
Introduction to

Web Application Security

1

Application security
• Creating a software component is easy

(framework, component re-use, library, etc.)

• But securing this component is hard

➡ you must consider everything the attacker has in mind

• Large attack surface

• Application layer ⬅

• System/server layer (kernel weakness, key-logger, etc.)

• Network layer (sniffing, etc.)

• User layer (phishing, etc.)

2

Web application security

• Web application are multi-tiered architecture

➡ security flaws may appear at many levels

• Despite that, they are associated to strong security requirements

• Authentication

• Authorization

• Confidentiality

• Integrity

• Non-repudiation

https://www.owasp.org

3

OWASP Top Ten
OWASP Top 10 - 2013  OWASP Top 10 - 2017

A1 – Injection  A1:2017-Injection

A2 – Broken Authentication and Session Management  A2:2017-Broken Authentication

A3 – Cross-Site Scripting (XSS)  A3:2017-Sensitive Data Exposure

A4 – Insecure Direct Object References [Merged+A7] ∪ A4:2017-XML External Entities (XXE) [NEW]

A5 – Security Misconfiguration  A5:2017-Broken Access Control [Merged]

A6 – Sensitive Data Exposure  A6:2017-Security Misconfiguration

A7 – Missing Function Level Access Contr [Merged+A4] ∪ A7:2017-Cross-Site Scripting (XSS)

A8 – Cross-Site Request Forgery (CSRF)  A8:2017-Insecure Deserialization [NEW, Community]

A9 – Using Components with Known Vulnerabilities  A9:2017-Using Components with Known Vulnerabilities

A10 – Unvalidated Redirects and Forwards  A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

4

Injection

5

Injection

the ✔

6

Injection

the ✔

brings ✘

7

Injection

the ✔

brings ✘

the main ✔

8

Injection

the

brings ✘

the main ✔

the ma ✘

the ma ✘

9

Injection

the ✔

brings ✘

the main ✔

the ma ✘

the ma ✘

the laboratory. He goes to the ✔

10

SQL Injection
Client side

login?

pass?

x

Server side

<?php

include('db.php');

$r = db_query("select * from user where "

 "login = '$login' and pass='$pass'");

if (db_fetch_row($r))

 include('connected.php');

else

 include('error.php');

?>

Database

user
login

john

vincent

pass

12gh3

uut1p

Client inputs

; 12gh3john

; x' or '1'='1yes

; 123random select * from user where login = 'random' and pass='123'

select * from user where login = 'john' and pass='12gh3'

select * from user where login = 'yes' and pass='x' or '1'='1'

Request Result

error

connected

connected!!!

11

SQL Injection

• Consider this vulnerable code:

http://library.com/dispatcher?action=list&id=1234567
$id = $_GET["id"];
$res = query("select * from books where id=’" + $id + "’");

• How to list all books and users?

• Server constructs a SQL request with user data, on the fly

• The badly crafted user data change the semantic of the request

• Loss of confidentiality, authentication of integrity

12

SQL Injection

• Security measures:

• Parameterized SQL statements

• Stored procedures

• Escape user-input

• Whitelisting

• Privilege principle

• Beware, the ultimate solution does not exist

$res = query("select * from sensors_" + $_GET["num"]);

13

XSS Injection
• Cross-Site Scripting

<html><body>
<?php if ($_GET["name"]) { print("Hi " . $_GET["name"]);
 } else { print("Who are you?"); } ?>
</body></html>

http://server/xss.php?name=titi

14

XSS Injection
• Cross-Site Scripting

<html><body>
<?php if ($_GET["name"]) { print("Hi " . $_GET["name"]);
 } else { print("Who are you?"); } ?>
</body></html>

http://server/xss.php?name=titi<script>alert(’ici’);</script>

15

XSS Injection

• Attacker manages to modify the semantic of the server response

• Usually, the modified response includes a malicious script

• Script has access to all DOM structure

• Objectives: retrieve the cookie, get page content, etc.

• Reflected XSS / Stored XSS

• Server may inhibit the meaning of special characters

<script> ➡ <script>

• HTTP header: Content-Security-Policy, X-XSS-Protection, etc.

16

CSRF

• Cross-Site Request Forgery: close to XSS attack

• Force an authenticated user to execute a request

• The server cannot distinguish beetwen a legitimate request and

the forced request

• Alice uses a browser

• She is connected to its bank account and to its mail account

• She receives a mail from Eve with this content:

17

CSRF

• The REFERER header identifies the site behind the request

• Make request distinguishable

• Add a random token inside the legitimate webpage

• Change this token value at every access of the webpage

• Every critical user request must contain this token

• Third party website (maybe malicious) cannot guess this value

• Add challenge/response (like captcha) on critical functions

18

ReDoS
• Regular Expression Denial of Service

• Takes benefit of algorithmic complexity of regexp matching

a

a a

• Input ab ⇨ 2 paths

• Input aab ⇨ 4 paths

• Input aaab ⇨ 8 paths

• Choose the right library!

19

Unvalidated Input

• User can tamper with any part of his HTTP request

• Attacker can downaload a page and change its content

<form method="POST" action="buy.php">
 <input type="hidden" name="price" value="10.00">
 <input name="number" value="1">
 <input type="submit">
</form>

• Client-side validation is bad from a security point of view

• Never trust client side data and inputs

20

Others vulnerabilities

• Broken Authentication

• Http Parameter Pollution

• OS-Command

• Directory traversal

• ...

21

