
Algorithms for Computational Logic
Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

1 / 31

Outline

1 Applications of SAT

2 / 31

Outline

1 Applications of SAT
Encoding a Problem into SAT
CSP Encoding
Analyzing Encodings
Encoding Global Constraints

Applications of SAT 3 / 31

CNF Encodings

CNF-SAT is NP-complete, and therefore as powerful as general SAT as a language

Most research has focused on algorithms for CNF-SAT

However, if polynomial encodings necessarily exist, they are not always easy to find

Not all encodings are equal

▶ What is a good encoding ?

▶ How to design a good encoding

Applications of SAT 4 / 31

From SAT to CNF-SAT

From SAT to CNF-SAT via the rules of Boolean algebra:

(a =⇒ (c ∧ d)) ∨ (b =⇒ (c ∧ e))

Decompose the implications

(a =⇒ c) ∧ (a =⇒ d)) ∨ ((b =⇒ c) ∧ (b =⇒ e))

Rearrange disjunctions and conjunctions (conjunctions and disjunctions are distributive)

((a =⇒ c)∨(b =⇒ c))∧((a =⇒ c)∨(b =⇒ e))∧((a =⇒ d)∨(b =⇒ c))∧((a =⇒ d)∨(b =⇒ e))

Rewrite implications as disjunctions

(ā ∨ c ∨ b̄) ∧ (ā ∨ c ∨ b̄ ∨ e) ∧ (ā ∨ d ∨ b̄ ∨ c) ∧ (ā ∨ d ∨ b̄ ∨ e)

Remove subsumed clauses

(ā ∨ c ∨ b̄) ∧ (ā ∨ d ∨ b̄ ∨ e)

Applications of SAT 5 / 31

From SAT to CNF-SAT

Distributing is not efficient:

(x1
1 ∧ x1

2 ∧ . . . ∧ x1
k) ∨ (x2

1 ∧ x2
2 ∧ . . . ∧ x2

k) ∨ . . . ∨ (xn
1 ∧ xn

2 ∧ . . . ∧ xn
k)

Up to kn clauses of size up to n

Tseitin’s encoding is polynomial in every case. Idea ?

Add extra variables

Applications of SAT 6 / 31

Rewrite implications as disjunctions

For every nested conjunction (a ∧ b̄ ∧ c), introduce a fresh variable f and the clauses (a ∧ b̄ ∧ c) ⇐⇒ f :

(a ∧ b̄ ∧ c) =⇒ f : (ā ∨ b ∨ c̄ ∨ f)

f =⇒ (a ∧ b̄ ∧ c) :


f̄ ∨ a

f̄ ∨ b̄

f̄ ∨ c

For instance for (a =⇒ (c ∧ d)) ∨ (b =⇒ (c ∧ e)) = (ā ∨ (c ∧ d)) ∨ (b̄ ∨ (c ∧ e)):

(c̄ ∨ d̄ ∨ f1) ∧ (f̄1 ∨ c) ∧ (f̄1 ∨ d)∧
(c̄ ∨ ē ∨ f2) ∧ (f̄2 ∨ c) ∧ (f̄2 ∨ e)∧
(ā ∨ f1) ∧ (b̄ ∨ f2)

Applications of SAT 7 / 31

Playing Sudoku

Fill empty cells such that each row, each colum and each 3x3 grid contains all of the digits 1 to 9.

Applications of SAT 8 / 31

Constraint Model for Sudoku

Modeling the problem with integer variables:

▶ Rows: i = 1, . . . , 9
▶ Columns: j = 1, . . . , 9
▶ Variables: vi,j ∈ {1, 2, . . . , 9}, i , j ∈ {1, . . . , 9}

Constraints:
▶ Each value used exactly once in each row:

⋆ For i ∈ {1, . . . , 9}, for j < k ∈ {1, . . . , 9}: vi,j ̸= vi,k

▶ Each value used exactly once in each column:
⋆ For j ∈ {1, . . . , 9}, for i < k ∈ {1, . . . , 9}: vi,j ̸= vk,j

▶ Each value used exactly once in each 3× 3 sub-grid:
⋆ For i, j, k, l ∈ {1, 9}, if (k ̸= i OR l ̸= j) AND ⌈ i

3
⌉ = ⌈ k

3
⌉ AND ⌈ j

3
⌉ = ⌈ l

3
⌉: vi,j ̸= vk,l

▶ Each clue corresponds to a variable assignment:

v1,4 = 1, v1,6 = 5, v1,8 = 6, v1,9 = 8, v2,7 = 7, v2,9 = 1
v3,1 = 9, v3,3 = 1, v3,8 = 3, v4,3 = 7, v4,5 = 2, v4,6 = 6, . . .

Applications of SAT 9 / 31

Constraint Satisfaction Problems

Constraint Satisfaction Problem (CSP)

Data: a triplet X ,D, C where:

X is a ordered set of variables

D is a domain

C is a set of constraints, where for c ∈ C:
▶ its scope S(c) is a list of variables
▶ its relation R(c) is a subset of D|S(c)|

Question: does there exist a solution σ ∈ D|X |

such that for every c ∈ C, σ(S(c)) ∈ R(c)?

Projection

The projection σ(X) of a tuple σ on a set
of variables X = (xi1 , . . . , xik) ⊆ X as the
tuple (σ(xi1), . . . , σ(xik))

Example: the constraint x + y = z (on the
Boolean ring)

x y z S(x + y = z)

0 0 0

R(x + y = z)
0 1 1
1 0 1
1 1 0

Applications of SAT 10 / 31

Sudoku Example

Sudoku

X = (v1,1, . . . , v9,9)

D = {1, . . . , 9}

C: inequalities on rows, columns and subsquares; clues

x y S(x ̸= y)

1 2

R(x ̸= y)

1 3
...

...
1 9
2 1
2 3
...

...
2 9
...

...
9 8

Applications of SAT 11 / 31

Encoding Integer Domains

Variable x with domain {0, . . . , n − 1}:

▶ Log encoding: Boolean variables x0, . . . , x⌊log n⌋ stands for x =
∑⌊log n⌋

j=0 2j

▶ Direct encoding: Boolean variable xj stands for variable x takes value j

Direct encoding requires consistency clauses because it is not a bijection:

▶
∑n

j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

▶
∑n

j=1 xj ≤ 1 encode with: Pairwise encoding or Sequential counters

Applications of SAT 12 / 31

Pairwise Encoding

Encode
∑n

j=1 xj ≤ 1 with pairwise incompatibilities:

▶ x = i implies x ̸= j

∧
1≤i<j≤n(x̄i ∨ x̄j)

▶ O(n2) binary clauses

▶ Encoding relations is easy and efficient:

Unit propagation of x = 3

j 1 2 3 4 5 6 7 8 9

xj(x = j) 0 0 1 0 0 0 0 0 0

One clause to forbid every non-tuple in the relation
R(c), e.g. for x ̸= y :

x y conflict clauses

1 1 x̄1 ∨ ȳ1
2 2 x̄2 ∨ ȳ2
3 3 x̄3 ∨ ȳ3
4 4 x̄4 ∨ ȳ4
5 5 x̄5 ∨ ȳ5
6 6 x̄6 ∨ ȳ6
...

...
...

Applications of SAT 13 / 31

Sequential Counter Encoding

Encode
∑n

j=1 xj ≤ 1 with sequential counter

Introduce Boolean variables s1, . . . , sn−1 with si
standing for x ≤ i

▶ x = i implies x ≤ i

▶ x = i implies x > i − 1

▶ x ≤ i − 1 implies x ≤ i

∧
1<i<n ((¬xi ∨ si) ∧ (¬xi ∨ ¬si−1)) ∧ (¬si−1 ∨ si))

∧ (¬x1 ∨ s1) ∧ (¬xn ∨ ¬sn−1)

▶ O(n) binary clauses ; O(n) auxiliary variables

Unit propagation of x = 3

j 1 2 3 4 5 6 7 8 9

xj(x = j) 0 0 1 0 0 0 0 0 0
sj(x ≤ j) 0 0 1 1 1 1 1 1 1

Unit propagation of 3 ≤ x ≤ 6

j 1 2 3 4 5 6 7 8 9

xj(x = j) 0 0 0 0 0
sj(x ≤ j) 0 0 1 1 1 1

Applications of SAT 14 / 31

Encoding Relations in Bitwise Encoding

x y
conflict clauses

x22 x21 x20 y22 y21 y20

0 0 0 0 0 0 x22 ∨ x21 ∨ x20 ∨ y22 ∨ y21 ∨ y20
0 0 1 0 0 1 x22 ∨ x21 ∨ x̄20 ∨ y22 ∨ y21 ∨ ȳ20

Assume x = 1, that is : x22 = 0, x21 = 0 and x20 = 1

The clause (x22 ∨ x21 ∨ x̄20 ∨ y22 ∨ y21 ∨ ȳ20) does not unit propagate !

Unit propagation is weaker on the log encoding

Notion of Arc Consistency

Applications of SAT 15 / 31

Arc Consistency

Let X be a set of variables and D be a domain:
▶ D(x) is the set of possible values for variable x ∈ X

Arc Consistency

A constraint c is Arc Consistent on domain D
if and only if for every x ∈ S(c) and for every
j ∈ D(x), there exists a tuple σ ∈ R(c) such
that σ(x) = j .

Achieving Arc Consistency on domain D with
respect to constraint c corresponds to reducing D to
the maximum D′ ⊆ D such that D′ is arc consistent
▶ If D′ is empty there is no solution satisfying relation c

on domain D

x y z

1 2 3
1 3 4
1 4 5
1 5 6
1 6 7
2 3 5
2 4 6
2 5 7
3 4 7

R(c)(·) {1, 2, 3} {2, 3, 4,5, 6} {3, 4, 5,6, 7}
D(·) {1, 2, 3, 4, 5} {1,2, 5, 6, 7} {1, 2,3, 4, 5,6}

Applications of SAT 16 / 31

Comparison of Encodings

The size of the encoding is an important feature

▶ Sequential counters are more concise than pairwise incompatibilities

We have seen that unit propagation might not be the same on two logically equivalent encodings

▶ Log vs. direct encoding of the constraint x ̸= y

We can ask whether a Boolean encoding of a constraint c achieves arc consistency on domain D

▶ Defined in the same way using the natural isomorphism between domain encodings

Applications of SAT 17 / 31

Encodings of the “Less than” Constraint

x ̸= y

1 2
1 3
1 4
2 3
2 4
3 4

Negative encoding

one clause for every
non-tuple in R(c)

(x̄1 ∨ ȳ1)
(x̄2 ∨ ȳ1)
(x̄2 ∨ ȳ2)
(x̄3 ∨ ȳ1)
(x̄3 ∨ ȳ2)
(x̄3 ∨ ȳ3)
(x̄4 ∨ ȳ1)
(x̄4 ∨ ȳ2)
(x̄4 ∨ ȳ3)
(x̄4 ∨ ȳ4)

Suport encoding

one clause for every value, encoding its
support values in R(c)

(ȳ1)
(ȳ2 ∨ x1)

(ȳ3 ∨ x2 ∨ x1)
(ȳ4 ∨ x3 ∨ x2 ∨ x1)
(x̄1 ∨ y2 ∨ y3 ∨ y4)

(x̄2 ∨ y3 ∨ y4)
(x̄3 ∨ y4)

(x̄4)

The support encoding unit propagates ȳ1 and x̄4, whereas the negative encoding does not

Suppose that we know x ̸= 1 (x̄1 is a new true literal)

Unit propagation on the support encoding achieves arc consistency

Applications of SAT 18 / 31

Tseitin Encoding of Table Constraints

Support encoding is only defined for binary relations

For dense relations, negative encoding is efficient.
▶ For instance the constraint x ̸= y contains n−1

n
tuples, and the negative encoding achieves arc consistency

Alternative to negative encoding for sparse constraints ?

x ̸= y

1 2
1 3
1 4
2 3
2 4
3 4

Tseitin encoding

one extra variable and 1 + |σ| clauses for every tuple σ ∈ R(c)

(x̄1 ∨ ȳ2 ∨ z1,2) ∧ (¯z1,2 ∨ x1) ∧ (¯z1,2 ∨ y2)
z1,3 ⇐⇒ (x1 ∧ y3)
z1,4 ⇐⇒ (x1 ∧ y4)
z2,3 ⇐⇒ (x2 ∧ y3)
z2,4 ⇐⇒ (x2 ∧ y4)
z3,4 ⇐⇒ (x3 ∧ y4)
(z1,2 ∨ z1,3 ∨ z1,4 ∨ z2,3 ∨ z2,4 ∨ z3,4)
(x̄1 ∨ z1,2 ∨ z1,3 ∨ z1,4) (ȳ1)
(x̄2 ∨ z2,3 ∨ z2,4) (ȳ2 ∨ z1,2)
(x̄3 ∨ z3,4) (ȳ3 ∨ z1,3 ∨ z2,3)
(x̄4) (ȳ4 ∨ z1,4 ∨ z2,4 ∨ z3,4)Applications of SAT 19 / 31

Tseitin’s Encoding of Table Constraints

Consider a constraint c of arity |S(c)| := a

Let S =
∏

x∈S(c) D(x) be the set of valid tuples (allowed by the domain D) with |S | := s

Let R(c) ∩ S be the set of consistent tuples (valid and allowed by the constraint) with |R(c) ∩ S | := t

The negative encoding requires Θ(a(s − t)) space

Tseitin’s encoding requires Θ(at) space

Tseitin encoding and Arc Consistency

Unit propagation on Tseitin’s encoding is an optimal algorithm to achieve Arc Consistency on
a table constraint.

Tseitin’s encoding takes linear space

Unit propagation takes linear time

There is no sublinear algorithm to achieve arc consistency

Applications of SAT 20 / 31

Upgrading a Linux Distribution

Let U = {p1, . . . , pn} be all versions of all linux packages

Let C ⊆ U2 be a set of conflicts (packages pairwise incompatible)

For every package pi ∈ U, we have:

▶ a set Di of dependencies with d ∈ Di a set of packages such at least one of them is required for package p

An installation profile P ⊆ U is valid iff, for every pi ∈ P:

▶ Ci ∩ P = ∅ (there is no incompatibilities)

▶ For each d ∈ Di , d ∩ P ̸= ∅ (the dependencies are satisfied)

An installation profile P ⊆ U is non-regressive with respect to profile Po iff for each pi ∈ Po , Vi ∩ P ̸= ∅

Upgradeability problem

Given a current installation profile Po and a package p, does there exist two sets of packages
P+ and P− such that P ∪ P+ \ P− is a valid non-regressive installation profile and contains p

Applications of SAT 21 / 31

Encoding

A variable pi for every pi ∈ U: whether package pi should be in the installation profile

Constraints

▶ Compatibilities: p̄i ∨ p̄j ∀pi ∈ U, ∀(pi , pj) ∈ C

▶ Dependencies: p̄i ∨
∨

pj∈d pj ∀pi ∈ d , ∀d ∈ Di

▶ Non-regression: pi ∨
∨

pj∈Vi
pj ∀pi ∈ Po

Applications of SAT 22 / 31

Objective

Minimize the number of changes

Introduce new variables to encode the delta

p∆
i ⇐⇒ p̄i : p∆

i ∨ pi ∧ p̄∆
i ∨ p̄i ∀pi ∈ Po

p∆
i ⇐⇒ pi : p∆

i ∨ p̄i ∧ p̄∆
i ∨ pi ∀pi ̸∈ Po

Optimization is usually done by successive constraints

▶ Top-down:
∑n

i=1 pi < ub0;
∑n

i=1 pi < ub1; . . . ;
∑n

i=1 pi < ubk (with ubi a feasible number of packages)

▶ Bottom-up:
∑n

i=1 pi > lb0;
∑n

i=1 pi > lb1; . . . ;
∑n

i=1 pi > lbk (with ubi a infeasible number of packages)

▶ Binary search

How to encode a cardinality constraint?

Applications of SAT 23 / 31

Cardinality Constraints

How to handle cardinality constraints,
∑n

j=1 xj ≤ k ?

▶ General form:
∑n

j=1 xj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

▶ Special case when k = 1
∑n

j=1 xj ≤ 1

⋆ AtMost1 constraints was the subject of the previous class

Solution #1:

▶ Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.

▶ Difficult to keep up with advances in SAT technology

▶ For SAT/UNSAT, best solvers already encode to CNF

⋆ E.g. Minisat+, Open-WBO, QMaxSat, MSUnCore, WPM2, etc.

Solution #2:

▶ Encode cardinality constraints to CNF

▶ Use SAT solver

Applications of SAT 24 / 31

General Cardinality Constraints

General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)

▶ Sequential counters [S05]

⋆ Clauses/Variables: O(n k)

▶ BDDs [ES06]

⋆ Clauses/Variables: O(n k)

▶ Sorting networks [ES06]

⋆ Clauses/Variables: O(n log2 n)

▶ Cardinality Networks: [ANORC09,ANORC11a]

⋆ Clauses/Variables: O(n log2 k)

▶ Totalizer [BB03]

⋆ Clauses: O(nk), Variables: O(n log k)

▶ Pairwise Cardinality Networks [CZI10]

▶ ...

Applications of SAT 25 / 31

Sequential Counter Encoding

Assume the general form:
∑n

i=1 xi ≤ k

For each variable xi , create k additional variables si,j that are used as counters.

▶ si,j = 1 if at least j of variables {x1 . . . xi} are assigned value 1

▶ si,j = 0 if at most j − 1 of variables {x1 . . . xi} are assigned value 1

Encoding:

(¬s1,j) ∀j : 1 < j ≤ k

(¬xi ∨ si,1) ∀i : 1 ≤ i < n

(¬si−1,j ∨ si,j) ∀i , j : 1 ≤ i < n, 1 < j ≤ k

(¬xi ∨ ¬si−1,j−1 ∨ si,j) ∀i , j : 1 < i < n, 1 < j ≤ k

(¬xi ∨ ¬si−1,k) ∀i : 1 < i ≤ n

x1 x2 x2 x2 x2 x2 x2 x2 x2

s1,1 s2,1 s3,1 s4,1 s5,1 s6,1 s7,1 s8,1 s9,1

s2,2 s3,2 s4,2 s5,2 s6,2 s7,2 s8,2 s9,2

s3,3 s4,3 s5,3 s6,3 s7,3 s8,3 s9,3

Applications of SAT 26 / 31

Sequential Counter and Arc Consistency

Does the sequential counter encoding achieve arc consistency on the cardinality constraint?

When is the constraint
∑n

j=1 xj ≤ k not arc consistent?

1 When more than k variables are true

2 When exactly k variables are true and at least 1 variable can be true

The value ‘false’ is always arc consistent

In all other cases, unassigned variables are indistinguishable: so any one of them can be true (in particular if
all other are false)

Let see if unit propagation forbids (1) and (2)

Applications of SAT 27 / 31

Sequential Counter Encoding is AC

x1 x2 x3 x4 x5 x6 x7 x8 x9

s1,1 s2,1 s3,1 s4,1 s5,1 s6,1 s7,1 s8,1 s9,1

s2,2 s3,2 s4,2 s5,2 s6,2 s7,2 s8,2 s9,2

s3,3 s4,3 s5,3 s6,3 s7,3 s8,3 s9,3

x3 x6 x7

s3,1 s6,1 s7,1s4,1 s5,1 s8,1 s9,1

s6,2 s7,2 s8,2 s9,2

s7,3 s8,3 s9,3s6,3

x8 x9

s5,3s4,3s3,3

s5,2s2,2 s4,2s3,2

s1,1 s2,1

x1 x2 x4 x5

(¬x7 ∨ ¬s6,3) ∧ (¬x8 ∨ ¬s7,3) ∧ (¬x9 ∨ ¬s8,3)
(¬x6 ∨ ¬s5,2 ∨ s6,3)

(¬x4 ∨ ¬s3,1 ∨ s4,2) ∧ (¬x5 ∨ ¬s4,1 ∨ s5,2)

Applications of SAT 28 / 31

Totalizer Encoding

Totalizer Encoding

CNF encoding for cardinality constraints
∑n

i=1 xi ≤ k

Count in unary how many of the n variables (x1 . . . xn) are assigned value 1

O(n log n) new variables

O(n2) new clauses

▶ Can be improved to O(n k)

Applications of SAT 29 / 31

Totalizer Encoding

(O : o1, o2, o3, o4, o5 : 5)

(A : a1, a2 : 2) (B : b1, b2, b3 : 3)

(C : x1 : 1) (D : x2 : 1) (E : x3 : 1) (F : f1, f2 : 2)

(G : x4 : 1) (H : x5 : 1)

Visualize the encoding as a tree
▶ Each node is (name : variables : sum)
▶ Literals are at the leaves
▶ Each node counts in unary how many leaves are assigned to 1 in its subtree
▶ Example: if b2 = 1, then 2 of the leaves (x3, x4, x5) are assigned to 1

Root node has the output variables (o1 . . . o5) that count how many variables are assigned to 1

To encode x1 + x2 + x3 + x4 + x5 ≤ 3 just set o4 = 0 and o5 = 0

Applications of SAT 30 / 31

Totalizer Encoding

(P : p1, p2, . . . , pn1 : n1)

(Q : q1, q2, . . . , qn2 : n2) (R : r1, r2, . . . , rn3 : n3)

Suppose that an intermediate node P that counts up to n1 has two child nodes Q and R that count up to n2
and n3, respectively

Note that n1 = n2 + n3

Encoding: ∧
0 ≤ α ≤ n2
0 ≤ β ≤ n3
0 ≤ σ ≤ n1
α + β = σ

¬qα ∨ ¬rβ ∨ pσ where, p0 = q0 = r0 = 1

Applications of SAT 31 / 31

	Applications of SAT
	Encoding a Problem into SAT
	CSP Encoding
	Analyzing Encodings
	Encoding Global Constraints

