Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

(1) Applications of SAT
Outline
(1) Applications of SAT

- Encoding a Problem into SAT
- CSP Encoding
- Analyzing Encodings
- Encoding Global Constraints

CNF Encodings

- CNF-SAT is NP-complete, and therefore as powerful as general SAT as a language
- Most research has focused on algorithms for CNF-SAT
- However, if polynomial encodings necessarily exist, they are not always easy to find
- Not all encodings are equal
- What is a good encoding ?
- How to design a good encoding
- From SAT to CNF-SAT via the rules of Boolean algebra:

$$
(a \Longrightarrow(c \wedge d)) \vee(b \Longrightarrow(c \wedge e))
$$

- Decompose the implications

$$
(a \Longrightarrow c) \wedge(a \Longrightarrow d)) \vee((b \Longrightarrow c) \wedge(b \Longrightarrow e))
$$

- Rearrange disjunctions and conjunctions (conjunctions and disjunctions are distributive)
$((a \Longrightarrow c) \vee(b \Longrightarrow c)) \wedge((a \Longrightarrow$
c) $\vee(b \Longrightarrow e)) \wedge((a \Longrightarrow d) \vee(b \Longrightarrow c)) \wedge((a \Longrightarrow d) \vee(b \Longrightarrow e))$
- Rewrite implications as disjunctions

$$
(\bar{a} \vee c \vee \bar{b}) \wedge(\bar{a} \vee c \vee \bar{b} \vee e) \wedge(\bar{a} \vee d \vee \bar{b} \vee c) \wedge(\bar{a} \vee d \vee \bar{b} \vee e)
$$

- Remove subsumed clauses

$$
(\bar{a} \vee c \vee \bar{b}) \wedge(\bar{a} \vee d \vee \bar{b} \vee e)
$$

- Distributing is not efficient:

$$
\left(x_{1}^{1} \wedge x_{2}^{1} \wedge \ldots \wedge x_{k}^{1}\right) \vee\left(x_{1}^{2} \wedge x_{2}^{2} \wedge \ldots \wedge x_{k}^{2}\right) \vee \ldots \vee\left(x_{1}^{n} \wedge x_{2}^{n} \wedge \ldots \wedge x_{k}^{n}\right)
$$

- Up to k^{n} clauses of size up to n
- Tseitin's encoding is polynomial in every case. Idea ?
- Add extra variables
- Rewrite implications as disjunctions
- For every nested conjunction $(a \wedge \bar{b} \wedge c)$, introduce a fresh variable f and the clauses $(a \wedge \bar{b} \wedge c) \Longleftrightarrow f$:

$$
\begin{aligned}
& (a \wedge \bar{b} \wedge c) \Longrightarrow f: \quad(\bar{a} \vee b \vee \bar{c} \vee f) \\
& f \Longrightarrow(a \wedge \bar{b} \wedge c): \quad\left\{\begin{array}{l}
\bar{f} \vee a \\
\bar{f} \vee \bar{b} \\
\bar{f} \vee c
\end{array}\right.
\end{aligned}
$$

- For instance for $(a \Longrightarrow(c \wedge d)) \vee(b \Longrightarrow(c \wedge e))=(\bar{a} \vee(c \wedge d)) \vee(\bar{b} \vee(c \wedge e))$:
- $\left(\bar{c} \vee \bar{d} \vee f_{1}\right) \wedge\left(\bar{f}_{1} \vee c\right) \wedge\left(\bar{f}_{1} \vee d\right) \wedge$
$\left(\bar{c} \vee \bar{e} \vee f_{2}\right) \wedge\left(\bar{f}_{2} \vee c\right) \wedge\left(\bar{f}_{2} \vee e\right) \wedge$
$\left(\bar{a} \vee f_{1}\right) \wedge\left(\bar{b} \vee f_{2}\right)$

	2		1	7	8		3	
	4		3		2		9	
1								6
		8	6		3	5		
3								4
		6	7		9	2		
9								2
	8		9		1		6	
	1		4	3	6		5	

- Fill empty cells such that each row, each colum and each 3×3 grid contains all of the digits 1 to 9 .

			1		5		6	8
						7		1
9		1					3	
		7		2	6			
5								3
			8	7		4		
	3					8		5
1		5						
7	9		4		1			

- Modeling the problem with integer variables:
- Rows: $i=1, \ldots, 9$
- Columns: $j=1, \ldots, 9$
- Variables: $v_{i, j} \in\{1,2, \ldots, 9\}, i, j \in\{1, \ldots, 9\}$
- Constraints:
- Each value used exactly once in each row:
\star For $i \in\{1, \ldots, 9\}$, for $j<k \in\{1, \ldots, 9\}: v_{i, j} \neq v_{i, k}$
- Each value used exactly once in each column:
\star For $j \in\{1, \ldots, 9\}$, for $i<k \in\{1, \ldots, 9\}: v_{i, j} \neq v_{k, j}$
- Each value used exactly once in each 3×3 sub-grid:
\star For $i, j, k, l \in\{1,9\}$, if $(k \neq i$ OR $I \neq j)$ AND $\left\lceil\frac{i}{3}\right\rceil=\left\lceil\frac{k}{3}\right\rceil$ AND $\left\lceil\frac{j}{3}\right\rceil=\left\lceil\frac{l}{3}\right\rceil: v_{i, j} \neq v_{k}, l$
- Each clue corresponds to a variable assignment:

$$
\begin{aligned}
& v_{1,4}=1, v_{1,6}=5, v_{1,8}=6, v_{1,9}=8, v_{2,7}=7, v_{2,9}=1 \\
& v_{3,1}=9, v_{3,3}=1, v_{3,8}=3, v_{4,3}=7, v_{4,5}=2, v_{4,6}=6
\end{aligned}
$$

Constraint Satisfaction Problem (CSP)

Data: a triplet $\mathcal{X}, \mathcal{D}, \mathcal{C}$ where:

- \mathcal{X} is a ordered set of variables
- \mathcal{D} is a domain
- \mathcal{C} is a set of constraints, where for $c \in \mathcal{C}$:
- its scope $S(c)$ is a list of variables
- its relation $R(c)$ is a subset of $\mathcal{D}^{|S(c)|}$

Question: does there exist a solution $\sigma \in \mathcal{D}^{|\mathcal{X}|}$ such that for every $c \in \mathcal{C}, \sigma(S(c)) \in R(c)$?

Projection

The projection $\sigma(X)$ of a tuple σ on a set of variables $X=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \subseteq \mathcal{X}$ as the tuple $\left(\sigma\left(x_{i_{1}}\right), \ldots, \sigma\left(x_{i_{k}}\right)\right)$

- Example: the constraint $x+y=z$ (on the Boolean ring)

x	y	z	$S(x+y=z)$
0	0	0	
0	1	1	$R(x+y=z)$
1	0	1	
1	1	0	

Sudoku

- $\mathcal{X}=\left(v_{1,1}, \ldots, v_{9,9}\right)$
- $\mathcal{D}=\{1, \ldots, 9\}$
- \mathcal{C} : inequalities on rows, columns and subsquares; clues

x	y	$S(x \neq y)$
1	2	
1	3	
\vdots	\vdots	
1	9	
2	1	$R(x \neq y)$
2	3	
\vdots	\vdots	
2	9	
\vdots	\vdots	
9	8	

- Variable x with domain $\{0, \ldots, n-1\}$:
- Log encoding: Boolean variables $x_{0}, \ldots, x_{\lfloor\log n\rfloor}$ stands for $x=\sum_{j=0}^{\lfloor\log n\rfloor} 2^{j}$
- Direct encoding: Boolean variable x_{j} stands for variable x takes value j
- Direct encoding requires consistency clauses because it is not a bijection:
- $\sum_{j=1}^{n} x_{j} \geq 1$: encode with $\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right)$
- $\sum_{j=1}^{n} x_{j} \leq 1$ encode with: Pairwise encoding or Sequential counters

CNRS

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with pairwise incompatibilities:
- $x=i$ implies $x \neq j$

$$
\Lambda_{1 \leq i<i \leq n}\left(\bar{x}_{i} \vee \bar{x}_{j}\right)
$$

- $\mathcal{O}\left(n^{2}\right)$ binary clauses
- Encoding relations is easy and efficient:
- Unit propagation of $x=3$

j	1	2	3	4	5	6	7	8	9
$x_{j}(x=j)$	0	0	1	0	0	0	0	0	0

- One clause to forbid every non-tuple in the relation $R(c)$, e.g. for $x \neq y$:

x	y	conflict clauses
1	1	$\overline{x_{1}} \vee \overline{y_{1}}$
2	2	$\overline{x_{2}} \vee \overline{y_{2}}$
3	3	$\overline{x_{3}} \vee \overline{y_{3}}$
4	4	$\overline{x_{4}} \vee \overline{y_{4}}$
5	5	$\overline{x_{5}} \vee \overline{y_{5}}$
6	6	$\overline{x_{6}} \vee \overline{y_{6}}$
\vdots	\vdots	\vdots

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with sequential counter
- Introduce Boolean variables s_{1}, \ldots, s_{n-1} with s_{i} standing for $x \leq i$
- $x=i$ implies $x \leq i$
- Unit propagation of $x=3$

j	1	2	3	4	5	6	7	8	9
$x_{j}(x=j)$	0	0	1	0	0	0	0	0	0
$s_{j}(x \leq j)$	0	0	1	1	1	1	1	1	1

- $x=i$ implies $x>i-1$
- $x \leq i-1$ implies $x \leq i$
$\left.\bigwedge_{1<i<n}\left(\left(\neg x_{i} \vee s_{i}\right) \wedge\left(\neg x_{i} \vee \neg s_{i-1}\right)\right) \wedge\left(\neg s_{i-1} \vee s_{i}\right)\right)$ $\wedge\left(\neg x_{1} \vee s_{1}\right) \wedge\left(\neg x_{n} \vee \neg s_{n-1}\right)$
- $\mathcal{O}(n)$ binary clauses ; $\mathcal{O}(n)$ auxiliary variables
- Unit propagation of $3 \leq x \leq 6$

j	1	2	3	4	5	6	7	8	9
$x_{j}(x=j)$	0	0					0	0	0
$s_{j}(x \leq j)$	0	0				1	1	1	1

	x		y			
$x_{2^{2}}$	$x_{2^{1}}$	$x_{2^{0}}$	$y_{2^{2}}$	$y_{2^{1}}$	$y_{2^{0}}$	conflict clauses
0	0	0	0	0	0	$x_{2^{2}} \vee x_{2^{1}} \vee x_{2^{0}} \vee y_{2^{2}} \vee y_{2^{1}} \vee y_{2^{0}}$
0	0	1	0	0	1	$x_{2^{2}} \vee x_{2^{1}} \vee \overline{x_{2^{0}}} \vee y_{2^{2}} \vee y_{2^{1}} \vee \overline{y_{2^{0}}}$

- Assume $x=1$, that is: $x_{2^{2}}=0, x_{2^{1}}=0$ and $x_{20}=1$
- The clause $\left(x_{2^{2}} \vee x_{2^{1}} \vee \overline{x_{2} 0} \vee y_{2^{2}} \vee y_{2^{1}} \vee \overline{y^{0}}\right)$ does not unit propagate!
- Unit propagation is weaker on the log encoding
- Notion of Arc Consistency

Arc Consistency

- Let \mathcal{X} be a set of variables and \mathcal{D} be a domain:
- $\mathcal{D}(x)$ is the set of possible values for variable $x \in \mathcal{X}$

Arc Consistency

A constraint c is Arc Consistent on domain \mathcal{D} if and only if for every $x \in S(c)$ and for every $j \in \mathcal{D}(x)$, there exists a tuple $\sigma \in R(c)$ such that $\sigma(x)=j$.

- Achieving Arc Consistency on domain \mathcal{D} with

 respect to constraint c corresponds to reducing \mathcal{D} to the maximum $\mathcal{D}^{\prime} \subseteq \mathcal{D}$ such that \mathcal{D}^{\prime} is arc consistent- If \mathcal{D}^{\prime} is empty there is no solution satisfying relation c

	x	y	z
	1	2	3
	1	3	4
	1	4	5
	1	5	6
	1	6	7
	2	3	5
	2	4	6
	2	5	7
$\boldsymbol{R (c) (\cdot)}$	$\{\mathbf{1}, 2,3\}$	$\{2,3,4,5,6\}$	$\{3,4,5,6,7\}$
$\mathcal{D}(\cdot)$	$\{\mathbf{1}, 2,3,4,5\}$	$\{1,2,5,6,7\}$	$\{1,2,3,4,5,6\}$

- The size of the encoding is an important feature
- Sequential counters are more concise than pairwise incompatibilities
- We have seen that unit propagation might not be the same on two logically equivalent encodings
- Log vs. direct encoding of the constraint $x \neq y$
- We can ask whether a Boolean encoding of a constraint c achieves arc consistency on domain \mathcal{D}
- Defined in the same way using the natural isomorphism between domain encodings Encodings of the "Less than" Constraint

Negative encoding

one clause for every non-tuple in $R(c)$

$x \neq y$	
1	2
1	3
1	4
2	3
2	4
3	4

$\left(\overline{x_{1}} \vee \overline{y_{1}}\right)$
$\left(\overline{x_{2}} \vee \overline{y_{1}}\right)$
$\left(\overline{x_{2}} \vee \overline{y_{2}}\right)$
$\left(\overline{x_{3}} \vee \overline{y_{1}}\right)$
$\left(\overline{x_{3}} \vee \overline{y_{2}}\right)$
$\left(\overline{x_{3}} \vee \overline{y_{3}}\right)$
$\left(\overline{x_{4}} \vee \overline{y_{1}}\right)$
$\left(\overline{x_{4}} \vee \overline{y_{2}}\right)$
$\left(\overline{x_{4}} \vee \overline{y_{3}}\right)$
$\left(\overline{x_{4}} \vee \overline{y_{4}}\right)$

Suport encoding

one clause for every value, encoding its support values in $R(c)$

$$
\begin{gathered}
\left(\overline{y_{1}}\right) \\
\left(\overline{y_{2}} \vee x_{1}\right) \\
\left(\overline{y_{3}} \vee x_{2} \vee x_{1}\right) \\
\left(\overline{y_{4}} \vee x_{3} \vee x_{2} \vee x_{1}\right) \\
\left(\overline{x_{1}} \vee y_{2} \vee y_{3} \vee y_{4}\right) \\
\left(\overline{x_{2}} \vee y_{3} \vee y_{4}\right) \\
\left(\overline{x_{3}} \vee y_{4}\right) \\
\left(\overline{x_{4}}\right)
\end{gathered}
$$

- The support encoding unit propagates $\overline{y_{1}}$ and $\overline{x_{4}}$, whereas the negative encoding does not
- Suppose that we know $x \neq 1$ ($\overline{x_{1}}$ is a new true literal)
- Unit propagation on the support encoding achieves arc consistency
- Support encoding is only defined for binary relations
- For dense relations, negative encoding is efficient.
- For instance the constraint $x \neq y$ contains $\frac{n-1}{n}$ tuples, and the negative encoding achieves arc consistency
- Alternative to negative encoding for sparse constraints ?

Tseitin encoding

```
one extra variable and 1+ |\sigma| clauses for every tuple }\sigma\inR(c
```

$x \neq$	y
1	2
1	3
1	4
2	3
2	4
3	4

```
\(\left(\overline{x_{1}} \vee \overline{y_{2}} \vee z_{1,2}\right) \wedge\left(z_{1,2}^{-} \vee x_{1}\right) \wedge\left(z_{1,2}^{-} \vee y_{2}\right)\)
\(z_{1,3} \Longleftrightarrow\left(x_{1} \wedge y_{3}\right)\)
\(z_{1,4} \Longleftrightarrow\left(x_{1} \wedge y_{4}\right)\)
\(z_{2,3} \Longleftrightarrow\left(x_{2} \wedge y_{3}\right)\)
\(z_{2,4} \Longleftrightarrow\left(x_{2} \wedge y_{4}\right)\)
\(z_{3,4} \Longleftrightarrow\left(x_{3} \wedge y_{4}\right)\)
\(\left(z_{1,2} \vee z_{1,3} \vee z_{1,4} \vee z_{2,3} \vee z_{2,4} \vee z_{3,4}\right)\)
\(\left(\overline{x_{1}} \vee z_{1,2} \vee z_{1,3} \vee z_{1,4}\right) \quad\left(\overline{y_{1}}\right)\)
\(\left(\overline{x_{2}} \vee z_{2,3} \vee z_{2,4}\right) \quad\left(\overline{y_{2}} \vee z_{1,2}\right)\)
\(\left(\overline{x_{3}} \vee z_{3,4}\right) \quad\left(\overline{y_{3}} \vee z_{1,3} \vee z_{2,3}\right)\)
\(\left(\overline{x_{4}}\right) \quad\) Applications of SAT \(\quad\left(\overline{y_{4}} \vee z_{1,4} \vee z_{2,4} \vee z_{3,4}\right)\)
```


Tseitin's Encoding of Table Constraints

- Consider a constraint c of arity $|S(c)|:=a$
- Let $S=\prod_{x \in S(c)} \mathcal{D}(x)$ be the set of valid tuples (allowed by the domain \mathcal{D}) with $|S|:=s$
- Let $R(c) \cap S$ be the set of consistent tuples (valid and allowed by the constraint) with $|R(c) \cap S|:=t$
- The negative encoding requires $\Theta(a(s-t))$ space
- Tseitin's encoding requires $\Theta(a t)$ space

Tseitin encoding and Arc Consistency

Unit propagation on Tseitin's encoding is an optimal algorithm to achieve Arc Consistency on a table constraint.

- Tseitin's encoding takes linear space
- Unit propagation takes linear time
- There is no sublinear algorithm to achieve arc consistency
- Let $U=\left\{p_{1}, \ldots, p_{n}\right\}$ be all versions of all linux packages
- Let $C \subseteq U^{2}$ be a set of conflicts (packages pairwise incompatible)
- For every package $p_{i} \in U$, we have:
- a set D_{i} of dependencies with $d \in D_{i}$ a set of packages such at least one of them is required for package p
- An installation profile $P \subseteq U$ is valid iff, for every $p_{i} \in P$:
- $C_{i} \cap P=\emptyset$ (there is no incompatibilities)
- For each $d \in D_{i}, d \cap P \neq \emptyset$ (the dependencies are satisfied)
- An installation profile $P \subseteq U$ is non-regressive with respect to profile P° iff for each $p_{i} \in P^{o}, V_{i} \cap P \neq \emptyset$

Upgradeability problem

Given a current installation profile P^{0} and a package p, does there exist two sets of packages P^{+}and P^{-}such that $P \cup P^{+} \backslash P^{-}$is a valid non-regressive installation profile and contains p

- A variable p_{i} for every $p_{i} \in U$: whether package p_{i} should be in the installation profile
- Constraints
- Compatibilities: $\bar{p}_{i} \vee \bar{p}_{j}$

$$
\forall p_{i} \in U, \forall\left(p_{i}, p_{j}\right) \in C
$$

- Dependencies: $\bar{p}_{i} \vee \bigvee_{p_{j} \in d} p_{j}$

$$
\forall p_{i} \in d, \forall d \in D_{i}
$$

- Non-regression: $p_{i} \vee \bigvee_{p_{j} \in V_{i}} p_{j}$
$\forall p_{i} \in P^{o}$
- Minimize the number of changes
- Introduce new variables to encode the delta

$$
\begin{array}{lll}
p_{i}^{\Delta} \Longleftrightarrow \bar{p}_{i}: & p_{i}^{\Delta} \vee p_{i} \wedge \overline{p_{i}^{\Delta}} \vee \overline{p_{i}} & \forall p_{i} \in P^{\circ} \\
p_{i}^{\Delta} \Longleftrightarrow p_{i}: & p_{i}^{\Delta} \vee \overline{p_{i}} \wedge \overline{p_{i}^{\Delta}} \vee p_{i} & \forall p_{i} \notin P^{o}
\end{array}
$$

- Optimization is usually done by successive constraints
- Top-down: $\sum_{i=1}^{n} p_{i}<u b_{0} ; \sum_{i=1}^{n} p_{i}<u b_{1} ; \ldots ; \sum_{i=1}^{n} p_{i}<u b_{k}$ (with $u b_{i}$ a feasible number of packages)
- Bottom-up: $\sum_{i=1}^{n} p_{i}>l b_{0} ; \sum_{i=1}^{n} p_{i}>l b_{1} ; \ldots ; \sum_{i=1}^{n} p_{i}>l b_{k}$ (with $u b_{i}$ a infeasible number of packages)
- Binary search
- How to encode a cardinality constraint?
- How to handle cardinality constraints, $\sum_{j=1}^{n} x_{j} \leq k$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Special case when $\mathrm{k}=1 \sum_{j=1}^{n} x_{j} \leq 1$
\star AtMost1 constraints was the subject of the previous class
- Solution \#1:
- Use native PB solver, e.g. BSOLO, PBS, Galena, Pueblo, etc.
- Difficult to keep up with advances in SAT technology
- For SAT/UNSAT, best solvers already encode to CNF
^ E.g. Minisat+, Open-WBO, QMaxSat, MSUnCore, WPM2, etc.
- Solution \#2:
- Encode cardinality constraints to CNF
- Use SAT solver
- General form: $\sum_{j=1}^{n} x_{j} \leq k\left(\right.$ or $\sum_{j=1}^{n} x_{j} \geq k$)
- Sequential counters
\star Clauses/Variables: $\mathcal{O}(n k)$
- BDDs
\star Clauses/Variables: $\mathcal{O}(n k)$
- Sorting networks
\star Clauses/Variables: $\mathcal{O}\left(n \log ^{2} n\right)$
- Cardinality Networks:
\star Clauses/Variables: $\mathcal{O}\left(n \log ^{2} k\right)$
- Totalizer
\star Clauses: $\mathcal{O}(n k)$, Variables: $\mathcal{O}(n \log k)$
- Pairwise Cardinality Networks
- ...

Sequential Counter Encoding

Assume the general form: $\sum_{i=1}^{n} x_{i} \leq k$

- For each variable x_{i}, create k additional variables $s_{i, j}$ that are used as counters.
- $s_{i, j}=1$ if at least j of variables $\left\{x_{1} \ldots x_{i}\right\}$ are assigned value 1
- $s_{i, j}=0$ if at most $j-1$ of variables $\left\{x_{1} \ldots x_{i}\right\}$ are assigned value 1

Encoding:

- Does the sequential counter encoding achieve arc consistency on the cardinality constraint?
- When is the constraint $\sum_{j=1}^{n} x_{j} \leq k$ not arc consistent?
(1) When more than k variables are true
(2) When exactly k variables are true and at least 1 variable can be true
- The value 'false' is always arc consistent
- In all other cases, unassigned variables are indistinguishable: so any one of them can be true (in particular if all other are false)
- Let see if unit propagation forbids (1) and (2)

Sequential Counter Encoding is $A C$

- $\left(\neg x_{7} \vee \neg s_{6,3}\right) \wedge\left(\neg x_{8} \vee \neg s_{7,3}\right) \wedge\left(\neg x_{9} \vee \neg s_{8,3}\right)$
- $\left(\neg x_{6} \vee \neg s_{5,2} \vee s_{6,3}\right)$
- $\left(\neg x_{4} \vee \neg s_{3,1} \vee s_{4,2}\right) \wedge\left(\neg x_{5} \vee \neg s_{4,1} \vee s_{5,2}\right)$

Totalizer Encoding

- CNF encoding for cardinality constraints $\sum_{i=1}^{n} x_{i} \leq k$
- Count in unary how many of the n variables $\left(x_{1} \ldots x_{n}\right)$ are assigned value 1
- $O(n \log n)$ new variables
- $O\left(n^{2}\right)$ new clauses
- Can be improved to $O(n k)$

- Visualize the encoding as a tree
- Each node is (name : variables: sum)
- Literals are at the leaves
- Each node counts in unary how many leaves are assigned to 1 in its subtree
- Example: if $b_{2}=1$, then 2 of the leaves $\left(x_{3}, x_{4}, x_{5}\right)$ are assigned to 1
- Root node has the output variables $\left(o_{1} \ldots O_{5}\right)$ that count how many variables are assigned to 1
- To encode $x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 3$ just set $o_{4}=0$ and $o_{5}=0$

- Suppose that an intermediate node P that counts up to n_{1} has two child nodes Q and R that count up to n_{2} and n_{3}, respectively
- Note that $n_{1}=n_{2}+n_{3}$

Encoding:

$$
\begin{aligned}
& \quad \bigwedge_{0} \quad \neg q_{\alpha} \vee \neg r_{\beta} \vee p_{\sigma} \quad \text { where, } p_{0}=q_{0}=r_{0}=1 \\
& 0 \leq \alpha \leq n_{2} \\
& 0 \leq \beta \leq n_{3} \\
& 0 \leq \sigma \leq n_{1} \\
& \alpha+\beta=\sigma
\end{aligned}
$$

