i>X</i> ₂ 1	<i>X</i> ₂ 0	y_{2^2}	y_{2^1}	y_{2^0}			
0	0	0	0	0	0	$ x_{2^2} \lor x_{2^1} \lor x_{2^0} \lor y_{2^2} \lor y_{2^1} \lor y_{2^0} $		
0	0	1	0	0	1	$ \begin{vmatrix} x_{22} \lor x_{21} \lor x_{20} \lor y_{22} \lor y_{21} \lor y_{20} \\ x_{22} \lor x_{21} \lor x_{20} \lor y_{22} \lor y_{21} \lor y_{20} \end{vmatrix} $		

- Assume x = 1, that is : $x_{2^2} = 0$, $x_{2^1} = 0$ and $x_{2^0} = 1$
- The clause $(x_{2^2} \lor x_{2^1} \lor x_{2^0} \lor y_{2^2} \lor y_{2^1} \lor y_{2^0})$ does not unit propagate!
- Unit propagation is weaker on the log encoding
- Notion of Arc Consistency

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Arc Consistency

- Let \mathcal{X} be a set of variables and \mathcal{D} be a domain:
 - ▶ $\mathcal{D}(x)$ is the set of possible values for variable $x \in \mathcal{X}$

Arc Consistency

A constraint c is Arc Consistent on domain \mathcal{D} if and only if for every $x \in S(c)$ and for every $j \in \mathcal{D}(x)$, there exists a tuple $\sigma \in R(c)$ such that $\sigma(x) = j$.

- Achieving Arc Consistency on domain \mathcal{D} with respect to constraint c corresponds to reducing $\mathcal D$ to the maximum $\mathcal{D}' \subseteq \mathcal{D}$ such that \mathcal{D}' is arc consistent
 - ▶ If \mathcal{D}' is empty there is no solution satisfying relation con domain $\mathcal D$

2 3	3 4
3	4
4	5
5	6
6	7
3	5
4	6
5	7
4	7
	6 3 4

$$R(c)(\cdot) \mid \{1,2,3\} \quad \{2,3,4,5,6\} \quad \{3,4,5,6,7\}$$

 $\mathcal{D}(\cdot) \mid \{1,2,3,4,5\} \quad \{1,2,5,6,7\} \quad \{1,2,3,4,5,6\}$

- The size of the encoding is an important feature
 - ▶ Sequential counters are more concise than pairwise incompatibilities
- We have seen that unit propagation might not be the same on two logically equivalent encodings
 - ▶ Log vs. direct encoding of the constraint $x \neq y$
- ullet We can ask whether a Boolean encoding of a constraint c achieves arc consistency on domain ${\mathcal D}$
 - ▶ Defined in the same way using the natural isomorphism between domain encodings

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Applications of SAT

17 / 31

Encodings of the "Less than" Constraint

Negative encoding

one clause for every non-tuple in R(c)

<i>x</i> ≠	у	$(ar{x_1}eear{y_1})$
1	2	$(\bar{x_2} \vee \bar{y_1})$
1	3	$(ar{x_2}eear{y_2})$
1	4	$(ar{x_3}eear{y_1})$
2	3	$(ar{x_3}eear{y_2})$
2	4	$(\bar{x_3} \vee \bar{y_3})$
3	4	$(ar{z_4}eear{y_1})$
		$(ar{x_4}eear{y_2})$
		$(ar{x_4}eear{y_3})$
		$(\bar{x_4} \lor \bar{y_4})$

Suport encoding

one clause for every value, encoding its support values in R(c)

$$\begin{array}{c} (\bar{y_1}) \\ (\bar{y_2} \vee x_1) \\ (\bar{y_3} \vee x_2 \vee x_1) \\ (\bar{y_4} \vee x_3 \vee x_2 \vee x_1) \\ (\bar{x_1} \vee y_2 \vee y_3 \vee y_4) \\ (\bar{x_2} \vee y_3 \vee y_4) \\ (\bar{x_3} \vee y_4) \\ (\bar{x_4}) \end{array}$$

- The support encoding unit propagates $\bar{y_1}$ and $\bar{x_4}$, whereas the negative encoding does not
- Suppose that we know $x \neq 1$ ($\bar{x_1}$ is a new true literal)
- Unit propagation on the support encoding achieves arc consistency

Tseitin Encoding of Table Constraints

- Support encoding is only defined for binary relations
- For dense relations, negative encoding is efficient.
 - For instance the constraint $x \neq y$ contains $\frac{n-1}{n}$ tuples, and the negative encoding achieves arc consistency
- Alternative to negative encoding for sparse constraints ?

Tseitin encoding

one extra variable and $1+|\sigma|$ clauses for every tuple $\sigma\in R(c)$

X 7	<u>≠ y</u>	$(\bar{x_1} \lor \bar{y_2} \lor z_{1,2}) \land (\bar{z_{1,2}} \lor z_{1,3} \iff (x_1 \land y_3)$	$(z_1) \wedge (z_{1,2} \vee y_2)$
1	2	$z_{1,4} \iff (x_1 \land y_4)$	
1	3	$z_{2,3} \iff (x_2 \wedge y_3)$	
1	4	$z_{2,4} \iff (x_2 \wedge y_4)$	
2	3	$z_{3,4} \iff (x_3 \wedge y_4)$	
2	4	$(z_{1,2} \lor z_{1,3} \lor z_{1,4} \lor z_{2,3} \lor$	$(z_{2,4} \lor z_{3,4})$
3	4	$(\bar{x_1} \vee z_{1,2} \vee z_{1,3} \vee z_{1,4})$	$(\bar{y_1})$
		$(\bar{x_2} \vee z_{2,3} \vee z_{2,4})$	$(\bar{y_2} \vee z_{1,2})$
		$(\bar{x_3} \vee z_{3,4})$	$(\bar{y_3} \vee z_{1,3} \vee z_{2,3})$
S	and the same of the same	$(\bar{x_4})$ Applications of SAT	$(\bar{y_4} \vee z_{1,4} \vee z_{2,4} \vee z_{3,4})$

_AAS-CNRS Laboratoire d'analyse et d'architecte

Tseitin's Encoding of Table Constraints

- Consider a constraint c of arity |S(c)| := a
- Let $S = \prod_{x \in S(c)} \mathcal{D}(x)$ be the set of valid tuples (allowed by the domain \mathcal{D}) with |S| := s
- Let $R(c) \cap S$ be the set of consistent tuples (valid and allowed by the constraint) with $|R(c) \cap S| := t$
- The negative encoding requires $\Theta(a(s-t))$ space
- Tseitin's encoding requires $\Theta(at)$ space

Tseitin encoding and Arc Consistency

Unit propagation on Tseitin's encoding is an *optimal* algorithm to achieve Arc Consistency on a table constraint.

- Tseitin's encoding takes linear space
- Unit propagation takes linear time
- There is no sublinear algorithm to achieve arc consistency

LAS

Upgrading a Linux Distribution

- Let $U = \{p_1, \dots, p_n\}$ be all versions of all linux packages
- Let $C \subseteq U^2$ be a set of *conflicts* (packages pairwise incompatible)
- For every package $p_i \in U$, we have:
 - \blacktriangleright a set D_i of dependencies with $d \in D_i$ a set of packages such at least one of them is required for package p
- An installation profile $P \subseteq U$ is valid iff, for every $p_i \in P$:
 - $C_i \cap P = \emptyset$ (there is no incompatibilities)
 - ▶ For each $d \in D_i$, $d \cap P \neq \emptyset$ (the dependencies are satisfied)
- An installation profile $P \subseteq U$ is non-regressive with respect to profile P^o iff for each $p_i \in P^o$, $V_i \cap P \neq \emptyset$

Upgradeability problem

Given a current installation profile P^o and a package p, does there exist two sets of packages P^+ and P^- such that $P \cup P^+ \setminus P^-$ is a valid non-regressive installation profile and contains p

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Encoding

- A variable p_i for every $p_i \in U$: whether package p_i should be in the installation profile
- Constraints

Compatibilities: $\bar{p_i} \vee \bar{p_i}$

 $\forall p_i \in U, \ \forall (p_i, p_i) \in C$

Dependencies: $\bar{p_i} \vee \bigvee_{p_i \in d} p_j$

 $\forall p_i \in d, \ \forall d \in D_i$

▶ Non-regression: $p_i \lor \bigvee_{p_i \in V_i} p_j$

 $\forall p_i \in P^o$

- Minimize the number of changes
- Introduce new variables to encode the delta

$p_i^{\Delta}\iff \bar{p}_i:$	$p_i^\Delta ee p_i \wedge ar{p_i^\Delta} ee ar{p}_i$	$\forall p_i \in P^o$
$p_i^{\Delta} \iff p_i$:	$p_i^\Delta ee ar{p_i} \wedge ar{p_i^\Delta} ee p_i$	$\forall p_i \not\in P^o$

- Optimization is usually done by successive constraints
 - ▶ Top-down: $\sum_{i=1}^{n} p_i < ub_0$; $\sum_{i=1}^{n} p_i < ub_1$; ...; $\sum_{i=1}^{n} p_i < ub_k$ (with ub_i a feasible number of packages)
 - ▶ Bottom-up: $\sum_{i=1}^{n} p_i > lb_0$; $\sum_{i=1}^{n} p_i > lb_1$; ...; $\sum_{i=1}^{n} p_i > lb_k$ (with ub_i a infeasible number of packages)
 - ► Binary search
- How to encode a cardinality constraint?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Applications of SAT

23 / 3

Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?
 - ▶ General form: $\sum_{j=1}^{n} x_j \bowtie k$, with $\bowtie \in \{<, \leq, =, \geq, >\}$
 - ▶ Special case when $k = 1 \sum_{j=1}^{n} x_j \le 1$
 - ★ AtMost1 constraints was the subject of the previous class
- Solution #1:
 - ▶ Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
 - Difficult to keep up with advances in SAT technology
 - ► For SAT/UNSAT, best solvers already encode to CNF
 - ★ E.g. Minisat+, Open-WBO, QMaxSat, MSUnCore, WPM2, etc.
- Solution #2:
 - ► Encode cardinality constraints to CNF
 - ► Use SAT solver

General Cardinality Constraints

- General form: $\sum_{j=1}^{n} x_j \le k$ (or $\sum_{j=1}^{n} x_j \ge k$)
 - Sequential counters [S05]
 - ★ Clauses/Variables: $\mathcal{O}(n k)$
 - ► BDDs [ES06]
 - ★ Clauses/Variables: $\mathcal{O}(n \, k)$
 - Sorting networks [ES06]
 - ★ Clauses/Variables: $\mathcal{O}(n \log^2 n)$
 - Cardinality Networks: [ANORC09,ANORC11a]
 - ★ Clauses/Variables: $\mathcal{O}(n \log^2 k)$
 - ▶ Totalizer [BB03]
 - ★ Clauses: $\mathcal{O}(nk)$, Variables: $\mathcal{O}(n \log k)$
 - ► Pairwise Cardinality Networks [CZI10]

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

25 / 31

Sequential Counter Encoding

Assume the general form: $\sum_{i=1}^{n} x_i \leq k$

- For each variable x_i , create k additional variables $s_{i,j}$ that are used as counters.
 - $s_{i,j}=1$ if at least j of variables $\{x_1\dots x_i\}$ are assigned value 1
 - $s_{i,j} = 0$ if at most j 1 of variables $\{x_1 \dots x_i\}$ are assigned value 1

Encoding:

$$(\neg s_{1,j}) \qquad \forall j: 1 < j \leq k$$

$$(\neg x_i \lor s_{i,1}) \qquad \forall i: 1 \leq i < n$$

$$(\neg s_{i-1,j} \lor s_{i,j}) \qquad \forall i,j: 1 \leq i < n, 1 < j \leq k$$

$$(\neg x_i \lor \neg s_{i-1,j-1} \lor s_{i,j}) \qquad \forall i,j: 1 < i < n, 1 < j \leq k$$

$$(\neg x_i \lor \neg s_{i-1,k}) \qquad \forall i: 1 < i \leq n$$

AAS CNRS

Sequential Counter and Arc Consistency

- Does the sequential counter encoding achieve arc consistency on the cardinality constraint?
- When is the constraint $\sum_{j=1}^{n} x_j \leq k$ not arc consistent?
 - \bullet When more than k variables are true
 - 2 When exactly k variables are true and at least 1 variable can be true
- The value 'false' is always arc consistent
- In all other cases, unassigned variables are indistinguishable: so any one of them can be true (in particular if all other are false)
- Let see if unit propagation forbids (1) and (2)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Sequential Counter Encoding is AC

- $\bullet (\neg x_7 \vee \neg s_{6,3}) \wedge (\neg x_8 \vee \neg s_{7,3}) \wedge (\neg x_9 \vee \neg s_{8,3})$
- $(\neg x_6 \lor \neg s_{5,2} \lor s_{6,3})$
- $\bullet \ (\neg x_4 \lor \neg s_{3,1} \lor s_{4,2}) \land (\neg x_5 \lor \neg s_{4,1} \lor s_{5,2})$

Totalizer Encoding

- CNF encoding for cardinality constraints $\sum_{i=1}^{n} x_i \leq k$
- Count in unary how many of the *n* variables $(x_1 ... x_n)$ are assigned value 1
- \bullet $O(n \log n)$ new variables
- $O(n^2)$ new clauses
 - ▶ Can be improved to $O(n \ k)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Applications of SAT

29 / 31

Totalizer Encoding

- Visualize the encoding as a tree
 - ► Each node is (name : variables : sum)
 - ► Literals are at the leaves
 - ▶ Each node counts in unary how many leaves are assigned to 1 in its subtree
 - ▶ Example: if $b_2 = 1$, then 2 of the leaves (x_3, x_4, x_5) are assigned to 1
- ullet Root node has the output variables $(o_1 \dots o_5)$ that count how many variables are assigned to 1
- To encode $x_1 + x_2 + x_3 + x_4 + x_5 \le 3$ just set $o_4 = 0$ and $o_5 = 0$

$$(P: p_1, p_2, ..., p_{n_1}: n_1)$$
 $(Q: q_1, q_2, ..., q_{n_2}: n_2)$
 $(R: r_1, r_2, ..., r_{n_3}: n_3)$

- Suppose that an intermediate node P that counts up to n_1 has two child nodes Q and R that count up to n_2 and n_3 , respectively
- Note that $n_1 = n_2 + n_3$

Encoding:

$$igwedge_{0\leqlpha\leq n_2} egin{array}{ll}
eg q_lphaee r_etaee p_\sigma & ext{where, } p_0=q_0=r_0=1 \ 0\leqeta\leq n_3 \ 0\leqeta\leq n_1 \end{array}$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Applications of ${
m SA}$