
Algorithms for Computational Logic
Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

1 / 37

Outline

1 Introduction to Boolean Satisfaction

2 Boolean Reasoning

2 / 37

Outline

1 Introduction to Boolean Satisfaction
Propositional Logic
The Satisfiability Problem
Some Fragments of Propositional Logic

2 Boolean Reasoning
Unit Propagation
Resolution
Proof Systems

Introduction to Boolean Satisfaction 3 / 37

Propositional Logic

Proposition

A proposition is an assertion that can be:

assigned a truth value (true or false)

written using atomic propositions (or atoms) and logic connectors

An atom is a proposition written using a unique symbol.

Atomic propositions:

▶ “Adam follows the lecture”, “Adam works at home”, “Adam cheats at the exam”, “Adam passes the exam”

Propositions:

▶ “if Adam does not listen the lecture and does not work at home then he will not pass the exam unless he cheats

Introduction to Boolean Satisfaction 4 / 37

Propositional Logic

Formulae (syntax)

A non-atomic proposition (Formula) φ is either:

an atom

the negation ¬ψ of another proposition ψ

the concatenation of two or more propositions φ1 and φ2 by a logical connector {∧,∨,→,⊕, . . .}

((“listen lecture” ∧ “work at home”) ∨ “cheat” ∨ ¬“pass exam”) ∧
((¬“cheat” ∧ “pass exam”) ∨ ¬“get diploma”)

∧

∨ ∨

∧

listen work

∨

cheat

¬

pass

∧ ¬

diploma¬

Introduction to Boolean Satisfaction 5 / 37

Models

Models (interpretations)

A model A is a mapping from atoms in X to {true, false}. We write A |= x for “Atom x is
true in model A”

A proposition φ written using atoms in X can be interpreted (given a truth value) using a
model A on X :

if φ is the negation of a proposition ψ, then A |= φ if and only if A ̸|= ψ

if φ is a conjunction φ1 ∧ φ2, then A |= φ if and only if A |= φ1 and A |= φ2

if φ is a disjunction φ1 ∨ φ2, then A |= φ if and only if A |= φ1 or A |= φ2

Ex: “listen lecture” ∧ “work at home” ∧ ¬“cheat” ∧ ¬“pass exam” ∧ ¬“get diploma”

Introduction to Boolean Satisfaction 6 / 37

Models: examples

((“listen lecture” ∧ “work at home”) ∨ “cheat” ∨ ¬“pass exam”) ∧
((¬“cheat” ∧ “pass exam”) ∨ ¬“get diploma”)

“listen lecture” “work at home” “cheat” “pass exam” “get diploma”
A1 false false true true true

true true false true true
A3 true true false false false

∧

∨ ∨

∧ ∨

¬

∧ ¬

¬listen work

cheat
pass

diploma

∧

∨ ∨

∧ ∨

¬

∧ ¬

¬listen work

cheat
pass

diploma

∧

∨ ∨

∧ ∨

¬

∧ ¬

¬listen work

cheat
pass

diploma

∧

∨ ∨

∧ ∨

¬

∧ ¬

¬listen work

cheat
pass

diploma

Introduction to Boolean Satisfaction 7 / 37

The Satisfiability Problem

SAT

data: A Boolean formula ϕ

question: Does there exist an interpretation that satifies ϕ?

A formula is satisfiable iff there exists an interpretation that satisfies it

A formula φ is unsatisfiable iff there is no interpretation that satisfies it

▶ Write it UNSAT (φ)

A formula is valid / a tautology iff all interpretations satisfy it

▶ Equivalent to UNSAT (¬φ)

A formula ψ is an implicate of φ iff all interpretations satisfying φ also satisfy ψ

▶ Equivalent to UNSAT (φ ∧ ¬ψ)

A formula ψ is an implicant of φ iff φ is an implicate of ψ

Introduction to Boolean Satisfaction 8 / 37

Examples of Applications

Linux package upgrade

▶ The Eclipse foundation uses Daniel le Berre’s SAT solver SAT4j to solve this problem

▶ Equinox/p2/CUDFResolver

(Re-)Attribution of the TV radiospectrum by the Federal Communications Commission (FCC) in 2017

▶ The radiofrequency allocation problem corresponds to Graph Coloring

⋆ Vertices are broadcasters, colors are frequencies

⋆ Easy to encode as SAT

▶ Reverse auction: the FCC buys frequencies and starts with high quotes that decrease at each round

⋆ Stops when it is not possible to assign frequencies to broadcasters who opted out

▶ Critical to prove unsatisfiability (the auction yielded $20 billion)

Introduction to Boolean Satisfaction 9 / 37

Cook-Levin Theorem

SAT is in NP, the interpretation σ that satisfies it is a polynomial certificate

Théorème de Cook-Levin

SAT is NP-complete

▶ At least as hard as any problem in NP

▶ If SAT is in P then P = NP

Introduction to Boolean Satisfaction 10 / 37

Fragments of SAT

Fragments of SAT are particular case defined by the language

▶ Using only negation (¬), disjunction (∨) and conjunction (∧) is not restrictive

Introduction to Boolean Satisfaction 11 / 37

Disjunctive Normal Form

Disjunctive normal form:

▶ Disjunction of conjunctions (sum) of literals (products)

▶ Ex: (¬a∧b∧c)∨(¬b∧¬c)∧(a∧¬b)

Every product is an implicant, and corresponds to an interpretation

Satisfiability of a DNF is easy

Introduction to Boolean Satisfaction 12 / 37

Conjunctive Normal Form

Conjunctive normal form:

▶ Conjunction of disjunctions of literals (clauses)

▶ Ex: (¬a∨b∨c)∧(¬b∨¬c)∧(a∨¬b)

For any formula φ, there is a CNF formula φ′ such that

▶ SAT (φ) ⇐⇒ SAT (φ′)

▶ |φ′| ∈ O(|φ|c) for some constant c

Every clause is an implicate

Validity of a CNF is easy

Introduction to Boolean Satisfaction 13 / 37

Horn Clauses

Horn clause:

▶ Clause with at most one positive literal

▶ Ex: (¬a ∨ ¬c ∨ b) ∧ (¬b ∨ ¬c) ∧ (¬b ∨ a)

▶ Equivalent to implications
⋆ (a ∧ c ⇒ b) ∧ (b ∧ c ⇒ false) ∧ (b ⇒ a)

Introduction to Boolean Satisfaction 14 / 37

The DIMACS format

Comments

Header [#variables(=5)] [#clauses(=7)]

Variables are numbered 1 to n

One line per clause ’0’ is a delimiter

positive (negative) numbers are positive (negative) literals

▶ (¬x1 ∨ x3 ∨ ¬x5 ∨ x4)

c This line is a comment.

p cnf 5 7

-1 3 -5 4 0

2 -3 0

1 5 0

-3 -4 0

-1 2 4 0

-2 0

2 -3 -5 0

Introduction to Boolean Satisfaction 15 / 37

Basic definitions

Typename/classes

▶ Variable: used for indexing → e.g., int from 0 to n − 1

▶ Literal: used for indexing → e.g., int from 0 to 2n − 1

▶ TruthValue: three possibility (true, false, undef) → {1, 0,−1}
▶ Clause: iterable list of literals

Functions on variables

▶ pos(Variable:x) 7→ Literal x (e.g., 2x + 1)

▶ neg(Variable:x) 7→ Literal ¬x (e.g., 2x)

Functions on literals

▶ sign(Literal:l) 7→ {false, true} (e.g., l%2)

▶ not(Literal:l) 7→ ¬l (e.g., l∧1)

▶ var(Literal:l) 7→ x (e.g., l/2)

Introduction to Boolean Satisfaction 16 / 37

Data structures

Data structures

▶ model [Variable : x] 7→ TruthValue stores the current truth value of x

▶ clauses [Literal : l] 7→ [Clause,...] list of clauses containing literal l

▶ unit-literals stack of true literals (efficient push(Literal:l) and Literal:back() and pop-back())

Functions

▶ val(Variable:x) 7→ TruthValue truth value of variable x

▶ falsified(Literal:l) 7→ Boolean literal is falsified in model

▶ satisfied(Literal:l) 7→ Boolean literal is satisfied in model

IN/OUT

▶ Functions from-dimacs(int:d) 7→ Literal and to-dimacs(Literal:l) 7→ int

▶ Functions read-dimacs() and write-dimacs()

Introduction to Boolean Satisfaction 17 / 37

Outline

1 Introduction to Boolean Satisfaction
Propositional Logic
The Satisfiability Problem
Some Fragments of Propositional Logic

2 Boolean Reasoning
Unit Propagation
Resolution
Proof Systems

Boolean Reasoning 18 / 37

Unit Propagation

A clause forbids exactly one tuple

(x̄ ∨ y ∨ z ∨ v̄ ∨ w̄) ⇐⇒ ¬(x ∧ ȳ ∧ z̄ ∧ v ∧ w)

What can we deduce by looking at just one clause?

Nothing unless it is a unit clause (p): then we deduce that the literal p is true

▶ x is true if p = x

▶ x is false if p = x̄

If the clause has two (independent) literals, any one can be false, providing that the other is true

Incomplete proof system (e.g. (x ∨ a) ∧ (x̄ ∨ a) ∧ (ȳ ∨ ā) ∧ (y ∨ ā))

Boolean Reasoning 19 / 37

Unit Propagation

However it propagates: if we have the unit literal p, a clause containing p̄ can be reduced, and maybe
become unit, triggering more unit propagation

(x̄ ∨ y ∨ z ∨ v̄ ∨ w̄) ∧ (p̄ ∨ x) ∧ (p̄ ∨ ȳ) ∧ (q ∨ z̄) ∧ (q ∨ v) ∧ (p) ∧ (q ∨ w) ∧ (q̄ ∨ x̄ ∨ y)

(p) is a unit clause

(x) and (ȳ)

(q̄) is a unit clause

(z̄), (v) and (w) are unit clauses

Unit propagation produces an empty clause

p

x

ȳ

q̄

z̄

v

w

⊥

Boolean Reasoning 20 / 37

Unit Propagation

Unit propagation solves Horn-SAT

If a Horn-SAT formula has no unit clause, then every clause has at least one negative literal

▶ The model with all variables false satisfies the formula

Otherwise, unit propagate until reaching an inconsistency or a subformula without unit clauses

Boolean Reasoning 21 / 37

Implementing Unit Propagation

A clause can either be:

▶ Satisfied iff it contains at least one true literal

▶ Falsified iff it contains only false literals

▶ Unit iff it contains a single unknown literal, and n − 1 false literals

▶ Unresolved iff it contains no true literal and at least two unknown literals

? ? ?

?

? ? ?

Boolean Reasoning 22 / 37

Unit Propagation with counters

Unit propagation algorithm (counters)

Organise clauses per literals (Clauses(l) is the set of clauses containing literal l)
keep an initially null counter #fi of false literals for each clause ci
Put all unit clauses (true literals) in a list
while There is a non-processed true literal l do

mark l as processed
foreach ci ∈ Clauses(l) do

increment #fi // at most once per literal: O(s)
if #fi = |ci | then return FAIL
if #fi = |ci | − 1 then

find the last literal and add it to the list of true literals // Θ(|ci |) at most once per clause: O(s)

Let φ have n variables and m clauses, and let s be the total number of literals s =
∑m

i=1 |ci |

Worst case: every variable x is unit propagated (x if |Clauses(x)| ≥ |Clauses(x̄)|, and x̄ otherwise)

Overall linear time Θ(s) amortized down a branch

Boolean Reasoning 23 / 37

Watched Literals

Invariant Watch only two non-false literals per clause

▶ Watch(l) is the list of clauses that watches literal l

Non-watched literals can become false, it cannot
make the clause unit or falsified as long as two
unknown literals remain

When a watched literal become false, a replacement
must be found

When no replacement can be found, the clause is
either unit or falsified

Nothing to do when backtracking: the literals
watched at level i cannot be false at level i − 1

? ? ? ? ? unresolved

↓ ↓

? ? @3 ? @1 unresolved

↓ ↓

@5 ? @3 ? @1 unresolved

↓ ↓

@5 @7 @3 @7 @1 unit

↓ ↓

? ? @3 ? @1 backtrack to level 4

↓ ↓

Boolean Reasoning 24 / 37

Finding a new watched literals

Scan the clause from first to last literal: possibly Θ(|ci |) scans
each costing Θ(|ci |)

▶ Quadratic

Store the initial position of the watch and scan forward

▶ Linear but we must update the position of the watchers when
backtracking

Circular list: scan forward, but past the end and back to the
current position

▶ The clause is scanned at most twice: linear and no need to do
anything when backtracking!

? @1 @2 @3 @4 @5

↓ ↓ ↓ ↓ ↓ ↓

? @1 @2 @3 @4 @5

↓ ↓ ↓ ↓ ↓ ↓

? @1 @2 @3 @4 @5

↓ ↓ ↓ ↓ ↓ ↓

Boolean Reasoning 25 / 37

Average Complexity

Let n be the number of variables, m be the number of clauses, s =
∑m

i=1 |ci | be the overall size of the
formula, k be the number of true literals after unit propagation

Consider first the clauses that unit propagated

▶ They contain only variables among the k true literals
▶ In order to propagate them, every literal must be explored (to increment the counter of find a new watched): it

takes linear time in both cases call that O(K)

Consider now the m′ clauses that did not unit propagate (and let s ′ be their total size)

▶ The counters algorithm increments the counters of every clause containing one of the k true literals

⋆ The average number of clauses per literal is s′
n

so Θ
(

ks′
n

)
time in average

▶ Overall: Θ(O(K) + ks′

n
) time

▶ The watched algorithm increments finds a new wathed literal for each of the clauses that watch it

⋆ A literal is watched by m′
n

of these clauses in average

⋆ The probability that a random literal is not false is n−k
n

, so the expected number of literals to scan to find a valid one to watch is n
n−k

▶ Overall: Θ(O(K) + km′

n−k
) time

Boolean Reasoning 26 / 37

Additionnal structures

Structure

▶ watches [Literal : l] 7→ [Clause,...] list of clauses watching literal l

▶ int:to-propagate the first non-unit-propagated literal in unit-literals

Functions

▶ get-rank(Clause:c, Literal:l) 7→ {0, 1} 0 if l is the first watched in c, 1 otherwise

▶ get-index(Clause:c, {0, 1}:r) 7→ int index of the (r + 1)-th watched in c

▶ set-watcher(Clause:c, Literal:l , {0, 1}:r) set l as (r + 1)-th watcher of c

▶ assign(Literal:l) push l onto unit-literals and set model [var(l)]

Boolean Reasoning 27 / 37

Algorithm

Unit propagation algorithm (watched literals)

Algorithm: unit-propagate()

while to-propagate < |unit-literals| do
l ← not(unit-literals [to-propagate])
if not unit-propagate(l) then

return false

to-propagate← to-propagate + 1

return true

Algorithm: unit-propagate(l)

Input: A non-unit propagated false literal l
Output: false in case of a contradiction, true

otherwise

foreach c ∈ clauses[l] do
r ← get-rank(c, l); start ← i ← get-index(c, r)
p ← c[get-index(c, 1-r)]
if not satisfied(p) then

while true do
i ← i + 1
if i = |c| then i ← 0
if i = start then break
if c[i] ̸= p then

if not falsified(c[i]) then
set-watcher(c, c[i], r)
break

if i = start then
if falsified(p) then return false
assign(p)

return true

Boolean Reasoning 28 / 37

Resolution

Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

▶ Complete proof system for propositional logic: If the formula φ is not satisfiable, then there is sequence of
resolution steps that produce the empty clause ⊥

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

▶ (α) subsumes (α ∨ x) Boolean Reasoning 29 / 37

Resolution and 2-SAT

Theorem

Resolution solves 2-SAT in polynomial time

Resolution is a complete refutation system for SAT (and hence for 2-SAT)

Resolvant clauses have at most 2 literals

▶ There are at most n2 binary clauses

Boolean Reasoning 30 / 37

Algorithm for 2-SAT

(¬y∨z)∧(¬z∨¬x)∧(x∨¬z)∧(¬z ∨ ¬z)∧(y ∨ y)∧(y∨z)∧(z ∨ z)∧(x ∨ x)

Algorithm

x ∨ y is equivalent to ¬x =⇒ y and ¬y =⇒ x

Add transitive edges

▶ If there is an inconsistency, then the formula is not satisfiable
▶ If not, it is satisfiable, because the choice x =⇒ ¬x closes a cycle

only if there is a path ¬x =⇒ x

x

¬x

y

¬y

z¬z

Boolean Reasoning 31 / 37

Proofs

SAT is in NP: if an instance is satisfiable, it is possible to prove it efficiently

▶ Just show a model and check clause by clause that is it correct (it is a certificate)

What about the question “is φ unsatisfiable?”, or “is φ a tautology?”

▶ There might not exist short certificates for problems in coNP, but we can provide a long one

Proof system: maps to every unsatisfiable formula φ a refutation R

▶ There is a polynomial algorithm (in |R|) to check the refutation proof

⋆ Pebbling formulas

Boolean Reasoning 32 / 37

Resolution as a proof system

φ = (a ∨ ¬b) ∧ (¬a ∨ c ∨ ¬d) ∧ (a ∨ c ∨ ¬d) ∧ (¬c ∨ ¬e) ∧ (¬c ∨ e) ∧ (c ∨ d)

c1 = (¬c ∨ e) ∈ φ
c2 = (¬c ∨ ¬e) ∈ φ
c3 = (¬c) resolvant of c1 and c2
c4 = (a ∨ c ∨ ¬d) ∈ φ
c5 = (¬a ∨ c ∨ ¬d) ∈ φ
c6 = (c ∨ ¬d) resolvant of c4 and c5
c7 = (c ∨ d) ∈ φ
c8 = (c) resolvant of c6 and c7
c9 = () resolvant of c3 and c8

Boolean Reasoning 33 / 37

Resolution proofs from tree search

φ = (a ∨ ¬b) ∧ (¬a ∨ c ∨ ¬d) ∧ (a ∨ c ∨ ¬d) ∧ (¬c ∨ ¬e) ∧ (¬c ∨ e) ∧ (c ∨ d)

()()

(a)(a)

ā

(a ∨ b̄)(a ∨ b̄)

b

(a)(a)

b̄

(a ∨ c)(a ∨ c)

c̄

(c̄)(c̄)

c

(c ∨ d)(c ∨ d)

d̄

(a ∨ c ∨ d̄)(a ∨ c ∨ d̄)

d

(c̄ ∨ e)(c̄ ∨ e)

ē

(c̄ ∨ ē)(c̄ ∨ ē)

e

(ā)(ā)

a

(ā ∨ c)(ā ∨ c)

c̄

(c̄)(c̄)

c

(c ∨ d)(c ∨ d)

d̄

(ā ∨ c ∨ d̄)(ā ∨ c ∨ d̄)

d

(c̄ ∨ e)(c̄ ∨ e)

ē

(c̄ ∨ ē)(c̄ ∨ ē)

d

Boolean Reasoning 34 / 37

Resolution is sound and complete

Soundness: if there exists a resolution refutation then the formula is unsatisfiable

▶ Resolution is a sound proof system simply because the resolution step is sound

Completeness: if a formula is unsatisfiable then there exists a resolution refutation of that formula

▶ Tree search is obviously a complete proof system

▶ To every search tree we can associate a resolution proof

▶ Therefore resolution is a complete proof system

Boolean Reasoning 35 / 37

Resolution: conciseness

What does make a proof system good? (besides soundness and completeness)

A good proof system is one that allows shorter proofs

▶ If refutations are polynomial size in general, then NP = coNP

For any tree search refutation, there is a resolution refutation of same size

There exist formulas with short resolution refutation but exponential tree search refutations

Boolean Reasoning 36 / 37

Pigeon Hole

Pigeon Hole Principle

If m > n there is no injective mapping of m objects onto n

PHPm→n : (x1,1 ∨ x1,2 ∨ . . . ∨ x1,n)∧ Pigeon 1 needs a hole

. . .

(xm,1 ∨ xm,2 ∨ . . . ∨ xm,n)∧ Pigeon m needs a hole∧
1≤i<j≤m

(¯xi,1 ∨ ¯xj,1)∧ Hole 1 can contain at most 1 pigeon

. . .∧
1≤i<j≤m

(¯xi,n ∨ ¯xj,n) Hole n can contain at most 1 pigeon

Resolution refutations of the pigeon hole principle are exponential

Using induction, for instance, one can make a linear size refutation

Boolean Reasoning 37 / 37

	Introduction to Boolean Satisfaction
	Propositional Logic
	The Satisfiability Problem
	Some Fragments of Propositional Logic

	Boolean Reasoning
	Unit Propagation
	Resolution
	Proof Systems

