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Abstract

This paper attempts to propose a general framework to the multicriteria analysis and synthesis of

visual servoing schemes in robotics. Two of the most prominent control strategies are unified under a

common state-space representation, which is highly nonlinear and possibly uncertain. This model is then

embedded into a Linear Differential Inclusion with linear fractional uncertainty, so that the problem can

be tackled in a robust linear control context. Many visual servoing requirements can be dealt with, e.g.

convergence, avoidance of actuators saturations, image and 3D contraints.

Existing work on the analysis and control of rational systems through quadratic Lyapunov functions is

a seminal basis to the approach. As the symmetry and convexity properties of the consequent ellipsoidal

invariant sets is penalizing in this robotics context, some extensions are presented, which can be of

independent interest.

When possible, the criteria are dealt with through Linear Matrix Inequalities.

Keywords:visual servoing, rational systems, “global linearization”, LFTs, robust linear control, lin-

ear matrix inequalities.

0 Notations

This paper uses some standard notation. IfA is a matrix, thenA
′
, A−1, rankA, traceA, detA, respectively

term the transpose, the inverse, the rank, the trace and the determinant ofA; A is assumed to have appro-

priate dimensions so that such operators can be applied.I n and 0(n;m) respectively term the identity matrix

of �n×n and the null matrix of�n×m; when there is no ambiguity,I and 0 are used instead. The diag(.)

constructor enables the definition of a block-diagonal matrix from scalars or square submatrices of appro-

priate dimensions. The operator colj(A) extracts thej th column of the matrixA. The symbol
∆= means

“is equal to, by definition”. The notationP > 0 (resp.P < 0) means that the square matrixP is positive

definite (resp. negative definite.) Similarly,P≥ 0 andP≤ 0 are used for semidefiniteness. Without loss of

generality,P is assumed symmetric.

More specific notations follow. A vectorr = (r 1, . . . , rN)
′ ∈ �N being given, np(r)

is defined as np(r)
∆=∑N

i=1 ri . Besides, the following sets will often be referred to:

�(r) ∆={∆ = diag(δ1Ir1
, . . . ,δNIrN) : δi ∈ �, i = 1, . . . ,N}; �(r) ∆={∆ ∈�(r) : |δi | ≤ 1, i = 1, . . . ,N};

�(r) ∆={B= diag(B1, . . . ,BN) : Bi ∈ �ri ×ri , i = 1, . . . ,N}; � (r) ∆={S∈�(r) : Si = S
′
i > 0, i = 1, . . . ,N};

� (r) ∆={G∈�(r) : Gi = −G
′
i , i = 1, . . . ,N}.
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1 Introduction

The advent of fast and efficient visual sensors has led the robotics community to investigate a broader

field of applications. In addition to their former use in low-frequency tasks such as pattern recognition

or scene modeling and interpretation, cameras have been considered as a relevant information source for

tasks operating at fast rate. Consequently, a considerable effort has been made on the problematics of

optical odometry, active vision, visual-based control, to cite few. This paper takes place within the last area

mentioned, which has been a very active field of research for the last fifteen years, see for example [24]

and the journal special issues [27, 33].

The use of visual data in control algorithms shows many advantages compared to a solution exclusively

based on proprioceptive information†. For instance, when considering a proprioceptive-based servo of a

manipulator arm, an error-free regulation of the end-effector pose‡ to a constant reference does not ensure

that the task is properly performed, e.g. because of errors in the models of the robot or of its environment.

By contrast, a visual feedback is a fundamental step towards the fulfillment of accurate positioning tasks.

Visual sensors may even be mandatory for tracking moving targets.

This paper assumes that the camera is rigidly attached to the controlled robot or end-effector. Visual ser-

vocontrol schemes can be classified depending on the type of data that is transmitted to the controller [27].

The approach commonly namedposition-based—or “3D” — visual servoingdefines the controlled vari-

able as the3D pose, i.e. the relative situation between the sensor and the target. This quantity is estimated

from the processed image by a localization algorithm. As localization reliability heavily depends on a good

knowledge of the camera calibration parameters and —when such extra-information is used— of the model

of the target, the robustness of 3D servos may happen to be fairly poor. In addition, though some feeling

can be got about the camera 3D trajectory, no straight conclusion can be established concerning the 2D

apparent motion in the image, so that the target may be lost. Animage-based—or “2D” — visual servoing

entails a control law that is directly expressed in the space of the visual sensor. In its simplest form, some

dedicatedvisual features—spots, lines, etc.— are fixed to the target, which projections onto the camera

image plane must reach a reference configuration. No 3D pose reconstruction is required, so that this kind

of visual-based feedback is less sensible to calibration errors and can be implemented at a higher rate.

However, even if the image trajectory may be approximately controlled, the consequent 3D trajectory may

get contorted. More recent hybrid “212D” servos avoid some drawbacks of the above schemes [30].

As one would expect, visual servocontrol raises sharp problems at the confluence of Computer Vision

and Automatic Control [40]. At the sensor level, fast and reliable algorithms are needed for features

†Proprioceptive sensors—e.g. encoders, odometers, gyroscopes, etc.— provide information about a robot internal state, whileex-

teroceptive sensors—e.g. visual sensors, laser telemeters, ultrasonic sensors, etc.— are involved in the perception of its environment.
‡The wordsposeandsituationterm the pair (position,attitude).
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extraction and labelling, or for localization. On a control point of view, many strategies have been used.

A pioneering work proposed by Espiauet al. [19] reformulates the problem in the space of a penalized

output, calledtask function[36], under some regularity conditions. Numerous studies and extensions have

then been developed in this framework. In [28], a robust stabilizing controller for a simplified robot is

synthesized taking into account Lagrangian dynamics. An underactuated rigid body system is visually

servoed using robust backstepping techniques in [23]. Adaptive, LQR and Generalized Predictive control

have respectively been considered in [34] [25] and [22]. In [39], a gain-scheduled� ∞ controller for a

pan/tilt platform is synthesized, achieving some robust performance. Problems of task singularities and

convergence are recorded in [6], for strategies entailing the inverse of the Jacobian relating the camera

control input to the derivatives of either 3D situation parameters or 2D parameters in the image. Stability

analysis for recent strategies are presented in [29].

Despite this large amount of work, the analysis and the synthesis of visual-based positioning laws are

still open with respect to convergence, avoidance of actuators’ and sensors’ saturations and guarantee of 3D

constraints, when all those criteria are simultaneously taken into account. So it is, both in situation-based

and feature-based approaches. Some strategies have been proposed to maintain the target into the camera

field of view, through path-planning [33, 43], navigation functions [10], circular-like trajectories [8] or

decoupling issues [42, 9]. A controller is designed in [41] so as to quadratically stabilize a polytopic system

which locally embeds a task-function based representation while taking into account actuators velocities

bounds and visibility constraints. However, the avoidance of some convergence problems referred to in [6]

is not ensured.

This paper attempts to propose a general framework for the solution of this whole multicriteria problem

in the kinematic case, i.e. when dynamics effects are neglected. More specifically, the positioning of a 6

degrees-of-freedom (DOF) camera with respect to a fixed target is considered in an uncluttered environ-

ment. Position-based and image-based servos are unified into a common state-space model in§ 2. This

model is then embedded into a Linear Differential Inclusion with LFT uncertainty in§ 3, so that the mul-

ticriteria analysis or synthesis can be tackled in a robust linear control context. The mere application of

existing techniques, shown in§ 4, does not enable the treatment of relevant visual servoing schemes. So,

two extensions —which may be of independent interest— are presented in§5 to reduce their conservatism.

Perspectives and open problems are finally discussed.

2 State space modeling of interactions and Problem statement

As mentioned in the introduction, this paper tackles the multicriteria analysis and synthesis of visual-based

control schemes which aim to drive a perspective camera to a unique relative situation with respect to a
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fixed target. Dedicated spots serve as visual features. They are layed on the target in such a way that to any

configuration of their projection onto the camera image plane corresponds a unique sensor-target relative

situation. This is the case when coplanar unaligned spots are used, whose number is at least four [26].

Though the environment can be constrained, it is presumed to be free of mobile obstacles.

A noise-free model of interactions is set up first, in which all the parameters are known. The actuators,

the sensor and the image processing system —particularly the extraction and the labeling of the projections

of the visual features, and, when necessary, the visual-based localization algorithm— are supposed perfect

and instantaneous, so that they do not explicitely appear. As is often the case in the literature, dynamic

effects in the camera motion are neglected. The control input to the so-called kinematic model is thus the

camera velocity screw, i.e. the vector made up of its translational and rotational velocities. The method will

be further shown to easily take into account parametric uncertainties, if any.

2.1 Notations
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Figure 1: FramesFO, FS, FT

The following frames are relevant to the forthcoming modeling,

see Figure 1.FO = (O,−→xO,−→yO,−→zO) is a frame linked to the world.

FS = (S,−→xS,−→yS,−→zS) is rigidly associated to the camera, withS the

optical center and−→zS positioned on the optical axis. The third frame

FT = (T,−→xT ,−→yT ,−→zT ), rigidly linked to the target, is defined as the

situation to be reached byFS once the positioning is performed. Of

course, all the constraints of the problem must be fulfilled whenFS

andFT coincide.

A variable is superscripted by the symbol∗ to depict its value

at the camera reference situation.

The target is fitted with theM dedicated spotsT1, T2, . . .TM,

whose perspective projections onto the camera image plane are

termed S1, S2, . . .SM. Let (
−→
STi)(FS) = (xi ,yi ,zi)

′
and (

−→
TTi)(FT) = (ai ,bi ,ci)

′
be the coordinates ofTi ,

i = 1, . . . ,M, in framesFS andFT . The metric coordinates(
−→
SSi)(FS) = (Xi ,Yi , f )

′
of Si, i = 1, . . . ,M, in

frameFS thus satisfyXi = f
xi
zi

andYi = f
yi
zi

, with f the camera focal length. In addition, one hasX ∗
i = f

ai
ci

andY∗
i = f

bi
ci

.

2.2 Open-loop model

Assume first that a 6DOF “free-flying” camera is considered. As previously outlined, the control sig-

nal vectoru is the velocity screw of the camera with respect to the world. Equivalently, one states
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u
∆=(Vx,Vy,Vz,Ωx,Ωy,Ωz)

′
, with (Vx,Vy,Vz)′ and (Ωx,Ωy,Ωz)′ the entries inFS of the translational and

rotational velocities ofFS w.r.t. FO.

No dynamic effect is assumed in the camera motion and the target is motionless, so that every variable

of the open-loop system can be determined through a memoryless mapping of the sensor-target relative

situation. The state vector is therefore defined asx = (� ′,�′)′ with � (resp.�) a parametrization of

the relative translation (resp. of the relative attitude) betweenFS andFT . � can be naturally made up

with the entries(
−→
ST)(FS) = (tx, ty, tz)

′
in frameFS of the vector joining the originsS andT of FS andFT .

As the Special Orthogonal Group of rotations is not isomorphic to� 3, the definition of� as a 3-tuple of

independent angles is somewhat more involved: care must indeed be taken in order to avoid the singularities

of this representation during the completion of the task. A convenient choice is the set of Bryant angles§

� = (λ ,µ ,ν)
′
. This 3-tuple of attitude parameters is indeed multivalued only whenµ ≡± π

2 [2π], in

which case the camera optical axis−→zS is orthogonal to−→zT . Such a configuration cannot happen in a visual

servocontrol task, lest the target would be out of the camera field of view [3].

The output vectory is defined as the input to the controller. If the control under study is of the position-

based type,y is merely the state vectorx. When considering an image-based servo,y must be a function

of the vectors
∆=(X1,Y1, . . . ,XM,YM)′ made of the projections coordinates of the visual features. Besides,y

must be a function of the reference coordinatess∗. Lastly, in order to enable the global linearization step

explained in§3.3,y must be 0 whenx = 0. So, for an image-based servo, one setsy = s−s∗.

The state equation depicts the effect of the velocity screw onto the relative sensor-target situation.

It is obtained by applying the translational and rotational velocities composition rule. For image-based

servos, the output equation accounts for the interaction between the sensor-target relative situation and the

coordinates of the features’ perspective projections. An outline of the computations concerning the 6DOF

case is given in Appendix A. They lead to the open-loop state space equations (1)–(2) in Figure 2. When

the camera degrees of freedom are restricted, the open-loop state vectorx and the control vectoru lie in � n

and�nu . Though the results will henceforth be presented tellingn from nu, these two dimensions will be

assumed equal. Also recall thaty belongs to�2M .

2.3 Closed-loop system and Problem statement

The open-loop equations (1)–(2) were shown to be highly nonlinear. Moreover, though it hasn’t been

supposed so far, they are often affected by some uncertainty, e.g. on the focal lengthf of the camera, on

the coefficientsai,bi ,ci of the target model, etc.

§The relative attitude betweenFS = (S,−→xS,−→yS,−→zS) andFT = (T,−→xT ,−→yT ,−→zT ) is depicted through the 3-tuple(λ ,µ ,ν ) as follows:

an intermediate frameF2 is first obtained by rotatingFS of the angleλ around−→xS; rotatingF2 of the angleµ around−→y2 leads to a

secondary intermediate frameF3, the image of which through the rotation of angleν around−→z3 is (S,−→xT ,−→yT ,−→zT ).
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

ṫx

ṫy

ṫz

λ̇

µ̇

ν̇


=



−1 0 0 0 −tz ty

0 −1 0 tz 0 −tx

0 0 −1 −ty tx 0

0 0 0 −1 −sinλ tanµ cosλ tanµ

0 0 0 0 −cosλ −sinλ

0 0 0 0 sinλ
cosµ

−cosλ
cosµ





Vx

Vy

Vz

Ωx

Ωy

Ωz


(1)

y = x (position-based servo) | y = (X1−X∗
1 ,Y1−Y∗

1 , . . . ,YM −Y∗
M)

′
(image-based servo) (2)

with

Xi −X∗
i

Yi −Y∗
i

= f
ci zi

ci xi −ai zi

ci yi −bi zi

 and

zi = tz +ai(−cosλ sinµ cosν +sinλ sinν )+bi(cosλ sinµ sinν +sinλ cosν )+ci cosλ cosµ

ci xi −ai zi = citx−aitz−a2
i (−cosλ sinµ cosν +sinλ sinν )+c2

i sinµ −bici cosµ sinν

−aibi(cosλ sinµ sinν +sinλ cosν )+aici cosµ(cosν −cosλ )

ci yi −bi zi = city−bitz−b2
i (cosλ sinµ sinν +sinλ cosν )−c2

i sinλ cosµ

−aibi(−cosλ sinµ cosν +sinλ sinν )+aici(sinλ sinµ cosν +cosλ sinν )

+bici (cosλ (cosν −cosµ)−sinλ sinµ sinν ).

Figure 2: Open-loop model(mind the typo error, corrected in red)

Let a visual-based feedback controller having no external input be connected to the above open-loop

model. The first property to be checked or ensured in closed-loop is the convergence of the camera to

the reference final situation. Because of the above choice of the open-loop state vector, this positioning is

performed whenever the equilibrium state 0 of the —autonomous— closed-loop system is asymptotically

stable¶. Doing so, “local minima” [6] —viz. convergence to situations such that the control vector is zero

while s ands∗ differ— are avoided.

The other criteria of the problem are dealt with by making some scalar so-called additional variables

ζ j , j = 1, . . . ,nζ , lie into prescribed intervals. Without loss of generality, each such additional variable

is a memoryless functionζ j(x̃) of the closed-loop state vector ˜x
∆=(x′,x′c)

′, taking the value 0 when ˜x is 0.

Boundedness constraints on additional variables enable the satisfaction of criteria of paramount importance.

For instance, the visual features’ projections can be restricted to the physical limits of the camera image

plane by definingζ j = sj −s∗j , including for 3D servos. Actuators saturations can be dealt with as well,

e.g. by defining someζ j ’s as entries of the velocity screwu or norms of subvectors extracted fromu. 3D

constraints, such as constraining the camera to move inside a corridor without hitting its walls, can be

handled even for 2D servos by bounding some distancesζ j = d3D j
. Last, imposing bounds on the control

signalu or the differencessj −s∗j can enable the avoidance of differential singularities in the loop transfers,

¶In fact, the attractivity of 0 is sufficient to ensure the positioning. Nevertheless, asymptotic stability is wanted to prevent,

for instance, camera round-trips through infinity, e.g. as these described by [6] in the case of some image-based inverse Jacobian

controllers.
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e.g. when using some 2D inverse Jacobian control schemes.

Such a statement can be viewed as a first step towards a “standard” problem in visual servoing. For

instance, a penalized outputz can be introduced having in some way the meaning of a task function.

Despite the problem is not fully reformulated in the task space as in [19, 36], it can be associated to the

minimization of a criterion onz or on the transfer from a relevant input signalw to z. In principle, any

type of controller can be considered, whether 3D or 2D, static or dynamic, or even gain-scheduled (e.g.

2D controllers scheduled by 3D data, which would be a special kind of 21
2D controllers.) Also note that

dynamic effects could be taken into account in the open-loop model, by buildingu with the forces and

torques which cause the camera motion, and by definingx with pose parameters and velocities. Besides, a

finer modeling of the camera could be used, including all its intrinsic parameters rather than just the focal

f , so thatsands∗ would be expressed in pixel coordinates. Uncertainties on the camera parameters, on the

measurements, or on the coefficientsai ,bi,ci of the target model can be considered as well.

3 Towards a robust linear control problem

The problem is dealt with in the linear robust control framework, as many results have been developed for

the multicriteria analysis and synthesis of linear uncertain systems. They sometimes lead to convex opti-

mization problems —e.g. entailing Linear Matrix Inequalities (LMIs) [5]— which enjoy nice tractability

properties and can thus be solved with efficient solvers.

The possibly uncertain genuine nonlinear closed-loop system is “embedded” into an uncertain system

described by a linear differential inclusion. So, when dealing with analysis, a property is proved true for

the nonlinear closed-loop system whenever it is satisfied by this embedding inclusion. As for the synthesis,

one may endow the actual closed-loop system with a given property by bestowing this property to each

realization of the uncertain system. Such a linerization technique, referred to as “global linearization” in

[5], handles nonlinearities and uncertainties in a unified manner. Of course, it induces conservatism, in that

many trajectories of the uncertain system —henceforth termed “spurious”— are physically meaningless.

So, the analysis/synthesis conditions, which are only sufficient, may be far too pessimistic. At worst, their

conjunction may lead to a poor performance, or even be void.

The proposed methodology relies on the seminal work of El Ghaouiet al. concerning the analysis

and control of rational systems [18, 17, 14, 13]. In this context, the global linearization step leads to an

embedding linear system with strongly structured uncertainty, hopefully limiting the conservatism.
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3.1 Rational systems

Definition 3.1 (Rational system [18]) A system is saidrational if its state space representation has the

form‖ ẋ

y

=

A(Φx(x),Φχ (χ)) B(Φx(x),Φχ (χ))

C(Φx(x),Φχ (χ)) D(Φx(x),Φχ (χ))

x

u

 , (3)

whereΦx(.) and Φχ (.) are some vector-valued functions, andA(., .), B(., .), C(., .), D(., .) term some

matrix functions which depend rationally on their arguments and are well-defined in(Φ x,Φχ ) = (0,0).

When inserted, the vectorχ accounts for parametric uncertainties.

In the context of visual servoing, all the attitude coordinates appear as the arguments of trigonometric

functions. Provided thatλ ∈ [− π
2 ; π

2 ], µ ∈ ]− π
2 ; π

2 [ andν ∈ [−π;π], a bijective change of variables can be

applied to the state vector, respectively turningλ , µ andν into L, M, N, with

L
∆= tan(

λ
2

), M
∆= tan(

µ
2

), N
∆= tan(

ν
4

), (4)

so as to get the following equivalent rational representation of the open-loop system (1)–(2):ẋ

y

=

 0 B(Φx(x))

C(Φx(x)) 0

x

u

 , x∈ �n, Φx(x) ∈ �Nx . (5)

The interconnection of (5) with amth-order controllerẋc

u

=

Kc(Φcx(x)) Kcy(Φcx(x))

Ku(Φcx(x)) K(Φcx(x))

xc

y

 , xc ∈ �m, Φcx(x) ∈ �Ncx , (6)

leads to the autonomous closed-loop rational system

˙̃x = Ã(Φ(x)) x̃, x̃∈ �n+m, Φ(x) ∈ �N . (7)

3.2 Equivalent Linear Fractional Transforms

Definition 3.2 (LFT of a rational system — Well-posedness) It can be shown [18] that(5) can be

turned into the formẋ

y

=

( 0 B�
u

C�
y 0

+

 B�
p

D�
yp

∆ol(Φx(x)) (I −D�
qp∆ol(Φx(x)))

−1
(
C�

q D�
qu

))x

u

 (8)

with ∆ol(Φx(x)) = diag(Φx1(x)Irol1
, . . . ,ΦxNx

(x)IrolNx
),

‖The definition must be somewhat looser than in [18] or [13], for an important reason to be explained in§ 6, page 43.
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rol = (rol1, . . . , rolNx
)
′
being an adequate vector in�Nx , and B�

u, C�
y, B�

p, D�
yp, C�

q, D�
qu, D�

qp some appropriate

constant matrices. Moreover, for all values of x such thatdet(I −D �
qp∆ol(Φx(x))) 	= 0, (8) is saidwell-

posedand can be equivalently represented by
ẋ

y

q�

=


0 B�

u B�
p

C�
y 0 D�

yp

C�
q D�

qu D�
qp




x

u

p�

 , p� = ∆ol(Φx(x))q�, (9)

which is the interconnection of an LTI system of state vector x, input vector(u′, p�′)
′
, and output vector

(y′,q�′)
′
, with a np(rol)×np(rol) state-dependent matrix gain∆ol(Φx(x)) joining q� and p�. With a slight

word misuse,(8) and (9), which are equivalent under the well-posedness assumption, will henceforth be

termedLinear Fractional Transform (LFT)of (5), see [44].

The LFT (9) satisfies the relationships {B�
p∆ol(Φx(x))(I −D�

qp∆ol(Φx(x)))
−1

C�
q = 0,

D�
yp∆ol(Φx(x))(I −D�

qp∆ol(Φx(x)))
−1

D�
qu = 0}, which specialize into {C�

y = I , D�
yp = 0, C�

q = 0}
wheny = x. Some systematic rules shown in [44] and [13] can be used in order to build an LFT of a

rational system, this representation being nonunique.

As expected, similar arguments hold for the closed-loop system, namely, there exist constant matrices

Ã�, B̃�
p, C̃�

q, D̃�
qp such that (7) is equivalent to the LFT ˙̃x

q̃�

=

 Ã� B̃�
p

C̃�
q D̃�

qp

 x̃

p̃�

 , p̃� = ∆(Φ(x)) q̃� (10)

with ∆(Φ(x)) = diag(Φ1(x)Ir1
, . . . ,ΦN(x)IrN), r = (r1 . . . rN)

′ ∈ �N ,

under the well-posedness assumptionx∈ {ξ : det(I − D̃�
qp∆(Φ(ξ ))) 	= 0}.

This section ends with the definition of the minimality of an LFT, which will turn to be an important

notion in the sequel.

Definition 3.3 (Minimality of an LFT) An LFT is saidminimal if the vector r is such that np(r)
∆=∑N

i=1 ri

has the least possible value.

From [17], any rational system entailing monomials of maximum degreemi in Φi can be turned into

an LFT whose feedback matrix∆(Φ) = diag(Φ1Ir1
,Φ2Ir2

, . . .) satisfiesri ≥ mi for every i. Yet, to our

knowledge, there is no analytical technique enabling the computation of the minimal LFT of a rational

system. Nevertheless,ad hocarguments can sometimes be used in conjunction with the systematic building

rules mentioned above. Several numerical approaches to the reduction of LFTs are also referenced in [13].

9



3.3 Global linearization

Assume that the following assumption holds:

Hypothesis 3.4 (Boundedness & Well-posedness) The vectorΦ = Φ(x) ∈ �N involved in (7) takes its

values in a parallelotopeΞ ∆=∏N
i=1[Φi ;Φi ] defineda priori, viz.

x∈ Ξ f
∆={ξ ∈ �n : Φ(x) ∈ Ξ, with Ξ ∆=

N

∏
i=1

[Φi ;Φi ]}, (11)

onto which the closed-loop LFT(10) is well-posed, i.e.

∀Φ∈ Ξ ∆=
N

∏
i=1

[Φi ;Φi ], det(I − D̃�
qp∆(Φ)) 	= 0. (12)

Consider the uncertain linear system

˙̃x = Ã(δ�) x̃ (13)

with δ� a time-varying uncertain parameters vector taking any value in the parallelotopeΞ. An elementary

reasoning shows that a state trajectory of the genuine nonlinear closed-loop system (7) also satisfies (13)

if and only if the boundedness condition (11) is satisfied all along this trajectory. As aforementioned, the

embedding of the genuine nonlinear system (7) into the uncertain linear system (13) will be referred to as

“global linearization”.

Definition 3.5 (SLNDI) Under Hypothesis 3.4, the uncertain linear system(13) can be put into the form

of the LFT  ˙̃x

q̃�

=

 Ã� B̃�
p

C̃�
q D̃�

qp

 x̃

p̃�

 , p̃� = ∆(δ�) q̃� (14)

with ∆(δ�) = diag(δ�
1Ir1

, . . . ,δ�
N

IrN), r = (r1 . . . rN)
′ ∈ �N , and∀i = 1, . . . ,N, δ�

i ∈ [Φi ;Φi ],

which can be considered as the connection of an LTI system with a time-varying uncertain matrix gain

∆(δ�).

Through anormalization—or loop-shifting— step, thoroughly described in [13, 1],(14)can be turned

to the simplified form —in which the boundsΦi andΦi implicitly appear in the definition of the matrices

Ã, B̃p, C̃q, D̃qp—  ˙̃x

q̃

=

 Ã B̃p

C̃q D̃qp

 x̃

p̃

 , p̃ = ∆ q̃ (15)

with ∆ ∆=∆(δ) = diag(δ1Ir1
, . . . ,δNIrN), r = (r1 . . . rN)

′ ∈ �N , and∀i = 1, . . . ,N, δi ∈ [−1;+1].

Notice that∆ with no argument henceforth represents a time-varying uncertain matrix gain of�(r) with

no memory, instead of a matrix function. The representations(14) and (15) are respectively termed an

unnormalized and normalizedStructured Norm-Bounded Linear Differential Inclusion (SNLDI).
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3.4 Comments

Rational systems look fairly well suited to visual servoing. On the one hand, the controllers (6) encompass

many usual 2D or 3D strategies. For instance, the inverse Jacobian 3D schemes mentioned by Martinet in

[32], whose equations areu = −λ B+(0)x andu = −λ B+(x)x, respectively correspond to a linear static

state feedbacku = K x and to a nonlinear rational static state feedbacku = K(Φcx(x))x. Similarly, the

inverse Jacobian 2D controllersu = −λ [J(s∗,z∗)]+ (s−s∗) andu = −λ [J(s,z)]+ (s−s∗), proposed in Es-

piauet al. [19] and thoroughly studied in [6], can also be dealt with. Indeed, the so-called image Jacobian

J(., .) —defined from ˙s= J(s,z)u— is a rational function ofs and of the vectorz made up with the depths

zi =
−→
STi.

−→zS, so that these 2D servos respectively correspond to a linear static output feedbacku = K (s−s∗)

and a static gain-scheduled output feedbacku = K(Φcx(x))(s−s∗). The proposed method can also handle

dynamic output feedbacks by associating constant matrices toK c(.), Kcy(.), Ku(.), K(.). The general case

(6) corresponds to a dynamic gain-scheduled output feedback∗∗.

On the other hand, the aforementioned additional variablesζ j = ζ j(x̃), j = 1, . . . ,nζ , are rational. For

controllers like (6), they can be written, withZζ j
(.) a rational function well-defined at 0,

ζ j = Zζ j
(Φζ j

(x)) x̃, Φζ j
(x) ∈ �Nζ j . (16)

As outlined in the introduction to this section, the multicriteria analysis or synthesis is performed on the

whole set of the trajectories of the SNLDI (15) embedding the original nonlinear closed-loop system (7).

Care must be taken to limit as much as possible the conservatism of this strategy. First, the choice of the

boundsΦi andΦi come from a compromize: the parallelotopeΞ must be wide enough to handle relevant

trajectories of the closed-loop system (7), while sufficiently restricted to limit the number of spurious

trajectories. Next, as the entries of the uncertain vectorδ � in (13) are implicitly assumed independent

with each other, no instantaneous relationship should exist between the components ofΦ before the global

linearization process. Lastly, other sources of conservatism will appear in the next section, coming from

the underlying robust control methods. One of these lies in the use of an outer approximation of the SNLDI

(15), rather than (15) itself, which is all the more conservative as the size of the uncertain matrix∆ is high.

So, minimal LFTs must be determined when possible.

Some important points on the well-posedness issue in Hypothesis 3.4 are also of concern. The well-

posedness of the LFT of a rational system on a set� requires that the rational matrix functions involved

in this system be well-defined on� . In addition, the references [13, 1] show that the well-posedness of

the unnormalized SNLDI (14) onΞ is equivalent to assuming that (14) is well-posed at the center ofΞ and

the normalized form (15) is well-posed on[−1;+1]N. Yet, the well-posedness of (14) at the center ofΞ is

∗∗Notice however that 212D controllers as these of Maliset al. [30] may not straightly fit in this framework.
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a necessary condition for the computation of the matricesÃ, B̃p, C̃q, D̃qp involved in (15). So, once these

matrices are given, to ensure the well-posedness of the unnormalized SNLDI (14) onΞ, it just remains to

verify that det(I − D̃qp∆) is nonzero for all∆ in �(r) —viz. that the normalized SNLDI (15) is well-posed

on [−1;+1]N. This is why, unless explicitely mentioned, only normalized SNLDIs will be considered.

At last, it may be noticed that even though the functionÃ(Φ(ξ )) in the closed-loop equation (7) is

well-defined on a set� when det(I − D̃�
qp∆(Φ(ξ ))) is nonzero on� , it is not necessarily the case for

all the matrix functions appearing in (5)–(6), e.g. because of internal simplifications. In the same vein as

a remark in§ 2.3, a way to avoid this potential problem is to ensure the boundedness ofu ands−s∗ by

introducing them as additional variables.

This paper henceforth assumes thatΦx(x) is equal tox andΦcx(x) is made with a subset of the entries of

x, so thatΦ(x) = x which is the most immediate choice whatever the considered visual servo. Quite often,

Φζ j
(x) = x can be assumed as well. Then, necessary conditions for the well-posedness of some LFTs can

be established from the following notes.

In the 6DOF case, the matrix functionB(x) involved in the open-loop equation (5) can be shown to

be well-defined as soon asM = tan( µ
2 ) belongs to the open interval]−1;+1[, which is always true. In

addition, if a 2D servo is considered,y is set to the differences−s∗, and the matrixC(x) comes to be not

well-defined as soon asx is such that at least one target spot, sayTi , admits a null depth along the−→zS axis

of frameFS, i.e. when the value ofx implies that∃i ∈ {1, . . . ,M} : zi =
−→
STi .

−→zS = 0. Such a sensor-target

situation does not occur in a problem formulation taking into account image constraints, since it implies

that some target points would belong to a plane including the camera optical centerSand orthogonal to the

optical axis. In fact, thezi ’s are all strictly positive.

The same obviously holds on the matrix functionZζ j
(x) in equation (16) when the additional variable

ζ j is defined as the differenceXj −X∗
j or Yj −Y∗

j in order to handle image constraints. The reference [1]

shows thatZζ j
(x) in (16) is well-defined whatever the value ofx whenζ j terms the 3D distanced3Dj

from

the centerS of frameFS to a wall. These conclusions are useful ifZζ j
(x) is also written as an LFT, see

§ 4.2.4-A.

The reader is referred to [1] for a discussion on cases in whichλ , µ andν lie in wider intervals and/or

uncertainties affect (7). Controllers showing a rational dependence onΦ cx(x̃) instead ofΦcx(x), which

lead toΦ(x̃) (resp.Φζ j
(x̃)) as argument of (7) (resp. of (16)), are also briefly outlined therein. In this

paper, results concerning additional variables will be presented under the assumptionΦ ζ j
(x̃) = x̃ instead of

Φζ j
(x) = x, which leads to a simplified formulation.
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4 First step to the satisfaction of the criteria

In this section, conditions are given guaranteeing some specifications of the standard visual servocontrol

problem stated in§ 2.3. AsΦ(x) has been set tox, Ξ f andΞ are equal. The boundsΦi andΦi correspond

to thei th entryxi of x and will thus be respectively denotedxi andxi .

4.1 Basics

4.1.1 Convergence of the camera to the reference situation

As aforementioned, the asymptotic stability of the equilibrium state 0 of the closed-loop system (7) is a

sufficient condition for the correct positioning of the camera at the reference final situation.

By § 3.3, as soon as Hypothesis 3.4 on boundedness and well-posedness is satisfied, the set of the state

trajectories of the SNLDI (15) contains all the trajectories of the genuine closed-loop system that belong to

Ξ̃ f
∆=Ξ f ×�m= {ξ ∈ �(n+m) : (ξ1, . . . ,ξn)

′ ∈ Ξ f }. So, if (15) is well-posed for all the admissible values of

∆, ensuring the asymptotic stability of this SNLDI is sufficient for the convergence to 0 of all the trajectories

of (7) that wholly lie inΞ̃ f
††. Yet, it is important to notice that though the asymptotic stability of the SNLDI

(15) is global, nothing can be said about the convergence of these responses of the nonlinear closed-loop

system (7) that do not completely remain inΞ̃ f . For instance, if the responses of (7) can just be surrounded

by a setΞ̃ f
∆=Ξ f ×�m such thatΞ f ⊂ Ξ f , the asymptotic stability of the “broader” inclusioñ̇x = Ã(δ�) x̃,

with δ� ∈ Ξ f , should be studied instead.

The global asymptotic stability of the SNLDI (15) is proved by finding a matrixP > 0 such that the

quadratic Lyapunov functionV(ξ ) = ξ ′Pξ decreases along all the state trajectories of this inclusion, i.e.

such thatdV(x̃(t))
dt < 0 for all the admissible realizations of∆. As an immediate consequence, each of the

nested ellipsoids centered at the origin 0 and corresponding to a constant value of the Lyapunov function

V is an invariant set, in that it encloses all the inclusion’s trajectories beginning in it. The focus will be

often put on�P
∆={ξ ∈ �(n+m) : ξ ′Pξ ≤ 1}. Further, the closed-loop decay rate‡‡ —or largest Lyapunov

exponent— is at leastα when the inequalitydV(x̃(t))
dt < −2αV(x̃(t)) is satisfied. Then, the relationship

x̃(t0) ∈ �P implies that for all subsequent timet, x̃(t) lies in the Shunken ellipsoide−α (t−t0)�P ⊂ �P.

From the above arguments, the ellipsoid�P can be made an inner approximation to the attraction

basin of the equilibrium 0 of the closed-loop system (7) by ensuring the well-posedness of the embedding

SNLDI (15) for all the admissible values of∆, and by putting additional constraints onP so that the set

relationship�P ⊂ Ξ̃ f holds. As 0(n+m;1) belongs to�P, the constraint�P ⊂ Ξ̃ f requires that 0(n;1) ∈ Ξ f .

Moreover,�P is symmetric w.r.t. the origin, so that the relationship�P ⊂ Ξ̃ f is equivalent to�P ⊂� f ⊂ Ξ̃ f

††No boundedness assumption is made onxc as no output feedback is considered showing a rational dependence onxc.
‡‡The decay rate is the largestβ > 0 such that limt→+∞ eβ t ||x̃(t)|| = 0.
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with� f
∆={ξ ∈ �(n+m) : ξi

2 ≤ xi
2 andξ i

2 ≤ xi
2, i = 1, . . . ,n} the widest symmetric parallelotope enclosed

by Ξ̃ f . So, in the case of an asymmetricΞ f , to take into account some values of ˜x in Ξ̃ f \� f , the global

linearization step must be performed by replacingΞ f by its smallest symmetric outer parallelotope. This

modification of course induces some conservatism, in that the obtained SNLDI concerns a broader set of

uncertain parameters.

4.1.2 A priori knowledge about the initial sensor-target relative situation

Many visual servoing problems involve some knowledge of the initial sensor-target relative situation. For

instance, in an analysis context, one may want to check if a given control can steer the camera from a

relative situationx0 to the reference pose, without willing to compute a fine approximation of the whole

convergence basin. Similarly, when synthesizing a visual-based control law, this initial situation, though

unknown, may be supposed to belong to a predefined set� 0.

Such cases can be dealt with by making�P enclose the closed-loop initial state vector

x̃0= (x′0,0
′
(m;1))

′ ∈ �(n+m) or the set�̃0 = {ξ = (ξ ′
0,0

′
(m;1))

′ ∈ �(n+m) : ξ0 ∈ �0}, respectively.

4.1.3 Additional constraints

The actuators saturations are taken into account by keeping into predefined admissible symmetric lim-

its the norm of some subvectors extracted fromu, e.g. by requiring that|u j | = |W′
j u| ≤ uj for each

j = 1, . . . ,nu, whereWj
∆=colj(Inu). Besides, the target is kept visible from the camera if and only if

Xj −X∗
j ∈ [X−X∗

j ;X−X∗
j ] andYj −Y∗

j ∈ [Y−Y∗
j ;Y−Y∗

j ], j = 1, . . . ,M, with X, X, Y andY the physi-

cal dimensions of the camera image plane. Similarly, the camera is kept in a corridor without hitting its

walls if and only if a 3D distanced3Dj
is kept in the security interval[dWALL j

;dWALL j ].

The expressions ofζ j corresponding to all these specifications noticeably fall into two different classes.

A Case ζ j = Zζ j
x̃∈ [−ζ j ;ζ j ] Such a constraint corresponds to the avoidance of the actuators satura-

tions when a static state feedbacku = Kx is used, e.g. withZζ j
= W

′
j K. It is satisfied if and only if ˜x∈	ζ j

,

where	ζ j

∆={ξ ∈ �n+m : ξ ′
Z

′
ζ j

Zζ j
ξ ≤ ζ

2
j}. As in§ 4.1.1 and§ 4.1.2,x̃∈	ζ j

can be guaranteed by adding

constraints onP so that�P ⊂	ζ j
. Notice that the set	ζ j

is convex and symmetric w.r.t. the origin.

B Case ζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ] Avoidance of actuators saturations when the controller is not

a static state feedback, 2D constraints and 3D constraints involve an additional variableζ j in

the form ζ j = Zζ j
(x̃) x̃. The set membershipζ j ∈ [ζ

j
;ζ j ] is then equivalent to ˜x∈	ζ j

, where

	ζ j

∆={ξ ∈ �n+m : (Zζ j
(ξ )ξ − ζ̂ j)

2 ≤ ζ̃ 2
j }, with ζ̂ j =

ζ j +ζ
j

2 andζ̃ j =
ζ j−ζ

j
2 . As was done before, ˜x∈	ζ j
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can be ensured by “sizing”P so that�P lies into	ζ j
. When the camera is at the reference pose, all the

specifications are satisfied. In other words, 0∈	ζ j
, which impliesζ̂ 2

j ≤ ζ̃ 2
j .

It can be observed —e.g. for 2D and 3D specifications— that the set	 ζ j
is generally asymmetric

w.r.t. the origin. Because of the symmetry of the invariant ellipsoid�P, expecting�P ⊂	ζ j
prevents

the initial states ˘x0 ∈	ζ j
such that−x̆0 /∈	ζ j

from being handled. In addition, contrarily to the case

ζ j = Zζ j
x̃∈ [−ζ j ;ζ j ],	ζ j

is not necessarily convex. As�P is convex, the initial states ˘x0 ∈	ζ j
such that

the line segment between ˘x0 and−x̆0 does not wholly lie into	ζ j
cannot be considered either.

At last, let’s remark that the functionsZζ j
(.) corresponding to 2D or 3D constraints are part of the

problem data. The same holds forZζ j
and/orZζ j

(.) concerning actuators saturations in an analysis context.

Nevertheless, when the aim is to avoid the actuators saturations in a synthesis context, the controller is an

unknown of the problem, and so areZζ j
and/orZζ j

(.). Dealing with actuators saturations in a synthesis

problem is thus the object of a special treatment.

4.1.4 Handling the constraints through Matrix Inequalities

All the specifications considered so far can be expressed as the negativeness of a quadratic function ofx,

p, q whenever other quadratic forms of these variables are negative. Sufficient conditions —which are

sometimes nonconservative— can thus be obtained through the� -procedure [5], leading to LMIs onP or

Q = P−1 and other variables.

Conditions on the SNLDI (15) must take into account the relationshipp = ∆q. In order to handle it

through the� -procedure, the following lemma, coming from [18, 13, 15], is used.

Lemma 4.1 Let the sets�(r), � (r), � (r) be defined following§ 0. Whatever the cou-

ple (S,G) in � (r) × � (r), the set 
 (r) ∆={(p,q) : ∃∆ ∈ �(r), p = ∆q} in included into the set

� (S,G) ∆=
{
(p,q) : ( q

p)
′ ( S G

G
′ −S

)
( q

p) ≥ 0
}

.

The conservatism of the quadratic outer approximation� (S,G) coming from this lemma is somewhat

limited, in that the mathematical properties of the matrix∆ are taken into account, viz. its block-diagonal

structure, the fact thatδi ∈ � and|δi | ≤ 1, i = 1, . . . ,N. However, this outer approximation is all the more

pessimistic asnp(r) grows, see for example the discussion in [1]. So, to limit the conservatism of the

overall approach proposed in this paper, the SNLDI (15) should be obtained from a minimal LFT.

As 
 (r) is a subset of� (S,G) whatever the admissible matricesSandG, these matrices will hence-

forth be considered as decision variables, whose values are looked for so as to enable the most helpful

handling of the various criteria.
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4.1.5 From feasibility to optimization problems

The multicriteria analysis or synthesis has been turned into a feasibility problem concerning the matrixP

or Q = P−1 and other quantities. Several solutions generally exist, but all are not relevant to the visual

servocontrol problem in hand. So, the search should be guided by a criterion to be minimized. Some hints

are hereafter given, from which the definition of an optimization problem is left to the reader.

In order to get a good characterization of the multicriteria basin of convergence of the camera, or to

make one controller ensure the positioning from many initial sensor-target situations, it is worth determin-

ing the maximum “size” invariant ellipsoid�P. As mentioned in [5], the volume of�P is a decreasing

function of log(det(P)). Likewise, the sum of squares of�P’s principal axes lengths is a decreasing func-

tion of trace(P)†. The maximization of this last criterion through the minimization of trace(P) is a convex

problem when the constraints involve LMIs onP. If LMIs on Q = P−1 are used, the volume of�P can be

maximized by minimizing log(det(Q−1)), which is also a convex problem.

The introduction of the closed-loop decay rateα into the study can show several practical advantages.

On the one hand, the feasibility of the forthcoming matrix inequalities can be checked for a fixed value

of α , e.g. to determine which initial camera situations can be steered to the reference pose within a given

settling time while satisfying the various criteria. On the other hand,α can be introduced as a decision

variable. The minimization of(−α ) subject to the inequalityα > 0 together with the different constraints

thus leads to the maximum closed-loop decay rate that can be ensured by this approach. If the matrix

inequalities are linear whenα is fixed, this optimization problem is a Generalized Eigenvalue Problem

(GEVP), which is quasiconvex and can still be efficiently solved.

Unless explicitely mentioned —e.g. in§ 4.2.4 and§4.3.4, which is an original contribution [2] though

using fairly classical arguments—, the forthcoming matrix inequalities have been established in the work

of El Ghaouiet al. [18, 17, 14, 13] or can be straightly infered. Such standard results are thus given

without proof, but these are gathered in [1]. Dynamic state feedbacks are not considered, as analyzing or

synthesizing such controllers for the considered SNLDIs through quadratic Lyapunov functions leads to

no enhancement compared to static state feedbacks. The synthesis of output feedbacks, though essential

in practice, is not dealt with for space reasons and because —except for some full-rank gain-scheduled

controllers— it leads to nonconvex problems, see [1] for details on their application.

†More precisely, the sum of squares of�P’s principal axes lengths is equal to 4trace(P−1), which is indeed a decreasing function

of trace(P).
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4.2 Resulting conditions for multicriteria analysis

Recall that the closed-loop nonlinear system is embedded into the normalized SNLDI (15). In an analysis

context, which is the topic of this section, the matricesÃ, B̃p, C̃q andD̃qp defining this SNLDI are known.

When possible, these matrices are determined so as to get a minimal LFT.

4.2.1 Convergence of the camera to the reference situation

A Global asymptotic stability of the SNLDI (15) Assume that a value ofα ≥ 0 is presumably given.

The quadratic stability of the SNLDI (15) as well as the decay rateα are ensured if the following LMI on

P, SandG is feasible:

∃ P > 0, S∈� (r), G∈ � (r),

Ã
′
P+PÃ+C̃

′
qSC̃q +2αP PB̃p +C̃

′
qSD̃qp+C̃

′
qG

� D̃
′
qpSD̃qp−S+ D̃

′
qpG+G

′
D̃qp

< 0. (17)

B Satisfaction of the Hypothesis 3.4 The references [18, 20] give the following sufficient condition

for the well-posedness of the normalized SNLDI (15):

∃ S∈� (r), G∈ � (r), such thatD̃
′
qpSD̃qp−S+ D̃

′
qpG+G

′
D̃qp < 0. (18)

Yet, the matrix inequality (18) is satisfied as soon as (17) holds, so that (17) does ensure the well-posedness

of the SNLDI used to embed the genuine nonlinear closed-loop system.

For i = 1, . . . ,n, letWi
∆=coli(I(n+m)) andρi

∆=min(|xi |; |xi |). The constraint�P ⊂ Ξ̃ f
∆=Ξ f ×�m, which

ensures the boundedness assumption during the building of the SNLDI, is satisfied if and only if the fol-

lowing 2n LMIs on P andτ i , i = 1, . . . ,n, are feasible:‡

∃ τ1 ∈ �+∗ , . . . ,τn ∈ �+∗ , ∀i = 1, . . . ,n, −τ i ρ
2
i +1≤ 0 andτ i WiW

′
i −P≤ 0. (19)

The problems (19) and (17) are simultaneously solved.

4.2.2 A priori knowledge about the initial sensor-target relative situation

Assume that the initial sensor-target situationx0 is perfectly known. The initial closed-loop state vec-

tor x̃0= (x′0,0
′
(m;1))

′ ∈ �(n+m) belongs to the ellipsoid�P if and only if the following trivial LMI on P is

satisfied:

x̃
′
0Px̃0−1≤ 0. (20)

‡The LMIs (19), (22), (28), (30) concern boundedness constraints of the form||Cx̃||2 ≤ 1
υ , ∀x̃ : x̃′Px̃≤ 1, with υ > 0. They are

obtained by a straight application of the� -procedure, but can be shown to be equivalent to the simpler LMIs developed in [18, 13],

see§B.1.
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In order to analyze the convergence from every initial sensor-target relative situation in

the ellipsoid �0
∆={ξ ∈ �n : ξ = x0 +Ez, z

′
z≤ 1} centered onx0, it is sufficient to make�P

enclose �̃0
∆={ξ = (ξ ′

0,0
′
(m;1))

′ ∈ �(n+m) : ξ0 ∈ �0}= {ξ ∈ �(n+m) : ξ = x̃0 + Ẽz, z
′
z≤ 1}, with

Ẽ
∆=
(

E 0(n;m)
0(m;n) 0(m;m)

)
. A necessary and sufficient condition is the feasibility of the LMI onτ 0 and

P,

∃ τ0 ∈ �+ ,

Ẽ
′
PẼ− τ0In+m Ẽ

′
Px̃0

� x̃
′
0Px̃0−1+ τ0

≤ 0. (21)

Note that the above equations return to enclosex0 or �0 by the ellipsoid�Px
which is the intersection of

�P with thex-space. Of course, a common solution is looked for the problems (20)/(21), (19) and (17).

4.2.3 Constraints of the type ζ j = Zζ j
x̃∈ [−ζ j ;ζ j ]

The condition�P ⊂	ζ j
, with	ζ j

∆={ξ ∈ �n+m : ξ ′
Z

′
ζ j

Zζ j
ξ ≤ ζ

2
j}, is satisfied if and only if the following

LMI on P andτζ j
, to be added to the problem{(19), (17)}, is feasible:

∃ τζ j
∈ �+∗ , −τζ j

ζ
2
j +1≤ 0 andτζ j

Z
′
ζ j

Zζ j
−P≤ 0. (22)

4.2.4 Constraints of the type ζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ]

As mentioned in §4.1.3-B, the aim is to guarantee the set inclusion�P ⊂	ζ j
, with

	ζ j

∆={ξ ∈ �n+m : (Zζ j
(ξ )ξ − ζ̂ j)

2 ≤ ζ̃ 2
j }. Two different methods are hereafter given to solve this

problem. Though, to our knowledge, these are original —for this problem seems not to have been

considered in the literature— they rely on fairly classical arguments. Their proof is given in Appendix B.2.

Both methods rely on the definition of a set�ζ j
such that�ζ j

⊂	ζ j
, and ensure the relationship

�P ⊂�ζ j
. In the first one,�ζ j

is determined through the global linearization ofζ j = Zζ j
(x̃) x̃, while the

second approach defines�ζ j
as the intersection of some quadratic functions determinedad hoc.

A Global linearization of ζ j = Zζ j
(x̃) x̃ The paragraphs§ 3.2–§3.3 led to the global linearization of

the rational closed-loop system (7). AsZζ j
(.) is a rational function well-defined at 0, a similar process

can be performed on the expressionζ j = Zζ j
(x̃) x̃ assuming thatx∈ Ξ f , i.e. x̃ = (x′,x′c)

′ ∈ Ξ̃ f , and under a

well-posedness assumption. After normalization, one gets an embedding static inclusionζ j(x̃,∆ζ ) in the

form of the following LFT: ζ j(x̃,∆ζ )

qζ

=

 C̃ζ D̃pζ

C̃qζ
D̃qpζ

 x̃

pζ

 , pζ = ∆ζ qζ , with ∆ζ ∈�(rζ ), rζ = (rζ 1
, . . . , rζ Nζ

)
′
. (23)
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Here also, according to a remark in§ 3.4, if the matricesC̃ζ , D̃pζ
, C̃qζ

, D̃qpζ
can be computed, it remains

to verify that for all∆ζ in �(rζ ), the determinant det(I − D̃qpζ
∆ζ ) is nonzero to ensure the well-posedness

of (23). Then, whatever the vector ˜x in Ξ̃ f , there exists a realization of the uncertain matrix∆ζ in �(rζ )

such that the equalityZζ j
(x̃) x̃ = ζ j(x̃,∆ζ ) holds.

Let �ζ j

∆={ξ ∈ �(n+m) : the inequality(ζ j (ξ ,∆ζ )− ζ̂ j)
2 ≤ ζ̃ 2

j holdsfor all ∆ζ ∈ �(rζ )}. Returning

briefly to the unnormalized form of (23) readily shows that, under the well-posedness assumption, the

set�ζ j

∆=�ζ j
∩ Ξ̃ f = {ξ ∈ Ξ̃ f : ∀δ̃� ∈ Ξ̃ f , (Zζ j

(δ̃�)ξ − ζ̂ j)
2 ≤ ζ̃ 2

j } is included into the set	ζ j
∩ Ξ̃ f =

{ξ ∈ Ξ̃ f : (Zζ j
(ξ )ξ − ζ̂ j)

2 ≤ ζ̃ 2
j }. So, the constraint�P ⊂�ζ j

∆=(�ζ j
∩ Ξ̃ f ) is a sufficient condition for

�P ⊂	ζ j
. The set inclusion�P ⊂ Ξ̃ f is ensured by the LMIs (19). Thus, to make�P ⊂	ζ j

hold, it is

sufficient to add some constraints guaranteeing the relationship�P ⊂ �ζ j
and the well-posedness of (23).

Theorem 4.2 The feasibility of the following LMI on P,τ ζ , Sζ and Gζ is a sufficient condition for the

well-posedness of(23) and the set relationship�P ⊂ �ζ j
—which, if�P ⊂ Ξ̃ f holds, then ensures that

�P ⊂�ζ j

∆=(�ζ j
∩ Ξ̃ f ) ⊂	ζ j

—:

∃ τζ ∈ �+∗ , Sζ ∈� (rζ ), Gζ ∈ � (rζ ), τζ M1 +M2−M0 < 0, (24)

with M0 =


P 0 0

� 0 0

� � −1

 , M1 =


C̃′

ζ C̃ζ C̃′
ζ D̃pζ

−C̃′
ζ ζ̂ j

� D̃
′
pζ

D̃pζ
−D̃

′
pζ

ζ̂ j

� � ζ̂ 2
j − ζ̃ 2

j

 ,

M2 =


C̃′

qζ
Sζ C̃qζ

C̃′
qζ

Sζ D̃qpζ
+C̃′

qζ
Gζ 0

� D̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

0

� � 0

 .

The problems(24), (19), (17)are jointly solved.

Note that a set of decision variables{τζ j
, Sζ j

, Gζ j
} and of vector/matrices{r ζ j

, C̃ζ j
, D̃pζ j

, C̃qζ j
, D̃qpζ j

}
must be defined for each additional variableζ j . The indexj has not been made explicit in order to simplify

the notations.

B Inner approximation of 	ζ j
by the intersection of quadratic functions Assume that

a set of lζ j
≥ 1 scalar numbersβ k

ζ j
< 0 and matricesF̃k

ζ j
∈ �1×(n+m) , Ṽk

ζ j
= Ṽk

′
ζ j

∈ �(n+m)×(n+m) ,

k = 1, . . . , lζ j
, has been predetermined in anad hoc way so that� ζ j

∆=
⋂lζ j

k=1
�k

ζ j
⊂	ζ j

where

�k
ζ j

∆={ξ ∈ �(n+m) :
(

ξ
1

)′
Ñk

ζ j

(
ξ
1

)
≤ 0} andÑk

ζ j

∆=

(
Ṽk

ζ j
F̃k

′
ζ j

� βk
ζ j

)
. Making�P lie into each set�k

ζ j
thus en-

sures that�P ⊂�ζ j
, and consequently that�P ⊂	ζ j

.
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Theorem 4.3 The relationship�P ⊂�ζ j
=
⋂lζ j

k=1
�k

ζ j
holds if and only if the following lζ j

LMIs on P and

τ k
ζ j

, k = 1, . . . , lζ j
, are satisfied:

∃ τ 1
ζ j
∈ �+∗ , . . . ,τ lζ j

ζ j
∈ �+∗ , ∀k = 1, . . . , lζ j

, τ k
ζ j

Ñk
ζ j
−
P 0

� −1

≤ 0. (25)

The problems(25), (19), (17)are jointly solved.

4.3 Conditions for the synthesis of a linear static state feedback u = Kx

When the aim is to synthesize a linear static state feedbacku = Kx, the normalized SNLDI (15) into which

the nonlinear closed-loop system is embedded has the form ẋ

q

=

 BuK Bp

DquK Dqp

 x

p

 , p = ∆q, with ∆ ∈�(r), r = (r1, . . . , rN)
′
. (26)

Notice that in this whole section, the closed-loop state vector ˜x is equal to the open-loop state vectorx so

thatΞ f andΞ̃ f defined in Hypothesis 3.4 and§ 4.2.1 match. The matricesBu, Bp, Dqu andDqp, as well

as the virtual signalsp andq and the matrix gain∆, are involved in the normalized SNLDI that would be

obtained by globally linearizing the open-loop LFT (9) in the case wheny = x, see the remarks following

Definition 3.2. When possible, a minimal form of the open-loop LFT (9) would be looked for.

4.3.1 Convergence of the camera to the reference situation

A Global asymptotic stability of the SNLDI (26)and satisfaction of the well-posedness assumption

(12) Consider a fixedα ≥ 0. The quadratic stability and the well-posedness of the SNLDI (26) as well

as the decay rateα are ensured if the following LMI onQ, Y, T andH is feasible:

∃ Q > 0, Y ∈ �nu×n, T ∈� (r), H ∈ � (r),

BpTB
′
p+BuY +Y

′
B

′
u +2αQ BpTD

′
qp+Y

′
D

′
qu+BpH

� DqpTD
′
qp−T +DqpH +H

′
D

′
qp

< 0.

(27)

The value ofK is then computed from the solution of (27) byK = YQ−1.

B Satisfaction of the boundedness assumption (11) When a static state feedback is considered,

the boundedness assumption which underlies the definition of the SNLDI (26) returns to the constraint

�P ⊂ Ξ f . Though the matrix inequalities (19) obtained in an analysis context can be adapted to guarantee

this property, they involve a matrixP related to the matrixQ in (27) by the bilinear equalityPQ= I . To

keep the whole feasibility/optimization problem convex, the constraint� P ⊂ Ξ f should be reformulated if

possible as an LMI which does not involve the matrixP.
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For i = 1, . . . ,n, letWi
∆=coli(In) andρi

∆=min(|xi |; |xi |). The constraint�P ⊂ Ξ f is satisfied if and only

if the following 2n LMIs on Q andσ i , i = 1, . . . ,n, are feasible:

∃ σ1 ∈ �+∗ , . . . ,σn ∈ �+∗ , ∀i = 1, . . . ,n, −ρ2
i +σi ≤ 0, and

−Q QWi

� −σi

≤ 0. (28)

The problems (28) and (27) are simultaneously solved.

4.3.2 A priori knowledge about the initial sensor-target relative situation

For the reasons mentioned in§ 4.3.1-B, the constraints (20) and (21) obtained in the analysis context are

replaced by LMIs which do not explicitely involve the variableP.

The following LMI onQ (resp. onQ andσ0) is equivalent to (20) (resp. (21)) whenm is set to 0, and is

thus necessary and sufficient forx0 ∈ �P (resp.�0
∆={ξ ∈ �n : ξ = x0 +Ez, z

′
z≤ 1} ⊂ �P:)

−1 x
′
0

� −Q

≤ 0.

(
resp. ∃ σ0 ∈ �+ ,


−σ0In 0(n;1) E

′

� σ0−1 x
′
0

� � −Q

≤ 0.

)
(29)

A common solution is looked for the problems (29), (28) and (27).

4.3.3 Avoidance of the actuators saturations

The j th constraint on the actuators is satisfied if and only ifW
′
j Kx∈ [−uj ;uj ] with Wj

∆=col j(Inu). A nec-

essary and sufficient condition for�P ⊂	uj
with	uj

∆={ξ ∈ �n : ξ ′
K

′
WjW

′
j Kξ ≤ u2

j} is the feasibility of

the LMIs onQ, Y andσu j ,

∃ σu j ∈ �+∗ , −u2
j +σu j ≤ 0 and

−Q Y
′
Wj

� −σu j

≤ 0. (30)

The problems (30), (28) and (27) are simultaneously solved.

4.3.4 Constraints of the type ζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ]

This section shows how the LMIs in Theorems 4.2 and 4.3 —which were developed in§4.2.4— can be

turned into LMIs which do not explicitely involve the matrixP.

A Global linearization of ζ j = Zζ j
(x̃) x̃
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Theorem 4.4 The following LMI on Q,σζ , Tζ and Hζ , which is equivalent to(24), is a sufficient condition

to �P ⊂ �ζ j
—which, if�P ⊂ Ξ̃ f holds, then ensures that�P ⊂�ζ j

∆=(�ζ j
∩ Ξ̃ f ) ⊂	ζ j

—:

∃ σζ ∈ �+∗ , Tζ ∈� (rζ ), Hζ ∈ � (rζ ),


R1 0 R2 0

� −σζ ζ̃ 2
j −σζ ζ̂ σζ

� � R3 0

� � � −1

< 0, (31)

with R1 = D̃qpζ
Tζ D̃′

qpζ
−Tζ +C̃qζ

QC̃′
qζ

+ D̃qpζ
Hζ −Hζ D̃qpζ

, R2 = D̃qpζ
Tζ D̃′

pζ
+C̃qζ

QC̃′
ζ +H ′

ζ D̃′
pζ

,

R3 = D̃pζ
Tζ D̃′

pζ
−σζ +C̃ζ QC̃′

ζ .

The problems(31), (28)and(27)are jointly solved.

As was the case for the analysis conditions, the variablesσζ , Tζ andHζ , as well as the quantitiesrζ , C̃ζ ,

D̃pζ
, C̃qζ

, D̃qpζ
, should have been indexed byj, which was ommited to alleviate the notations. The proof

is given in Appendix B.3.

B Inner approximation of 	ζ j
by the intersection of quadratic functions The notations are these

of § 4.2.4-B, but the matrices̃Vk
ζ j

are assumed positive semidefinite so that they can be expressed as

Ṽk
ζ j

= R̃k
′

ζ j
R̃k

ζ j
. Recall thatm= 0 as the controller is static.

Theorem 4.5 The following set of lζ j
LMIs on Q andσ k

ζ j
, which is necessary and sufficient for

�P ⊂�ζ j
=
⋂lζ j

k=1
�k

ζ j
, can be obtained from(25):

∃ σ1
ζ j
∈ �+∗ , . . . ,σ

lζ j

ζ j
∈ �+∗ , ∀k = 1, . . . , lζ j

,


σk

ζ j
βk

ζ j
+ F̃k

ζ j
QF̃k

′
ζ j

σk
ζ j

F̃k
ζ j

QR̃k
′

ζ j

� −1 0

� � −σk
ζ j

I(n+m) + R̃k
ζ j

QR̃k
′

ζ j

≤ 0. (32)

The problems(32), (28)and(27)are jointly solved.

4.4 Conditions for the synthesis of a nonlinear static state feedback

This section aims at synthesizing the parametersK andKp of a nonlinear rational static state feedback

having the form

u =

(
K +Kp∆(x)

(
I − (Dqp+DquKp)∆(x)

)−1
DquK

)
x. (33)

As explained in [1], the use of such a controller enables to keep the same∆ matrix in the LFTs of the

open-loop system and in closed-loop, thus making easier the determination of a minimal closed-loop LFT.
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The normalized SNLDI (15) representing the uncertain linear system into which the nonlinear closed-loop

system is embedded has the form ẋ

q

=

 BuK (Bp +BuKp)

DquK (Dqp+DquKp)

 x

p

 , p = ∆q, with ∆ ∈ �(r). (34)

The remarks made at the beginning of§ 4.3 concerning the open-loop still hold.

Similarly to the global linearization process that was performed in§ 4.2.4-A so as to get the embedding

static inclusionζ j(x̃,∆ζ ) in the form of the LFT (23) for the rational expressionζ j = Zζ j
(x̃) x̃ assuming that

x̃∈ Ξ̃ f and under a well-posedness assumption, the global linearization of the rational static state feedback

control (33) leads to the normalized static inclusion u(x,∆)

q

=

 K Kp

DquK (Dqp+DquKp)

 x

p

 , p = ∆q, with ∆ ∈�(r). (35)

Though the results of this section are not explicitely mentioned in the robust control literature, they can

be obtained through fairly classical arguments.

4.4.1 Convergence of the camera to the reference situation

A Global asymptotic stability of (34)and satisfaction of the well-posedness assumption (12)

Theorem 4.6 Consider a fixedα ≥ 0. The quadratic stability of the SNLDI(34), the well-posedness of the

inclusions(34)and(35), as well as the decay rateα are ensured if the following LMI on Q, Y , Y2 and T is

feasible:

∃ Q > 0, Y ∈ �nu×n, Y2 ∈ �nu×np(r ), T ∈� (r),


Y

′
B

′
u +BuY +2αQ BpT +BuY2 Y

′
D

′
qu

� −T TD
′
qp+Y

′
2D

′
qu

� � −T

< 0. (36)

The values of K and Kp are then computed from the solution of(36)by K = YQ−1 and Kp = Y2T−1.

The proof is given in Appendix B.4.

B Satisfaction of the boundedness assumption (11) As was the case for the synthesis of a linear static

state feedback in§ 4.3.1-B, this hypothesis is ensured by joining the 2n LMIs (28) onQ andσ i , i = 1, . . . ,n,

to the problem (36).

4.4.2 A priori knowledge about the initial sensor-target relative situation

Similarly to the synthesis of a linear static state feedback, the constraintx0 ∈ �P or �0 ⊂ �P is ensured by

uniting to the problem{(36),(28)} the LMI (29) onQ developed in§ 4.3.2.
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4.4.3 Avoidance of the actuators saturations

The j th constraint on the actuators is satisfied by means of the condition�P⊂	uj
, with

	uj

∆={ξ ∈ �n : u
′
WjW

′
j u≤ u2

j , u being defined by (33)}. Considering the inclusion (35) coming from the

global linearization of the control law (33), and using the same reasoning as in§ 4.2.4-A, the constraint

�P⊂�uj

∆=(�uj
∩Ξ f ), with�uj

∆={ξ ∈ �n : ∀∆ ∈�(r), (W
′
j u(ξ ,∆))

2 ≤ u2
j}, turns to be sufficient to guar-

antee that�P ⊂	uj
.

Theorem 4.7 The condition �P ⊂ �uj
—which, if �P ⊂ Ξ f holds, then ensures that

�P ⊂�uj

∆=(�uj
∩Ξ f ) ⊂	uj

— is satisfied if the following LMIs on Y, Y2, Q, T andσuj
are feasi-

ble:

∃ σuj
∈ �+∗ , −u2

j +σuj
≤ 0 and


−Q 0 Y

′
Wj Y

′
D

′
qu

� −T Y
′
2Wj TD

′
qp+Y

′
2D

′
qu

� � −σuj
0

� � � −T

≤ 0. (37)

The problems(37), (28), (36)are simultaneously solved.

It must be kept in mind that the matrixT involved in the LMI (37) is the same as in the LMI (36)

related to the stability of the SNLDI (34). One could replaceT in Theorem 4.7 by another decision variable

Tu j ∈� (r) in order to reduce the conservatism of the approach. Yet, in this case, the change of variable

Y2 = KpT would be forbidden, so that the inequalities (37) and (36) should be replaced by Bilinear Matrix

Inequalities (BMIs). The proof is given in Appendix B.4.

4.4.4 Constraints of the type ζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ]

As was the case for the synthesis of a linear static state feedback, depending on whether the global lin-

earization ofζ j = Zζ j
(x̃) x̃ (§4.3.4-A) or an inner approximation of	 ζ j

by quadratic forms (§4.3.4-B) is

used, such constraints are ensured by either Theorem 4.4 or Theorem 4.5, respectively.

4.5 Case studies

The above developments are applied to two case studies. The first one concerns the multicriteria synthesis

of a 3D servo for the positioning of a 3DOF camera, while the second one concerns the analysis of a 2D

servo on a 2DOF camera. The detailed computations can be found in [1] and are not reported here. The

focus is only put on the most prominent properties.
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4.5.1 Case study #1: multicriteria synthesis of 3-DOF position-based servo

The admissible movements of the considered camera are any translation in the plane(T, −→yT ,−→zT ) parallel

to the ground and an azimuth rotation around the downward vertical axis−→xS = −→xT . This restricted prob-

lem is meaningful to us because it represents a pan-camera mounted on an holonomic robot NOMADIC

XR4000, see Figure 3. In this case study, the control vector and the state vector are respectively set to

Figure 3: 3-DOF position-based control (perspective and upper orthogonal views)

u = (Vy,Vz,Ωx)
′ andx = (ty, tz,L

∆= tan( λ
2 ))

′
with λ the azimuth angle�−→zS,−→zT around−→xS = −→xT . The target

is fitted with four spotsTi , i = 1, . . . ,4, whose respective coordinates expressed in the frameFT belong

to the set{(0.05ε1,0.1ε2,1.5)′,ε1 = ±1,ε2 = ±1}. The aim is to synthesize a static linear position-based

servo —state feedback controller— such that the convergence is ensured with the maximum decay rate

α . The control signal must satisfy the loose constraints|Vy| ≤Vy = 1.5m.s−1, |Vz| ≤Vz = 1.5m.s−1 and

|Ωx| ≤ Ωx = 1rad.s−1. The reference situation is such thatT lies in the axis of symmetry of a 4m wide

corridor, with the axis−→zT orthogonal to the walls. The 3D contraint on the camera motion is thus modeled

by |d3D| ≤ dWALL = 2m, whered3D
∆=−→zT .

−→
TS. Concerning the 2D constraints, a unity camera focal length

f = 1 is assumed, and the virtual bounds corresponding to the physical limits of the image plane are termed

X = −X andY = −Y. As the choice{X = 0.3m,Y = 0.25m} leads to an unfeasible problem,X = 0.3m

andY = 0.4m are considered instead. The initial state vector is set tox0 = (0.5,0.8,0.1)
′
, for a farther

initial sensor-target situation would make the problem unfeasible.

The nonlinear closed-loop system is embedded into the normalized SNLDI (26), which is computed

assuming thatΞ f = [−ty; ty]× [−tz; tz]× [−L;L], with ty = 3m, tz = 2m, L = 1. This SNLDI is obtained

from a minimal LFT, and turns to be well-posed whatever the value ofx. 3D constraints are dealt with

through the approach developed in§4.3.4-A. The static inclusion used to embed the additional vari-

abled3D can be shown to come from a minimal ever well-posed LFT. A minimal LFT can also be de-

fined for the additional variablesXi −X∗
i andYi −Y∗

i , for which the well-posedness necessary condition

x∈
1
∆={(ty, tz,L) : ∀i ∈ {1, . . . ,4}, zi =

−→
STi.

−→zS 	= 0} outlined in § 3.4 turns to be sufficient in this case

study. However, taking into account the 2D constraints by globally linearizing this LFT and applying the

results of§ 4.3.4-A leads to an unfeasible LMI problem. So, the 2D constraints are dealt with by approxi-
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mating the target visibility domain through quadratic functions determinedad hoc[1].

The solution, with the MATLAB LMI Control Toolbox [21], of the GEVP problem consist-

ing in the minimization of−α subject to the LMIs{(α > 0),(27),(28),(29),(30),(31),(32)} leads to

K =
( 1.88 −0.63 2.03
−0.18 0.95 4.55
−4.97 −1.98 41.99

)
andα = 0.3810. To fix some ideas, the following relevant subsets of the state

space are drawn in Figures 4,5,6,7:�P
∆={ξ : ξ ′Pξ ≤ 1}, 	u1

∆={ξ : |Vy| ≤Vy}, ∂	u1

∆={ξ : |Vy| = Vy},

	3D
∆={ξ : |d3D| ≤ dWALL }, ∂	3D

∆={ξ : |d3D| = dWALL }, 	X1

∆={ξ : |X1| ≤ X}, ∂	X1

∆={ξ : |X1| = X},

	Y1

∆={ξ : |Y1| ≤Y}, ∂	Y1

∆={ξ : |Y1| = Y}, and the boundaries∂�X1
(resp.∂�Y1

) of the sets�X1
(resp.

�Y1

∆=�1
Y1
∩�2

Y1
) resulting from the inner approximations of	X1

(resp.	Y1
) by quadratic functions. Simi-

lar sets would be obtained for the other target spots and actuators. The fact that� P belongs to the above sets

confirms the satisfaction of the considered constraints. Simulation results would also corroborate this [1].

4.5.2 Case study #2: multicriteria analysis of 2-DOF image-based servo

A 2-DOF camera is considered whose possible displacements are made of translations and rotations along

and around the optical axis−→zS = −→zT , so thatx = (tz,N
∆= tan( ν

4 ))
′
andu = (Vz,Ωz)

′
. A target fitted with 2

asymmetric spotsT1, T2 is used, whose respective coordinates(a1,b1,c)
′ and(a2,b2,c)

′ expressed in frame

FT satisfya1= a2= 0, b1 = 1, b2 = −2, c = 1.5, see Figure 8. The camera is moved by the image-based

Figure 8: 2-DOF image-based control (perspective view)

control lawu = −λ [J(s∗,z∗)]+ydescribed in [6], withy = s−s∗ as before,z∗= (c,c)′, λ = 0.1 andJ(s∗,z∗)

the image JacobianJ(s,z) —defined by ˙s= J(s,z)u— computed at the reference situation. No 3D con-

straint is imposed on the motion. The actuators limits are|Vz| ≤Vz = 1.5m.s−1 and|Ωz| ≤ Ωz = 1rad.s−1.

The camera focal length is selected to bef = 1, and the virtual limits of the image plane are set to
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Figure 9: Static output feedback multicriteria analysis

−X = X = 4m and−Y = Y = 3m. The aim is to determine the maximum size multicriteria basin of at-

traction, viz. the “widest” subset of the state space into which the convergence as well as the other criteria

are ensured.

A closed-loop minimal LFT (10) can be straightly computed from the closed-loop state equa-

tion. The necessary conditionx∈
2
∆={(tz,N) : zi =

−→
STi .

−→zS 	= 0, i = 1,2} mentioned in§ 3.4, i.e.

x∈
2
∆={(tz,N) : tz 	= −c}, turns out to be sufficient for its well-posedness. So, the normalized closed-

loop SNLDI (15) is computed assuming thatx lies in the parallelotopeΞ f = [−tz; tz]× [−N;N], tz = 1m,

N = 0.8, which is included into
+
2

∆={(tz,N) : tz > −c}⊂ 
2. The image and actuators constaints are

taken into account through inner approximations by quadratic functions of the admissible sets they define,

following the approach developed in§ 4.3.4-B.

An ellipsoid�P is looked for such that the sum of squares of its principal axes lengths is maximum. The

solution, with the MATLAB LMI Control Toolbox [21], of the LMI problem consisting in the minimization

of trace(P) under the LMIs{(17),(19),(25)} leads toP =
(

1.44 ε
� 16.37

)
, with ε ≈ 0. The results are illustrated

in Figure 9. The left part of each plot shows the boundaries of the admissible subspace.∂	 ui
terms the

frontier of the set	ui
into which thei th actuator does not saturate, and∂�ui

is the boundary of the quadratic

approximation�ui
of 	ui

. Likewise, the limits∂	X2
/∂�X2

and∂	Y2
/∂�Y2

of the sets	X2
/�X2

and

	Y2
/�Y2

express the fact that the projection ofT2 must be kept into the camera image plane. Similar

curves would be obtained for the spotT1. The details are thoroughly developed in [1].

4.6 Conclusion

At this point, thanks to the insight gained by the solution to the two case studies, a conclusion can be made

concerning the application to visual servoing of the above classical LMI control techniques.

As mentioned in§ 4.1.4, a particular effort is necessary right at the modeling stage to determine a

minimal closed-loop LFT. For instance in Case Study #2, the matrix∆ entailed in the closed-loop LFT

(10) and in the open-loop LFT (9) would have been of higher size if (9) had been determined by separately

computing the LFTs related to the open-loop state equation and to the open-loop output equation prior to

their “stacking” via the standard rules mentioned in [44, 13]. Note that the spatial arrangement of the target
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spots may also be adapted to get minimality, e.g. laying them on a plane orthogonal to the−→zT -axis may

make it easier.

Other degrees of freedom which can limit the conservatism coming from global linearization are the

selection of the vector functionΦ(.) and of the parallelotopeΞ, see§ 3.4. The fact that both scaling matrices

SandG are free also turns to be extremely important in the outer approximation of the SNLDI embedding

the closed-loop system. Indeed, even with a minimal closed-loop LFT, the first results that were obtained in

[3] for Case Study #1 by selectingG = 0(np(r );np(r ))
—which amounts not to take into account the realness

of ∆— led to very small coefficients in the third row of the state feedback gainK and thus a prohibitive

decay rate.

A last source of conservatism due to the underlying Automatic Control techniques basically lies into

the use of a unique quadratic Lyapunov function to check/ensure all the criteria for all the realizations of

the outer approximation of the closed-loop SNLDI.

As foreboded, the geometric properties of the consequent invariant sets turn to be extremely penalizing

in this robotics context. First, as explained at the end of§ 4.1.1, they may require the definition of an

unduly wideΞ f . More importantly, as is the case in the above case studies, they often lead to an extremely

conservative solution, in that a synthesis problem may be feasible only if the initial and reference sensor-

target situation are very close to each other, and the conclusions concerning an analysis may be poor. The

Figures 5,6,7 confirm that the asymmetry w.r.t. 0 of the admissible sets	Xi
and	Yi

—in which the invariant

ellipsoid�P is expected to lie— is a source of pessimism coming from the robotics problem itself, as is the

nonconvexity of the region	3D into which the 3D constraints are fulfilled, see the discussion in§4.1.3.B.

Similarly, for Case Study #2, the asymmetry of	Yi
, 	Xi

and	ui
prevents any conclusion for some initial

conditions from which the convergence is trivially ensured, e.g.x0 = (tz0,0)′ with tz0 > 0.9m.

Lastly, subtler well-posedness issues can explain some failures of the method. In the last case

study mentioned, the well-posedness assumption implies that�P⊂ Ξ f⊂ 
+
2

∆={(tz,N) : tz > −c}, so ini-

tial statesx0 = (tz0,0)′ with tz0 > c cannot be considered either. A similar cause can be given for

the inability of the approach developed in§ 4.3.4-A to take into account the 2D constraints in Case

Study #1. Indeed, in order to ensure the well-posedness of the inclusion (23) related to image con-

straints, the parallelotopeΞ f = Ξ involved in the global linearization process is selected to lie into


+
1

∆={(ty, tz,L) : ∀i ∈ {1, . . . ,4}, zi =
−→
STi .

−→zS > 0}⊂ 
1. As the boundary of
+
1 is “V-shaped”, strong

conditions follow onΞ f , which prevent many meaningful cases from being considered.

To deal with the last sources of conservatism coming from the robotics problem itself, two extensions

are hereafter presented. These were formerly developed in [1]. First, an analysis method is outlined and

then applied to the Case Study #2. Next, a second method is proposed for analysis as well as for synthesis,
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and its results on the Case Study #1 are shown.

5 Reduction of the conservatism

5.1 An analysis method

This section proposes some guidelines to get a better inner approximation of the multicriteria basin of

convergence of a visual-based feedback system, while still using the quadratic approach outlined in§ 4. It is

still assumed thatΦ(x) has been set tox, and only static controllers are considered —so thatΞ̃ f = Ξ f = Ξ—

but the results can be straightly extended. The main ideas are first exposed, and then applied to Case Study

#2.

5.1.1 “Directed” ellipsoidal invariant sets

It may be worth selecting among the invariant ellipsoids�P that verify all the constraints of the problem,

the one —henceforth denoted by�θ— having the maximum extent along a polar line crossing 0 and

parametrized by a vectorθ. The computation of�θ can merely be performed through an optimization

problem subject to the LMI constraints developed in§4.2. Notice that the large axis of� θ is not necessarily

supported by the directionθ. Then, a better inner approximation of the whole basin of attraction of 0 can

be got by making the union∪{θ}�θ of such ellipsoids.

5.1.2 Optimization process on the parallelotope Ξ f

The parallelotopeΞ f involved in the global linearization of the closed-loop state equation (7) stands for

a coarse a priori knowledge of the possible state vector values, rather than for a set of constraints to be

satisfied by this vector. Clearly, getting the “maximum size” invariant ellipsoid�P —e.g.the most extended

along a directionθ, or the one having the largest volume— requires the selection of a sufficiently wideΞ f .

WhenΞ f is “small enough”, the converse is also true, viz. the larger the extent ofΞ f , the greater�P.

However, whenΞ f is “too big”, the set of trajectories of the SNLDI coming from the global linearization

of the closed-loop equation is very rich, so that the LMIs defining�P may not be feasible or at best may

lead to a “small”�P. These effects ofΞ f onto�P can be observed by doing some simulations.

It thus sounds interesting to maximize the “size” of the ellipsoid�P over all the possible parallelotopes

Ξ f , whose boundsxi andxi are considered as decision variables. To carry out this extension, one can rewrite

all the matrix inequalities of§4.2 starting from the unnormalized form (14) of the closed-loop embedding

inclusion. Yet, though the consequent matrix inequalities entail the parametersxi andxi , i = 1, . . . ,n, they

are nonlinear in the unknowns. For instance, whenxi = −xi , statingxi
∆= 1

x2
i
, the LMI conditions (17)–(19)
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ensuring the camera convergence are replaced by the following BMI onP, S, G, x i andτ i , i = 1, . . . ,n [1]:

∃ P > 0, S∈� (r), G∈ � (r), x1 ∈ �+∗ , . . . ,xn ∈ �+∗ , τ1 ∈ �+∗ , . . . ,τn ∈ �+∗ ,Ã�′P+PÃ� +C̃�′
q SC̃�

q+2αP PB̃�
p+C̃�′

q SD̃�
qp+C̃�′

q G

� D̃�′
qpSD̃�

qp−∆S+ D̃�′
qpG+G

′
D̃�

qp

< 0, (38)

τiWiW
′
i −P≤ 0 and− τ i +xi ≤ 0, with ∆ ∆=diag(x1 Ir1, . . . ,xn Irn). (39)

Consequently, the size of�P over the BMI set defined by (38)–(39) can experience several local maxima,

and the global maximization problem may be computationally untractable.

Fortunately, the “biggest” invariant ellipsoid needs not be accurately computed. Methods developed

in the literature or even less involved calculations can be used as soon as they lead to a lower bound of

the maximum size. For example, as in [18], a finite set of parallelotopesΞ f can be selected, onto which

the “maximum size” ellipsoid is looked for, under the LMI constraints of§4.2. Of course, the inner

approximation∪{θ}�θ proposed above for the basin of attraction of 0 can be tightened by computing each

ellipsoid�θ as suggested in this section from a “most helpful” parallelotopeΞθ .

5.1.3 Further reduction of the conservatism

Let � be an inner numerical approximation of the multicriteria basin of convergence of the visual servo.

For instance,� can be computed as it has just been mentioned at the end of the above paragraph. This

section shows how� can be expanded to a subset of a given parallelotopeΠ such that� ∩Π 	= /0 and

� ∩Π 	= � . In addition, it is assumed that� ∩Π 	= Π lest the expansion would be already done. As is

often the case in practice, it is assumed that 0 belongs to� and is outsideΠ. To simplify, the part∂� ∩Π

of the frontier∂� of � which is insideΠ is supposed to be connected, see Figure 10.

Let the global linearization of the closed-loop system (7) be henceforth performed under the assumption

Ξ f = Π. The quadratic stability of the SNLDI (15) —withΞ f = Π therein— can be studied through the

LMI (17), and an invariant ellipsoid�P
∆={ξ : ξ ′Pξ ≤ 1} can be defined as well. However, the only
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conclusion which can be established is that the trajectories of the so-computed SNLDI just recover these

parts of the trajectories of the genuine closed-loop system which lie inΠ.

Assume thatP is such that the ellipsoid�P crosses the frontier∂Π of Π only once, that is, the inter-

section�P∩∂Π is connected. A reasoning similar to§ 4.1.1 shows that, as time progresses, the parts of

the trajectories of the genuine nonlinear closed-loop system (7) which stay inΠ intersect nested ellipsoids

that correspond to decreasing values of the Lyapunov function used to establish the stability of the SNLDI.

So, every trajectory of the genuine nonlinear closed-loop system which begins in� P∩Π crosses�P∩∂Π.

Consequently, if�P∩∂Π is a subset of� , then every trajectory of the nonlinear system starting in�P∩Π

converges to 0. If the other specifications are ensured over�P∩Π, then the inner approximation� of the

multicriteria basin of convergence can be supplemented with(�P∩Π)\((�P∩Π)∩� ).

Though this extension still uses quadratic stability arguments, it doesn’t suffer from all the limitations

mentioned in§4.6. For instance, when constraints on additional variables confine the closed-loop state

vector to an asymmetric set�, the inner approximation� is expanded if and only if(� P∩Π) is included

in �. It is readily seen that it is in no way required that the symmetric of(�P∩Π) with respect to 0 also

lies in�. In the same vein, the well-posedness of the SNLDI (15) built under the assumptionΞ f = Π may

not be too strong a requirement.

All the above considerations are turned into LMIs onP and other variables. The first one takes account

of �P∩Π 	= /0. Then, some edges∂1Π,∂2Π, . . . of the parallelotopeΠ are selected so that they must in-

tersect�P while keeping connected the union∪ i∈{1,2,...}(�P∩∂iΠ). For each such edge∂iΠ, the fact that

(�P∩∂iΠ) ⊂ � is expressed. Further, some matrix inequalities must theorize that�P must not go through

the remaining edges ofΠ. These equations depend upon some coordinates of the vertices ofΠ that are not

crossed by�P. Finally, the constraints to be put on(�P∩Π) are described in order to handle criteria other

than stability. The� -procedure is the cornerstone throughout this process.

Assume that a set of polar lines is selected starting from 0 and intersectingΠ, each line being

parametrized by a vectorθ. For each suchθ, � can be best enriched if the above ellipsoid� P —whose part

is merged with�— is looked for so as to have the maximum extent alongθ. The whole analysis method

is summarized in Algorithm 1.

5.1.4 Application to the Case Study #2

This section is meant to illustrate the method on the multicriteria analysis problem of the image-based

2DOF servo already considered in§ 4.5.2.

A STEP 1 of Algorithm 1 In this 2DOF case, the vectorθ parametrizing any polar line along which

the extentl of the invariant ellipsoid�P
∆={ξ : ξ ′Pξ ≤ 1} is maximized, is merely a scalar. Because of

31



Algorithm 1 Summary of the analysis method

STEP 1

1: Selectnθ directionsθ1, . . . ,θnθ

2: FOR j = 1. . .nθ DO

3: θ = θ j

4: SelectnΞ (symmetric) parallelotopesΞ1, . . . ,ΞnΞ

5: FOR k = 1. . .nΞ DO

6: Compute the normalized SNLDI (15) with

Ξ f = Ξk therein

7: Determine�θ having the maximum extentl along

the direction θ while satisfying the LMI con-

straints defined in§ 4.2

8: IF this problem is feasibleTHEN

9: �k = �θ andlk = l

10: END IF

11: END FOR

12: Select�θ j

∆=argmax
�k, k=1,...,nΞ

lk

13: END FOR

14: Define� =
⋃nθ

j=1
�θ j

STEP 2

1: Selectnθ directionsθ1, . . . ,θnθ

2: FOR j = 1. . .nθ DO

3: θ = θ j

4: SelectnΠ parallelotopesΠ1, . . . ,ΠnΠ

5: FOR k = 1. . .nΠ DO

6: Compute the normalized SNLDI (15) with

Ξ f = Π ∆=Πk therein

7: Determine�P having the maximum extentl along

the directionθ while satisfying the properties men-

tioned in§5.1.3

8: IF this problem is feasibleTHEN

9: � = � ∪
(
(�P∩Π)\((�P∩Π)∩� )

)
,

i.e.� = � ∪ (�P∩Π)

10: END IF

11: END FOR

12: END FOR

13: Output�
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Figure 11: Static output feedback multicriteria analysis by STEP 1 of Algorithm 1

the symmetry of�P —thus termed�θ— w.r.t. the origin,�θ and�θ+π are equal, so that thenθ directions

θ1, . . . , θnθ
can be restricted to[0;π]. The analytic expression of the extentl is expressed as a decreasing

function —which is parametrized by the angleθ— of a linear combination of the entries of the matrixP,

see [1]. Then, for eachθ, l is maximized under the LMIs{(17),(19)} and other LMIs of the form (25), all

the constraints being dealt with in the same way as in§ 4.5.2.nθ = 100 such optimizations are performed,

corresponding to evenly spread directions. For each direction,nΞ parallelotopesΞk = [−tzk; tzk]× [−Nk;Nk]

are selected, withtzk > 0 andNk > 0,k = 1, . . . ,nΞ. In order to ensure the well-posedness of the embedding

SNLDI (15) built with Ξ f = Ξk, −tzk is selected so that−tzk > −c. Figure 11 shows how the results of

Figure 9 can be enhanced by defining the multicriteria basin of convergence� as�
∆=∪{θ}�θ .
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Figure 12: Cases occuring during the finer multicriteria analysis of the image-based 2DOF servo, for

θ ∈ [0; π
2 ]

B Further reduction of the conservatism by STEP 2 of Algorithm 1 Given a directionθ and a

parallelotopeΠ = [tz; tz]× [N;N], the ellipsoid�P = {ξ : ξ ′
Pξ ≤ 1} related to the SNLDI (15) computed

with Ξ f = Π is sought for so that its extentl along the directionθ is maximum. The other constraints

on�P mentioned in§ 5.1.3, which involve the multicriteria basin of convergence� determined above, are

outlined in this section forθ ∈ [0; π
2 ], the extension to other angles intervals being straightforward.

Let Case A (resp. Case B) term the case when the point with coordinates(t z,N)′ lies

outside (resp. inside)� . Let [Ntz;Ntz] be the widest interval such thatN ∈ [Ntz;Ntz] and

[Ntz;Ntz]⊂ {ξ2 ∈ � : ξ = (ξ1,ξ2)
′ ∈ � ,ξ1 = tz}, see Figure 12.tzN

, tzN, Ntz
andNtz

are similarly defined.

In addition to the LMI (17) related to the quadratic stability of the considered SNLDI, other LMIs are

defined on the matrixP so as to ensure that

• in Case AandCase B, �P∩Π 	= /0; for this to hold, it is sufficient to havel > l with l the length

defined in Figure 12;

• in Case AandCase B, (�P∩∂WΠ)⊂ � , with ∂WΠ the “West” edge ofΠ; this constraint, which

can be written(�P∩∂WΠ)= (�P∩{ξ : N ≤ ξ2 ≤ N}∩{ξ : ξ1 = tz})⊂ � , is turned into the more

suitable form for the� -procedure:ξ 2 ∈ [Ntz;Ntz] for all ξ = (ξ1,ξ2)
′ such thatξ ∈ �P, ξ1 = tz and

ξ2 ∈ [N;N]; notice that the consequent LMI is trivially satisfied when the intersection(�P∩∂WΠ) is

empty;

• in Case Aand Case B, (�P∩∂SΠ)⊂ � , with ∂SΠ the “South” edge ofΠ; this is equivalent to

(�P∩{ξ : tz ≤ ξ1 ≤ tz}∩{ξ : ξ2 = N})⊂ � and leads to an LMI similar to the one related to the

“West” edge;

• in Case A, �P must not cross the “East” edge∂EΠ of Π, i.e. �P⊂ {ξ : ξ 2
1 ≤ t2

z}; in Case B, the
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relationship(�P∩∂EΠ)⊂ � must hold, viz.(�P∩{ξ : N ≤ ξ2 ≤ N}∩{ξ : ξ1 = tz})⊂ � ;

• in Case AandCase B, �P does not cross the “North” edge∂NΠ of Π; the corresponding LMI onP

and other variables can be got through the� -procedure so that� P⊂ {ξ = (ξ1,ξ2)
′ : ξ 2

2 ≤ N
2}.

All the above constraints guarantee that for allx0 in (�P∩Π), there exists an instantt1 such thatx(t)

belongs toΠ for all anterior timet ∈ [0, t1] while x(t1) ∈ � , so that the convergence is ensured for allx0 in

(�P∩Π). To deal with the remaining specifications, the LMIs onP and other variables —hereafter denoted

ζ j LMI
k
(P, .) ≤ 0, k = 1, . . . , lζ j

— that were developed in§4.2.3 and§ 4.2.4-B to ensure constraints like

�P ⊂	ζ j
, are turned into new LMIs which are sufficient for the much less conservative set relationship

(�P∩Π) ⊂	ζ j
. Typically, LMIs of the following form are obtained through the� -procedure:

∃ τ k
ζ N > 0, τ k

ζ tz
> 0, ζ j LMI

k
(P, .)+ τ k

ζN

(−W2W′
2 N̂W2

� −(N̂2−Ñ2)

)
+ τ k

ζ tz

(−W1W′
1 t̂zW1

� −(t̂z2−t̃z
2)

)
≤ 0, (40)

with N̂ = N+N
2 , Ñ = N−N

2 , t̂z =
tz+tz

2 andt̃z =
tz−tz

2 .

STEP 2 of Algorithm 1 is applied pickingnθ = 200 evenly spread directionsθ1, . . . ,θnθ
in [0;2π].

For each direction,nΠ parallelotopesΠk = [tzk
; tzk]× [Nk;Nk] are selected with[Nk;Nk] ⊂ [−1;1] and

[tzk; tzk] ⊂ [−1.5;20]. Figure 13 shows how the inner approximation�STEP 1 of the multicriteria basin of

convergence formerly computed in STEP 1 can be expanded into� STEP 2. There,∂	u and∂	XY respec-

tively term the frontiers of	u=	u1
∩	u2

and	XY=	X1
∩	Y1

∩	X2
∩	Y2

. The new inner approxima-

tion �STEP 2 is noticeably consistent with the fact, acknowledged in [6], that the convergence fails for all

initial conditions such thatν = ±180◦.

The proposed strategy has also been applied to the analysis of the static linear image-based control

law u = −λ [J(s∗, ẑ∗)]+y, whereλ = 0.1 as before, and̂z∗ = z∗ ±50%. Such a study is highly significant

in robotics, because an usual practical goal is to build an image-based control entailing a Jacobian matrix

parametrized solely from the 2D data perceived at the reference sensor-target situation —thus the depen-

dence ons∗, viz. on X∗
1 , Y∗

1 , X∗
2 , Y∗

2 — without the exact knowledge of the whole target model —from

which the uncertainty on the depthz∗. Figure 14 compares the consequent inner approximation� c±50% of

the multicriteria basin of convergence with�STEP 2computed above for the nominal value ofz∗. The sym-

bol ∂	XYu represents the boundary of the set	XYu=	u∩	XY in which the actuators and 2D constraints
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are satisfied in the most unfavorable case. Note that�c±50% is fairly wide despite the constancy of̂z∗ over

time is not taken into account.

All these results were confirmed by simulations runs. Anad hocmethod is proposed in [1] for the

determination of initial states from which the camera hits the target plane.

5.2 A method for analysis and synthesis

5.2.1 Basics

This second approach rests on the definition of a fictitious variablex f ∈ � evolving autonomously accord-

ing to the first-order differential equation

ẋf = −α f xf , xf (0) = xf 0
> 0, with α f > 0, (41)

so thatxf (t) lies in[0;xf 0
] for all t, and converges to 0 ast goes to infinity. Similarly to what was done in§ 4,

the genuine closed-loop nonlinear system (7) augmented byx f , i.e. with state vector ˜xa
∆=(x̃′,xf )

′, can be

embedded into an uncertain linear system represented by an SNLDI. The global stability of this SNLDI can

be studied through a quadratic Lyapunov function, which leads to the definition of an invariant ellipsoid

�P= {ξ ∈ �n+m+1 : ξ ′
Pξ ≤ 1}. Yet, because of the above property ofx f , every trajectory ˜xa(.) which

starts from an initial state ˜xa0 in the “slice”�P
∆=(�P∩{ξa = (ξ ′,ξ f )

′ ∈ �n+m×� : ξ f ∈ [0;xf 0
]}) stays

in �P. Equivalently, every trajectory ˜x(.) which is issued from an initial state ˜x0 lying in the projection

�P
∆={ξ ∈ �n+m : ∃ξ f ∈ [0;xf 0

], (ξ ′,ξ f )
′ ∈ �P} of �P onto the space of the vectors ˜x, remains in�P.

Then, the boundedness assumption (11) of Lemma 3.4 and the other specifications are guaranteed by

constricting the set�P to an admissible area of the ˜x-space. As shown in Figure 15, the so obtained

invariant set�P can be asymmetric w.r.t. the origin, thus circumventing some sources of conservatism.

This whole section still assumes thatΦ(x) = x in (7). The setsΞ f and	ζ j
keep their former definitions,

except that the parallelotopeΞ f = ∏n
i=1[xi ;xi ] includes 0 but is not necessarily symmetric. WhileΞ̃ f still

stands forΞ f ×�m, the augmented parallelotopeΞ̃a is defined as̃Ξa
∆=Ξ f ×�m×�.

5.2.2 Implication on analysis

Let the genuine closed-loop system (7) be globally linearized under Hypothesis 3.4. If the consequent

normalized SNLDI is put into the form of (15), then the following SNLDI can be got for the augmented
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x̃1, . . . , x̃n+m x̃1, . . . , x̃n+mx̃1, . . . , x̃n+m

x̃1, . . . , x̃n+m

x̃1, . . . , x̃n+mx̃1, . . . , x̃n+m

xf Ξ̃ f

�ζ j

xf = xf 0

xf = 0

�P

�P

�P ⊂ Ξ̃ f �P ⊂�ζ j

�P

Figure 15: Method for analysis and synthesis based on the definition of an asymmetric invariant set –

Basics

closed-loop system:  ˙̃xa

q̃a

=

 Ãa B̃pa

C̃qa D̃qpa

 x̃a

p̃a

 , p̃a = ∆ q̃a (42)

with ∆ ∈�(r), r = (r1, . . . , rN)
′
, p̃a = p̃, q̃a = q̃,

Ãa =
(

Ã 0
0 −α f

)
, B̃pa =

(
B̃p

0(1;np(r ))

)
, C̃qa =

(
C̃q 0(np(r );1)

)
, D̃qpa = D̃qp.

A Convergence of the camera to the reference situation

A.1 Global asymptotic stability of the SNLDI (42) and satisfaction of the well-posedness as-

sumption (12) An application of the results developed in§4.2.1 enables to conclude that the quadratic

stability and the well-posedness of the SNLDI (42) are ensured if

∃ P > 0, S∈� (r), G∈ � (r),

Ã
′
aP+PÃa+C̃

′
qaSC̃qa PB̃pa+C̃

′
qaSD̃qpa+C̃

′
qaG

� D̃
′
qpaSD̃qpa−S+ D̃

′
qpaG+G

′
D̃qpa

< 0.

(43)

As the matrixÃa depends linearly onα f , the matrix inequality (43) is an LMI (resp. a BMI) whenα f is

fixed (resp. whenα f is a decision variable.)

A.2 Satisfaction of the boundedness assumption (11) Define x0i
∆= xi+xi

2 , xωi
∆= xi−xi

2 ,

Wi
∆=coli(In+m), and let the matrixP be decomposed intoP =

(
P1 P2
� P3

)
, with P1∈ �(n+m)×(n+m) ,

P2∈ �(n+m)×1, P3 ∈ �+∗ . The constraint�P ⊂ Ξ̃ f , or equivalently�P ⊂ Ξ̃a, which ensures the
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boundedness assumption during the building of the SNLDI (42), is satisfied if:

∃ τ1 ∈ �+∗ ,τ f 1
∈ �+∗ , . . . ,τn ∈ �+∗ ,τ f n

∈ �+∗ ,

∀i = 1, . . . ,n,


τiWiW

′
i −P1 −P2 −τiWix0i

� −P3− τ f i
τ f i

xf 0
2

� � τi(x
2
0i −x2

ωi)+1

≤ 0. (44)

The matrix inequalities (44) is are linear (resp. bilinear) in the decision variables whenx f 0
is fixed (resp.

whenxf 0
is itself a decision variable.) The proof is given in Appendix B.5.

B A priori knowledge about the initial sensor-target relative situation The convergence of

the camera is ensured from the initial sensor-target situationx0 (resp. from every initial sensor-

target situation in �0
∆={ξ ∈ �n : ξ = x0 +Ez, z

′
z≤ 1}) if the “slice” �P encloses the initial

state vector ˜xa0
∆=(x′0,0

′
(m;1),xf 0

)′ ∈ �(n+m+1) of the augmented closed-loop system (resp. encloses

�̃a0
∆={ξ ∈ �(n+m+1) : ξ = x̃a0 + Ẽaz, z

′
z≤ 1} with Ẽa

∆=
(

E 0(n;m+1)
0(m+1;n) 0(m+1;m+1)

)
∈ �(n+m+1)×(n+m+1) .) Be-

cause of the boundedness of the last entry of ˜xa0, the “slice”�P encloses the admissible initial states if

and only if�P does so. A necessary and sufficient condition for ˜xa0 ∈ �P (resp.�̃a0 ⊂ �P) comes from

§ 4.2.2 as the matrix inequality onP (resp. onτ 0 andP)

x̃a
′
0Px̃a0−1≤ 0.

(
resp. ∃ τ0 ∈ �+ ,

Ẽ
′
aPẼa− τ0In+m+1 Ẽ

′
aPx̃a0

� x̃a
′
0Px̃a0−1+ τ0

≤ 0.

)
(45)

Note that these equations —which are LMIs (resp. BMIs) ifx f 0
is fixed (resp. a deci-

sion variable)— return to enclose ˜xa0 or �̃a0 by the intersection of�P with the subspace

{ξ ∈ �(n+m+1) : ξn+1 = . . . = ξn+m = 0, ξn+m+1 = xf 0
}.

C Constraints of the type ζ j ∈ [−ζ j ;ζ j ] As previously outlined, each constraint of this kind is taken

into account by making�P lie into an admissible set	ζ j
defined in the ˜x-space, or equivalently, by

making�P lie into 	aζ j

∆=	ζ j
×�. A reasoning similar to§ 5.2.2-A.2 is used to handle constraints like

ζ j = Zζ j
x̃∈ [−ζ j ;ζ j ], leading to the sufficient condition

∃ τζ j
∈ �+∗ , τζ f j

∈ �+ ,


τζ j

Z
′
ζ j

Zζ j
−P1 −P2 0

� −τζ f j
−P3 τζ f j

xf 0
2

� � −τζ j
ζ

2
j +1

≤ 0. (46)

To deal with constraints likeζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ], two different methods were developed in§ 4.2.4.

The matrix inequality (24) obtained through the first method —viz. the global linearization of
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ζ j = Zζ j
(x̃) x̃— here becomes

∃ τζ ∈ �+∗ , τζ f ∈ �+ , Sζ ∈� (rζ ), Gζ ∈ � (rζ ), τζ M1a +M2a−M0a+ τζ f M3a < 0, (47)

with M0a =


P1 P2 0 0

� P3 0 0

� � 0 0

� � � −1

 , M1a =



C̃′
ζ C̃ζ 0 C̃′

ζ D̃pζ
−C̃′

ζ ζ̂ j

� 0 0 0

� � D̃
′
pζ

D̃pζ
−D̃

′
pζ

ζ̂ j

� � � ζ̂ 2
j − ζ̃ 2

j


, M3a =


0 0 0 0

� −1 0
xf 0

2

� � 0 0

� � � 0

 ,

M2a =



C̃′
qζ

Sζ C̃qζ
0 C̃′

qζ
Sζ D̃qpζ

+C̃′
qζ

Gζ 0

� 0 0 0

� � D̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

0

� � � 0


.

In addition, the matrix inequalities (25) obtained through the inner approximation of	 ζ j
by quadratic

functions must be replaced by

∃ τ 1
ζ j
∈ �+∗ ,τ 1

ζ f ∈ �+ , . . . ,τ lζ j

ζ j
∈ �+∗ ,τ lζ j

ζ f
∈ �+ ,

∀k = 1, . . . , lζ j
, τ k

ζ j


Ṽk

ζ j
0 F̃k

′
ζ j

� 0 0

� � βk
ζ j

−


P1 P2 0

� P3 0

� � −1

+ τ k
ζ f


0 0 0

� −1
xf 0

2

� � 0

≤ 0. (48)

As is the case for (44), the matrix inequalities (46), (47) and (48) are LMIs (resp. BMIs) whenx f 0
is

fixed (resp. whenxf 0
is a decision variable.) Their proof is straightforward, using some arguments similar

to these mentioned in Appendix B.5 concerning the proof of§ 5.2.2-A.2.

5.2.3 Synthesis of a linear static state feedback u = Kax̃a

When the synthesis of such a control is of concern, the normalized SNLDI (42) into which the augmented

closed-loop system is embedded has the form,xa
∆=(x′,xf )

′ being the augmented open-loop state vector, ẋa

q

=

 Aa +BuaKa Bpa

DquaKa Dqpa

 xa

p

 , p = ∆q (49)

with ∆ ∈�(r), Aa =
(

0 0
0 −α f

)
, Bua =

(
Bu

0(1;nu)

)
, Bpa =

( Bp
0(1;np(r ))

)
,Dqua = Dqu, Dqpa = Dqp.

The remarks made at the beginning of§ 4.3 concerningΞ f , Ξ̃ f , Bu, Bp, Dqu, Dqp, p, q and∆ still hold,

though under the noticeable assumption thatΞ f = ∏n
i=1[xi ;xi ] is a nonnecessarily symmetric parallelotope

including 0.
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A Comments concerning the control law u = Kx Following the same reasoning as in§ 4.3.1-A,

the following matrix inequality is sufficient for the quadratic stability and the well-posedness of the

SNLDI (49):

∃ Q > 0, Ka = (K,0(nu;1)) with K ∈ �nu×n, T ∈� (r), H ∈ � (r),AaQ+QA
′
a+BpaTB

′
pa+BuaKaQ+QK

′
aB

′
ua BpaTD

′
qpa+QK

′
aD

′
qua+BpaH

� DqpaTD
′
qpa−T +DqpaH +H

′
D

′
qpa

< 0. (50)

This is a BMI. In§ 4.3.1-A, a similar inequality could be turned into an LMI through the change of variable

Y = KaQ, and the state feedback gainKa was then deduced from the solution of this LMI byKa = YQ−1.

Unfortunately, in the present case, such a change of variable cannot be performed because of the above

structure ofKa. The synthesis of a controlu = Kx will henceforth be left apart, i.e. the control variableu

will also depend on the fictitious variablex f so that the feedback gainKa ∈ �nu×(n+1) has no prescribed

structure.

B Convergence of the camera to the reference situation

B.1 Global asymptotic stability of the SNLDI (49) and satisfaction of the well-posedness as-

sumption (12) The aforementioned change of variable turns the sufficient condition (50) for the quadratic

stability and the well-posedness of the SNLDI (49) into

∃ Q > 0, Y ∈ �nu×(n+1), T ∈� (r), H ∈ � (r),AaQ+QA
′
a+BpaTB

′
pa+BuaY +Y

′
B

′
ua BpaTD

′
qpa+Y

′
D

′
qua+BpaH

� DqpaTD
′
qpa−T +DqpaH +H

′
D

′
qpa

< 0, (51)

which is an LMI onQ, Y, T andH when the value ofα f is fixed, and a BMI onQ, Y, T, H andα f

otherwise. Of course,Ka = YQ−1 follows.

B.2 Satisfaction of the boundedness assumption (11) As the matrix inequality (51) is expressed

in terms ofQ = P−1, an equivalent formulation of the sufficient condition (44) for the boundedness assump-

tion is sought for, which does not explicitely involve the variableP. Yet, such an equivalent formulation

would remain bilinear in the decision variables. So, the LMI (44) is still united to (51), along with the

nonconvex constraintPQ= I . As P andQ are positive definite, this last constraint is equivalent to the

conjunction of an LMI onP andQ together with a rank constraint, namely,

� (P,Q) =

 P In+1

In+1 Q

≥ 0, rank� (P,Q) = n+1. (52)
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The set of matrix inequalities{(51),(44),(52)} is a Cone Complementarity Problem, which can be effi-

ciently solved with the algorithm [16] of El Ghaoui, Oustry and Ait-Rami.

C A priori knowledge about the initial sensor-target relative situation As for analysis, the constraint

xa0 ∈ �P or �̃0 ⊂�P is ensured by the matrix inequality (45) onP. To improve the convergence of the cone

complementarity linearization algorithm [16], an equivalent formulation of this constraint in terms ofQ is

introduced, which has the form of (29):

−1 xa
′
0

� −Q

≤ 0

(
resp. ∃ σ0 ∈ �+ ,


−σ0In+1 0(n+1;1) Ẽ

′
a

� σ0−1 xa
′
0

� � −Q

≤ 0

)
. (53)

D Avoidance of the actuators saturations and Constraints ζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ] The

j th constraint on the actuators is satisfied by means of the condition�P ⊂	auj
, with

	auj

∆={ξ ∈ �n+1 : ξ ′
K

′
aWjW

′
j Kaξ ≤ u2

j}. Though less restrictive, this condition does not lead to

LMIs. So,�P ⊂	auj
is considered instead, which leads to LMIs similar to (30), except thatQ andY are

matrices of�(n+1)×(n+1) and�nu×(n+1), respectively.

The constraintsζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ] are ensured by the matrix inequalities (47)/(48).

5.2.4 Synthesis of a nonlinear static state feedback

In the same vein as in§ 4.4, the aim is to synthesize the parametersKa and Kp of the nonlinear state

feedback

u =

(
Ka +Kp∆(x)

(
I − (Dqp+DquKp)∆(x)

)−1
DquKa

)
xa. (54)

For the reasons mentioned in§ 5.2.3-A, the matrixKa ∈ �nu×(n+1) has no predefined structure, i.e. the

control signalu also depends on the fictitious variablex f .

Similarly to § 4.4.1-A, the changes of variablesY = KaQ andY2 = KpT can exhibit the following con-

dition for the global asymptotic —quadratic— stability and well-posedness of the SNLDI into which the

augmented closed-loop system is embedded:

∃ Q > 0, Y ∈ �nu×(n+1), Y2 ∈ �nu×np(r ), T ∈� (r),
AaQ+QA

′
a+Y

′
B

′
ua+BuaY BpaT +BuaY2 Y

′
D

′
qua

� −T TD
′
qpa+Y

′
2D

′
qua

� � −T

≤ 0. (55)
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The boundedness assumption is ensured in the same way as in§ 5.2.3-B.2. The set of matrix inequalities

{(55),(44),(52)} is a Cone Complementarity Problem, which can be efficiently solved with the algorithm

of El Ghaoui, Oustry and Ait-Rami [16].

Thea priori knowledge about the initial sensor-target situation is taken into account through the LMIs

of § 5.2.3-C.

As in § 5.2.3-D for the synthesis of a linear state feedback, ensuring thej th constraint on the actuators

by means of the condition�P ⊂	auj
does not lead to LMIs. Likewise,�P ⊂	auj

is considered instead,

which leads to LMIs similar to (37), except that the dimensions ofQ, Y have changed,{D qu,Dqp} are

replaced by{Dqua,Dqpa}, andT is the decision variable involved in (55).

At last, the constraintsζ j = Zζ j
(x̃) x̃∈ [ζ

j
;ζ j ] are ensured by the matrix inequalities (47)/(48).

5.2.5 Application to Case Study #1

The above results are applied to the case study which was first considered in§ 4.5.1. The criteria are

unchanged, except that a tighter 2D constraint is considered. The bounds of the virtual image plane cor-

responding to a unit focal lengthf = 1 are set to−X = X = 0.3m and−Y = Y = 0.25m. The initial state

x0 = (2.06,4.79,0.46)′ is selected so that the camera starts in the vicinity of a wall, fairly far from the

target.

When the aim is to synthesize a linear static state feedbacku = Kax̃a, the SNLDI into

which the augmented closed-loop system is embedded is defined under the boundedness assump-

tion Ξ f = [ty; ty]× [tz; tz]× [L;L] with ty = 2.2m, ty = −0.21m, tz = 4.9m, tz = −0.3m, L = 0.49 and

L = −0.02. Further, selectingxf 0
= 0.51 andα f = 0.14 and solving the problem with the MATLAB LMI

Control Toolbox leads to the controllerKa =
(

7.38 −5.23 35.89 −12.86
−6.74 9.18 −36.51 −24.03
−5.51 −0.84 65.69 −29.65

)
.

The corresponding camera 3D trajectory is shown in Figure 16. The settling time is about 25s. The

admissible sets represented in Figures 17–18 do enclose the invariant set�P. Thanks to the asymmetry of

�P, the initial sensor-target situationx0 can be taken into account despite the 2D constraints are violated at

−x0. Nevertheless, as the set	3D in which the 3D constraints are satisfied is nonconvex while the invariant

set�P defined by this extension remains convex, some initial relative situationsx0 lying in	3D cannot be

taken into account as soon asγx0 leaves	3D for at least oneγ in [0;1].

The solution of the problem can even be improved by synthesizing a nonlinear static state feedback of

the form (54). Selecting a slightly different parallelotopeΞ f for the definition of the embedding SNLDI as

well as different values forxf 0
andα f , leads to a 15s settling time thanks to a “tighter” fit of�P into the

admissible sets, see [1].
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Figure 16: u = Kax̃a: Upper

view of the 3D camera motion
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Figure 17: u = Kax̃a:

Satisfaction of the 3D con-

straint by the invariant set
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Figure 18: u = Kax̃a:

Satisfaction of the 2D con-

straint onY1 by the invariant set

�P

5.3 Strengths and weaknesses of the extensions

The analysis method proposed in§ 5.1 can partly reduce the global linearization conservatism through the

definition in STEP 2 of small-sized parallelotopesΠ. As it puts some set relationships only on parts of the

used ellipsoids�P, all the former problems induced by the symmetry or the convexity of these ellipsoids

are circumvented. An interesting point is that this feature is obtained with no increase in the complexity of

the consequent LMI feasibility/optimization problems. Unfortunately, these results seem difficult to use for

the multicriteria analysis of visual feedbacks of order higher than three, and cannot be trivially extended to

the synthesis.

The approach described in§ 5.2 seems somewhat more generic, in that it can be applied to analysis or

synthesis, even for higher-order visual feedbacks. By putting constraints on the invariant slice� P or its

projection�P, it enables the reduction of the conservatism coming from the symmetry w.r.t. 0 of ellipsoidal

invariant sets. However, as was the case in§4, this technique is limited by the fact that�P is convex.

Lastly, the complexity of the consequent feasibility/optimization problems can be strongly influenced,

depending on whether (i)(x f 0
,α f ) are parameters or decision variables, and (ii)x f is a controller input or

not.

6 Related developments

Other Matrix Inequalities, still rooted in the work of El Ghaoui and co-authors, were developed for this

multicriteria visual servocontrol problem. Due to space reasons, they are not included in this paper. The

reader is referred to [11, 1].

The synthesis of an interesting class of nonlinear rational static state feedback controllers is a tractable
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problem. Its application to Case Study #1 enables a 40 % reduction of the settling time compared

to § 5.2.5 [11, 1].

The synthesis of output feedback controllers leads to difficult —nonconvex— problems entailing BMIs.

Yet, if the scaling matrixG involved in the outer approximation of the closed-loop SNLDI is set to

G = 0(np(r );np(r )) —thus inducing some conservatism—, then a solution enjoying nice tractability prop-

erties remains theoretically possible. Indeed, an application of the elimination lemma leads to a Cone

Complementarity Problem ensuring the existence of a stabilizing controller. The controller further follows

from the solution of an LMI problem [13], which can straightly take into account 3D and 2D constraints.

Dealing with the actuators saturations still raises very sharp issues if LMIs are sought [1]. All these prop-

erties hold when the approach is extended following the guidelines of§ 5.2.

A similar tradeoff between tractability and conservatism occurs when the aim is to synthesize a gain-

scheduled output controller. However, this case shows three main differences [18, 13, 1]: the consequent

problem may get convex, putting contraints on the actuators is easier, and a “pseudo-invariance” property

is refered to when dealing with 2D and 3D constraints.

As already noticed —e.g. in§ 4.6—, the above method may fail because of well-posedness issues when

2D servos are considered, and/or if 2D constraints are handled through Theorem 4.2 or 4.4. The selection

of the mappingsΦ(.) andΦζ j
(.) in the LFTs (10) and (16) is of paramount importance, and defining them

as the identity function is often inappropriate. Instead, a convenient choice should be so that bounding

Φ(ξ ) (resp.Φζ j
(ξ )) by a parallelotopeΞ would enableξ to lie into a tighter subsetΞ f of a connected

component of the set
 onto which (10) (resp. (16)) is well-posed. This is a tricky problem, all the more

because the entries ofΦ(.) (resp.Φζ j
(.)) should be kept independent of each other, see§ 3.4.

Even when considering such modifications along with the arguments developed in§5.2, the synthesis

of 2D servos has seemed to lead to a blind alley whenG = 0(np(r );np(r )). Like in the “easier” state feedback

synthesis problem considered in Case Study #1 of§4.6, the high conservatism induced by this setting ofG

often prevents the feasibility of the consequent LMI problem or the meaningfulness of its solution.

7 Conclusion

A generic framework has been proposed to the multicriteria analysis and synthesis of kinematic visual-

based positioning schemes. A basic “standard” problem has been stated, through the definition of a rational

state space representation including uncertainties, if any. The interest of such a formulation is that the

problem is not limited to the stabilization part, by the very fact that various criteria —e.g. actuators, 2D

or 3D constraints— can be handled through rational additional variables. Thanks to a global linearization

step, the problem has been dealt with in the robust linear control framework. Yet, the mere application of
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existing robust control results has proved unsatisfactory. The sources of failures have been analyzed, and

two extensions have been proposed to partly reduce the conservatism coming from the applicative domain.

The proposed open-loop model shows several potentialities, mainly, a statement of the convergence

problem relying upon a sound definition of a state vector, some versatility in handling the criteria, and

an ease of enrichment so as to take account of unmodeled properties —see§ 2.3. Moreover, it enables a

“control system” approach to visual-based localization. Indeed, this last problem can be tackled as the

“dual” —in the sense of duality between control and estimation— of visual servoing, in that it consists

in estimating/forecasting the relative camera-target situation from the knowledge of the visual data and of

the camera command input. An LMI solution has been proposed in [4] based on a slight extension of the

results of El Ghaoui and Calafiore [15]. A rational discrete-time open-loop model is set up under zero order

hold (ZOH) hypothesis. Its global linearization leads to a Structured Norm-Bounded Recursive Inclusion,

so that some “dual” robust filtering techniques apply.

The suggested modeling, however, show several drawbacks. The concealment of the difference be-

tween 3D and 2D methodologies into its mathematical structure may induce a loss of intuition compared

with other approaches to visual servoing. Moreover, through the used control framework, it makes the

synthesis of 2D servos a difficult —nonconvex— problem, which is a severe limitation. To open up a

possibility of success, the solution of the raw BMIs for output feedback synthesis could be checked as well

as the selection of another rational open-loop model which “bridges the gap” with existing work, e.g. by

redefining the visual features or by deliberately disregarding the sensor-target relative situation. Note that

the extensions of§ 5 may remain useful so as to get rid of the symmetry and convexity properties of the

Lyapunov level sets, and that the avoidance of local minima may need special attention.

Significantly better results might be got concerning the synthesis of gain-scheduled output feedbacks,

e.g. by enhancing the approach of [38] by the recent work of Scherer [37]. More generally, still in the

context of SNLDIs, it would be worth finding LMI relaxations so as to enable the parametersΦ lie into

more general sets —e.g., in an ellipsoid rather than in a parallelotope—, to investigate alternate choices

of Lyapunov functions, or to allow actuators saturations rather than avoiding them. This last topic is

particularly relevant in the kinematic context, for in this case it is likely that a saturated control enlarges

the convergence region.

As an overall conclusion, the proposed methods can be helpful for the analysis of any visual-based

controller and for the synthesis of 3D servos. Due to their potential conservatism, the synthesis methods

might better express themselves —included for 2D servos— when used to propose a systematic tuning

of existing controllers, e.g. to select a parameterẑ∗ which can bestow nice properties to the inverse static

Jacobian controlleru = −λ [J(s∗, ẑ∗)]+y seen in Case Study #2, in the vein of [31].
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An ongoing work aims at keeping in this robotics context the powerful LMI framework for the analysis

and synthesis of control systems. A new LMI approach to the analysis and synthesis of rational systems

using biquadratic and polyquadratic Lyapunov functions is being assessed [12]. Homogeneous Polynomial

Lyapunov functions as introduced in [7] are planned to be checked as well. Insights gained from works

developed in the visual servoing community —e.g. concerning the choice of the visual features, the vector

space in which the problem is stated, etc.— will then be included. The aim is obviously to limit the

conservatism, so that a multicriteria LMI-based strategy can soon be versatile enough to be embedded on a

real robot.
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Notations The equations of rigid body kinematics often entail so-calledextrinsic quantities such as

3× 1 vectors, 3× 3 matrices, etc. Rather than handling such expressions directly, if is often convenient

first writing equations which involveintrinsic quantities, i.e. mathematical entities whose meaning makes

no assumption upon the basis in which they are expressed. Developments are therefore pursued as far as

possible using intrinsic equations. The equations are projected on a selected basis at the end.

A vector−→v (resp. atensor
−→−→
T ) is an intrinsic mathematical entity whose extrinsic expression(−→v )(F)

(resp.(
−→−→
T )(F)) in the canonical basis of a frameF § is a 3×1 column vector(resp. a 3×3 matrix.) −→v can

term a position, a translational or rotational vector, etc. Mathematical operations —e.g. addition, scalar

product, dot-product on vectors, cross-product on vectors, tensor-vector product, etc.— are then straightly

defined upon intrinsic quantities through their extrinsic representations.

Performing thetime-derivationof a vector−→v or of a tensor
−→−→
T with respect to a frame Fmeans thatF is

supposed time-invariant during the differentiation. The result is denoted
[

d(−→v )
dt

]
F

or
[

d(
−→−→
T )

dt

]
F

, respectively.

Among the main tensors are therotation tensorand theskew-symmetric tensor. The rotation tensor−→−→
�FS//FO

characterizes the relative attitude ofFS w.r.t. FO. Its extrinsic expression inFO reads as

(−→−→
�FS//FO

)
(FO)

=�FS//FO
=
(

(−→xS)(FO) (−→yS)(FO) (−→zS)(FO)

)
.

As for the skew-symmetric tensor̂
−→−→v associated with a vector−→v , it is defined by

(−→v )(F) = (a,b,c)′ ⇒
(−̂→−→v )

(F)
=
(

0 −c b
c 0 −a
−b a 0

)
.

Finally, the formula

(−→v )(F1)
=�F2//F1

(−→v )(F2)

(
resp.(

−→−→
T )(F1)

=�F2//F1
(
−→−→
T )(F2)

�
′
F2//F1

)

relates the extrinsic expressions of a vector−→v (resp. of a tensor
−→−→
T ) within two distinct bases.

These notations are consistent with those used in the body of the paper, see the definition ofx i , yi , zi ,

Xi , Yi , ai , bi , ci in §2.1, and oftx, ty, tz in § 2.2.

Analytical expressions

State equation This equation depicts the effect of the camera velocity screw onto the relative sensor-

target situation. The camera velocity screw is made of any translational velocity vector ofFS w.r.t. FO

§Let F = (OF ,−→x ,−→y ,−→z ) be any frame, andB = (−→x ,−→y ,−→z ) its associated basis. Though with a slight word and notation misuse,

the whole document terms “extrinsic expression ofX in frameF” the extrinsic expression in basisB of an intrinsic quantityX, and

equally uses the notations(X)(F) or (X)(B).
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—e.g.
[

d(
−→
OS)
dt

]
FO

— together with the rotational velocity vector
−→
ΩFS//FO

of FS w.r.t.FO. The control inputu

of the open-loop model has been defined as its extrinsic expression within theFS basis, namely,

u =

(([
d(
−→
OS)
dt

]
FO

)′

(FS)
,
(−→

ΩFS//FO

)′

(FS)

)′
= (Vx,Vy,Vz,Ωx,Ωy,Ωz)

′
. (56)

The translational velocities composition law and the composed derivation formula of a vector read

as [35] [d(
−→
OS)
dt

]
FO

=
[d(

−→
OT)
dt

]
FO

+
[d(

−→
TS)
dt

]
FO

(57)

and [d(
−→
TS)
dt

]
FO

=
[d(

−→
TS)
dt

]
FS

+
−→
ΩFS//FO

×−→
TS. (58)

As the target is assumed motionless in the frameFO attached to the environment, the time derivative of
−→
OT

w.r.t. FO is equal to the null vector. Equations (57) and (58) then lead to

[d(
−→
ST)
dt

]
FS

= −
[d(

−→
OS)
dt

]
FO

+
−→
ST×−→

Ω FS//FO
. (59)

The extrinsic representation of (59) inFS follows:(
ṫx
ṫy
ṫz

)
=
(−1 0 0 0 −tz ty

0 −1 0 tz 0 −tx
0 0 −1 −ty tx 0

)
u. (60)

Besides, the rotational velocities composition law and the rotation tensor time-derivation law read

as [35]
−→
ΩFT//FO

=
−→
ΩFT//FS

+
−→
Ω FS//FO

(61)

and [d(
−→−→
�FT//FS

)

dt

]
FS

=
−̂→−→
Ω FT//FS

−→−→
�FT//FS

. (62)

The fact that the target is motionless also implies that
−→
Ω FT//FO

=
−→
0 , so that (61) and (62) combine into

[d(
−→−→
�FT//FS

)

dt

]
FS

= −
−̂→−→
ΩFS//FO

−→−→
�FT//FS

. (63)

The extrinsic form of this equation in frameFS is then computed. Finally, expressing the matrix�FT//FS

—which is also the extrinsic form
(−→−→
�FT//FS

)
(FS)

— as a function of the 3-tuple(λ ,µ ,ν) of Bryant angles

which parametrize the relative attitude betweenFS andFT [35], leads to(
λ̇
µ̇
ν̇

)
=

(−1 −sinλ tanµ cosλ tanµ
0 −cosλ −sinλ
0 sinλ

cosµ
−cosλ
cosµ

)(
Ωx
Ωy
Ωz

)
. (64)

Equations (60) and (64) join into (1). Notice that the Jacobian matrix involved in (1) is always full rank.

Moreover, its entries are all well-defined, and its singular values are finite, iffµ 	≡ π
2 [mod 2π].
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Output equation Recall that the position-based case sums up to the trivial equationy = x. The determi-

nation of the output equation (2) in the image-based case follows the two following steps.

• The coordinates(
−→
STi)(FS) = (xi ,yi ,zi)

′
of the targets spotsTi , i = 1, . . . ,M, in the camera frameFS are

first related to their coordinates(
−→
TTi)(FT ) = (ai ,bi ,ci)

′
in FT by the equations

(
−→
STi)(FS)

= (
−→
ST)(FS) + (

−→
TTi)(FS)

,

= (
−→
ST)(FS) +�FT//FS

(
−→
TTi)(FT ). (65)

The entries(tx, ty, tz,λ ,µ ,ν)′ of the state vector appear in this relation through(
−→
ST)(FS) and�FT//FS

.

• The computation ofy = s−s∗ follows, where the entries ofs= (X1,Y1, . . . ,XM,YM)
′

and

s∗ = (X∗
1 ,Y∗

1 , . . . ,X∗
M,Y∗

M)
′

follow the equations of perspective projectionXi = f
xi
zi

, Yi = f
yi
zi

,

X∗
i = f

ai
ci

andY∗
i = f

bi
ci

.

Notice that the denominator of each subequation of (2) which expresses the coordinates of the projec-

tion Si of a spotTi is 0 iff zi =
−→
STi.

−→zS is 0. This case cannot occur, because it would imply thatTi belongs

to the plane containing the optical center and orthogonal to the optical axis. Eachzi must indeed be strictly

positive so thatTi can be in the camera field of view.

B Proofs

B.1 Proof of “boundedness” constaints

Proof of (19), (22), (28), (30): The constraints to be satisfied have the form

||Cx̃||2 ≤ 1
υ

, with υ > 0, holds for allx̃ such that ˜x′Px̃≤ 1. (66)

Two approaches can be developed so as to prove them.

• Like in [18, 13], it can be noticed that

υC′C−P≤ 0 (67)

(or its “Schur complement equivalent form” similar to [18]-(9)) is a sufficient condition, since this is

equivalent to

∀x̃, x̃′C′Cx̃≤ 1
υ

x̃′Px̃.

• Besides, rewriting (66) as

(
x̃
1

)′(C′C 0
0 − 1

υ

)(
x̃
1

)≤ 0, with υ > 0, holds for allx̃ such that
(

x̃
1

)′ (P 0
0 −1

)(
x̃
1

)≤ 0
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enables a straight application of the� -procedure, which leads to the necessary and sufficient condi-

tion

∃σ ≥ 0, such that
(

C′C 0
0 − 1

υ

)
−σ

(
P 0
0 −1

)≤ 0.

As C′C is positive semi-definite,σ cannot be 0. By settingτ = 1
σ , one gets the equivalent necessary

and sufficient condition to (66)

∃τ > 0, such thatτ
(

C′C 0
0 − 1

υ

)
− (P 0

0 −1

)≤ 0,

or, equivalently,

∃τ ≥ υ , such thatτC′C−P≤ 0. (68)

Yet, (67) and (68) are equivalent. Indeed,

• (67) trivially implies (68);

• if (68) holds, then

∀x̃, τ x̃′C′Cx̃− x̃′Px̃≤ 0

and, asC′C≥ 0,

∀x̃, τ x̃′C′Cx̃≥ υ x̃′C′Cx̃;

these last two equations thus imply

∀x̃, υ x̃′C′Cx̃− x̃′Px̃≤ 0,

i.e. (67).

Notice that (68) is equivalent to (19) (resp. (22)) whenC = W ′
i and υ = 1

ρ2
i

(resp. whenC = Zζ j
and

υ = 1

ζ 2
j

.)

The “Schur complement forms” of (67) and (68) can be shown to be respectively equivalent to the LMIs

(69) and (70) given below, which involveQ = P−1 (recall thatP > 0 andQ > 0):(
υ−1I CQ
QC′ Q

)
≥ 0 (69)

∃σ ∈ ]0;υ−1] such that
(

σ I CQ
QC′ Q

)
≥ 0. (70)

Notice that (70) is equivalent to (28) whenC = W ′
i andυ = 1

ρ2
i
.

Assume that

||CKx̃||2 ≤ 1
υ

, with υ > 0, holds for allx̃ such that ˜x′Px̃≤ 1 (71)
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must be ensured in the context of state feedback synthesis, withK = YQ−1, Q = P−1. (69) and (70) are

straightly equivalent to the LMIs (72) and (73) given below, which involveY andQ:(
υ−1I CY
Y′C′ Q

)
≥ 0 (72)

∃σ ∈ ]0;υ−1] such that
(

σ I CY
Y′C′ Q

)
≥ 0. (73)

It can be readily noticed that (72) (resp. (73)) is equivalent to the “additional LMI” given in the right

column of [18, p. 1277] whenC = I andυ = 1
u2

max
(resp. to (30) whenC = W′

j andυ = 1
u2

j
.) �

B.2 Proof of results in Section 4.2

Proof of Theorem 4.2: Consider the representation (23). The set membership ˜x∈ � ζ j
holds if and only

if the inequality 
x̃

pζ

1


′

M1


x̃

pζ

1

≤ 0, with M1 =


C̃′

ζ C̃ζ C̃′
ζ D̃pζ

−C̃′
ζ ζ̂ j

� D̃
′
pζ

D̃pζ
−D̃

′
pζ

ζ̂ j

� � ζ̂ 2
j − ζ̃ 2

j

 , (74)

is satisfied for allpζ expressing the relationshippζ = ∆ζ qζ with ∆ζ ∈ �(rζ ) andqζ = C̃qζ
x̃+ D̃qpζ

pζ .

By Lemma 4.1, whatever(Saζ
,Gaζ

) ∈� (rζ )×� (rζ ), the set of(x̃, pζ ) which satisfy (23) is included in

{(x̃, pζ ) : (pζ ,qζ ) ∈� (Saζ
,Gaζ

), qζ = C̃qζ
x̃+ D̃qpζ

pζ }, i.e. in the set of(x̃, pζ ) such that


x̃

pζ

1


′

Ma2


x̃

pζ

1

≥ 0, with Ma2 =


C̃′

qζ
Saζ

C̃qζ
C̃′

qζ
Saζ

D̃qpζ
+C̃′

qζ
Gaζ

0

� D̃
′
qpζ

Saζ
D̃qpζ

−Saζ
+ D̃

′
qpζ

Gaζ
+G

′
aζ

D̃qpζ
0

� � 0

 .

(75)

Moreover, ˜x∈ �P is equivalent to


x̃

pζ

1


′

M0


x̃

pζ

1

≤ 0, with M0 =


P 0 0

� 0 0

� � −1

 . (76)

So, to ensure the relationship�P ⊂ �ζ j
, it is sufficient that there exists a couple of matrices

(Saζ
,Gaζ

) ∈� (rζ )×� (rζ ) such that (74) holds for all(x̃, pζ ) which satisfy (75) and (76). Applying

the� -procedure leads to the following sufficient condition:

∃ τaζ
∈ �+ , σζ ∈ �+ , Saζ

∈� (rζ ), Gaζ
∈ � (rζ ), M1 + τaζ

Ma2−σζ M0 ≤ 0. (77)
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If σζ = 0, satisfying the inequality (77) would require that the matrix
(
C̃′

ζ C̃ζ + τaζ
C̃′

qζ
Saζ

C̃qζ

)
be negative

semidefinite. However, this matrix is by construction nonzero and positive semidefinite. Consequently,σ ζ

is strictly positive. Multiplying (77) byτ ζ
∆= 1

σζ
∈ �+∗ , one gets:

∃ τaζ
∈ �+ , τζ ∈ �+∗ , Saζ

∈� (rζ ), Gaζ
∈ � (rζ ), τζ M1 + τζ τaζ

Ma2−M0 ≤ 0. (78)

The variablesτaζ
, Saζ

andGaζ
appear in (78) only in the form of the products(τ ζ τaζ

Saζ
) and(τζ τaζ

Gaζ
).

In addition, ifτaζ
= 0, for the inequality (78) to hold, it is necessary that the matrix( D̃

′
pζ

D̃pζ
) be negative

definite, which is not the case. Consequently,τaζ
is strictly positive, therefore(τζ τaζ

Saζ
) ∈� (rζ ) and

(τζ τaζ
Gaζ

) ∈ � (rζ ). Replacing the expressions(τζ τaζ
Saζ

) and(τζ τaζ
Gaζ

) by the variablesSζ ∈� (rζ )

andGζ ∈ � (rζ ) leads to the condition

∃τζ ∈ �+∗ , Sζ ∈� (rζ ), Gζ ∈ � (rζ ), τζ M1 +M2−M0 ≤ 0. (79)

It remains to guarantee the well-posedness of (23), that is —once the matricesC̃ζ , D̃pζ
,

C̃qζ
, D̃qpζ

can be computed— to ensure the property∀∆ζ ∈ �(rζ ), det(I − D̃qpζ
∆ζ ) 	= 0.

As proved in [20], a sufficient condition is the existence ofSζ ∈� (rζ ) and Gζ ∈ � (rζ )

such that D̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

< 0. Yet, the inequality (79) implies that

D̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

+D′
pζ D̃pζ

≤ 0, so D̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

≤ 0.

Consequently, in order to ensure thatD̃
′
qpζ

Sζ D̃qpζ
−Sζ + D̃

′
qpζ

Gζ +G
′
ζ D̃qpζ

is negative definite, the

inequality (79) is made strict, which leads to the condition (24). �

Proof of Theorem 4.3: A vectorξ ∈ �(n+m) belongs to the set�k
ζ j

if and only if

ξ

1


′

Ñk
ζ j

ξ

1

≤ 0.

Similarly, ξ ∈ �(n+m) belongs to�P if and only if

ξ

1


′P 0

� −1

ξ

1

≤ 0. Applying the� -

procedure leads to the following necessary and sufficient condition for� P ⊂�k
ζ j

:

∃ σk
ζ j
∈ �+ , Ñk

ζ j
−σk

ζ j

P 0

� −1

≤ 0. (80)

If σk
ζ j

= 0, satisfying the inequality (80) would require that the matrixÑk
ζ j

be negative semidefinite. How-

ever, this is not the case lest�k
ζ j

would be�n+m. Consequently,σ k
ζ j

is strictly positive. Multiplying (80)

by τ k
ζ j

∆= 1
σk

ζ j

∈ �+∗ , one gets:

∃τ k
ζ j
∈ �+∗ , τ k

ζ j
Ñk

ζ j
−
P 0

� −1

≤ 0. (81)
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Finally, �P ⊂�ζ j
=
⋂lζ j

k=1
�k

ζ j
holds if and only if for allk = 1, . . . l ζ j

, there exists a positive scalarτ k
ζ j

such that (81) is true, thus leading to (25). �

B.3 Proof of results in Section 4.3

Proof of Theorem 4.4: As the scalarτζ in the LMI (24) is strictly positive, by applying the Schur lemma

this inequality can be turned to

C̃′
qζ

Sζ C̃qζ
−P C̃′

qζ
Sζ D̃qpζ

+C̃′
qζ

Gζ 0 C̃′
ζ

� D̃′
qpζ

Sζ D̃qpζ
−Sζ + D̃′

qpζ
Gζ +G′

ζ D̃qpζ
0 D̃′

pζ

� � −τζ ζ̃ 2
j +1 −ζ̂

� � � − 1
τζ


< 0. (82)

The matrixSζ is positive definite, soS−1
ζ exists andS−1

ζ > 0 as well as(Sζ +G
′
ζ S−1

ζ Gζ ) > 0. Moreover, the

block-diagonal structure of(Sζ +G
′
ζ S−1

ζ Gζ ) and of its inverse implies that both these symmetric positive

definite matrices belong to� (r ζ ). StatingTζ
∆=(Sζ +G

′
ζ S−1

ζ Gζ )
−1 ∈� (rζ ), the inequality (82) becomes

C̃′
qζ

Sζ C̃qζ
−P C̃′

qζ
Sζ (D̃qpζ

+S−1
ζ Gζ ) 0 C̃′

ζ

� (D̃qpζ
+S−1

ζ Gζ )
′
Sζ (D̃qpζ

+S−1
ζ Gζ )−T−1

ζ 0 D̃′
pζ

� � −τζ ζ̃ 2
j +1 −ζ̂

� � � − 1
τζ


< 0. (83)

The matrixSζ being positive definite, applying the Schur lemma to (83) leads to

−P 0 0 C̃′
ζ C̃′

qζ

� −T−1
ζ 0 D̃′

pζ
D̃′

qpζ
+G

′
ζ S−1

ζ

� � −τζ ζ̃ 2
j +1 −ζ̂ 0

� � � − 1
τζ

0

� � � � −S−1
ζ


< 0, (84)

so that, after a permutation of the 2nd and 5th rows and of the 2nd and 5th columns, one gets

−P C̃′
qζ

0 C̃′
ζ 0

� −S−1
ζ 0 0 D̃qpζ

+S−1
ζ Gζ

� � −τζ ζ̃ 2
j +1 −ζ̂ 0

� � � − 1
τζ

D̃pζ

� � � � −T−1
ζ


< 0. (85)
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The matrixT−1
ζ being positive definite, by applying the Schur lemma, the inequality (85) is equivalent to



−P C̃′
qζ

0 C̃′
ζ

� −S−1
ζ +(D̃qpζ

+S−1
ζ Gζ )Tζ (D̃qpζ

+S−1
ζ Gζ )

′
0 D̃qpζ

Tζ D̃′
pζ

+S−1
ζ Gζ Tζ D̃′

pζ

� � −τζ ζ̃ 2
j +1 −ζ̂

� � � − 1
τζ

+ D̃pζ
Tζ D̃′

pζ


< 0.

(86)

DefineHζ
∆=−Tζ Gζ S−1

ζ . So,H
′
ζ = S−1

ζ Gζ Tζ . Yet, by the matrix inversion lemma,

Tζ = S−1
ζ −S−1

ζ G
′
ζ Tζ Gζ S−1

ζ

holds, so that

H
′
ζ = (S−1

ζ T−1
ζ −S−1

ζ Gζ S−1
ζ G

′
ζ )Tζ Gζ S−1

ζ

= (I +S−1
ζ G

′
ζ S−1

ζ Gζ −S−1
ζ G

′
ζ S−1

ζ Gζ )Tζ Gζ S−1
ζ

= −Hζ .

Morover, the block-diagonal structure ofHζ implies that this matrix belongs to� (r ζ ). The second block-

diagonal term of (86) can be thus written:

−S−1
ζ +(D̃qpζ

+S−1
ζ Gζ )Tζ (D̃qpζ

+S−1
ζ Gζ )

′

= D̃qpζ
Tζ D̃′

qpζ
+ D̃qpζ

Hζ +H
′
ζ D̃′

qpζ
− (S−1

ζ +S−1
ζ Gζ Tζ Gζ S−1

ζ )

= D̃qpζ
Tζ D̃′

qpζ
+ D̃qpζ

Hζ +H
′
ζ D̃′

qpζ
−Tζ .

So, the inequality (86) becomes¶:

−P C̃′
qζ

0 C̃′
ζ

� D̃qpζ
Tζ D̃′

qpζ
−Tζ + D̃qpζ

Hζ +H
′
ζ D̃′

qpζ
0 D̃qpζ

Tζ D̃′
pζ

+H
′
ζ D̃′

pζ

� � −τζ ζ̃ 2
j +1 −ζ̂

� � � − 1
τζ

+ D̃pζ
Tζ D̃′

pζ


< 0. (87)

¶The proof ofHζ ∈ � (rζ ) and the steps leading to the inequality (87) are similar to these of El Ghaouiet al. [18, 13] in their proof

of (27).
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The matrixP being positive definite, the application of the Schur lemma leads to
R1 0 R2

� −τζ ζ̃ 2
j +1 −ζ̂

� � R3

< 0, (88)

with R1 = D̃qpζ
Tζ D̃′

qpζ
−Tζ + D̃qpζ

Hζ +H
′
ζ D̃′

qpζ
+C̃qζ

QC̃′
qζ

,

R2 = D̃qpζ
Tζ D̃′

pζ
+H

′
ζ D̃′

pζ
+C̃qζ

QC̃′
ζ ,

R3 = − 1
τζ

+ D̃pζ
Tζ D̃′

pζ
+C̃ζ QC̃′

ζ ,

Q = P−1.

At last, pre- and post- multiplying (88) by diag(I , 1
τζ

,1) > 0 and applying the Schur lemma leads to



R1 0 R2 0

� − 1
τζ

ζ̃ 2
j − 1

τζ
ζ̂ 1

τζ

� � R3 0

� � � −1


< 0. (89)

As the variableτζ ∈ �+∗ appears in the inequality (89) only under the form1τζ
, the change of variable

σζ
∆= 1

τζ
∈ �+∗ can be performed, leading to the expected condition (31). �

Proof of Theorem 4.5: By applying twice the Schur lemma, the inequality (25) becomes
τ k

ζ j
R̃k

′
ζ j

R̃k
ζ j
−P τ k

ζ j
F̃k

′
ζ j

0

� τ k
ζ j

βk
ζ j

1

� � −1

≤ 0, (90)

and, as the matrixτ k
ζ j

I(n+m) is positive definite,



−P τ k
ζ j

F̃k
′

ζ j
0 R̃k

′
ζ j

� τ k
ζ j

βk
ζ j

1 0

� � −1 0

� � � − 1
τ k
ζ j

I(n+m)


≤ 0. (91)
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Pre- and post- multiplying (91) by diag(I (n+m),
1

τ k
ζ j

,1, I(n+m)) > 0 leads to:



−P F̃k
′

ζ j
0 R̃k

′
ζ j

� 1
τ k
ζ j

βk
ζ j

1
τ k
ζ j

0

� � −1 0

� � � − 1
τ k
ζ j

I(n+m)


≤ 0. (92)

The matrixP being positive definite, a last application of the Schur lemma on this inequality gives
1

τ k
ζ j

βk
ζ j

+ F̃k
ζ j

QF̃k
′

ζ j

1
τ k
ζ j

F̃k
ζ j

QR̃k
′

ζ j

� −1 0

� � − 1
τ k
ζ j

I(n+m) + R̃k
ζ j

QR̃k
′

ζ j

≤ 0 (93)

whereQ = P−1. The variableτ k
ζ j
∈ �+∗ appears in (93) only under the form1

τ k
ζ j

, so that the change of

variableσ k
ζ j

∆= 1
τ k
ζ j

∈ �+∗ can be done, leading to (32), whatever the ordrem of the controller. �

B.4 Proof of results in Section 4.4

Proof of Theorem 4.6: The reasoning performed by El Ghaouiet al. in [18, 13] concerning the quadratic

stability and the well-posedness of the closed-loop SNLDI (26) when the aim is to synthesize a linear static

state feedback controller, cannot be extended to the synthesis of a nonlinear static state feedback, lest BMIs

would be obtained. It is hereafter shown that an LMI condition can be obtained from the analysis LMI (17)

if the matrix G is fixed toG = 0(np(r );np(r ))
∈ � (r). Though this choice induces extra conservatism, the

whole feasibility/optimization problem is kept convex.

Replacing into (17) the matrices involved in the definition of the closed-loop SNLDI by their expres-

sions given in (34), and selectingG = 0(np(r );np(r )), it follows:

K
′
B

′
uP+PBuK +K

′
D

′
quSDquK +2αP PBp +PBuKp +K

′
D

′
quS(Dqp+DquKp)

� (Dqp+DquKp)
′
S(Dqp+DquKp)−S

< 0. (94)

The matrixSbeing positive definite, an application of the Schur lemma leads to
K

′
B

′
uP+PBuK +2αP PBp +PBuKp K

′
D

′
qu

� −S D
′
qp+K

′
pD

′
qu

� � −T

< 0, (95)
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whereT
∆=S−1. After a pre- and post- multiplication by the symmetric matrix diag(Q,T, I) > 0, with

Q
∆=P−1, this inequality becomes

QK
′
B

′
u +BuKQ+2αQ BpT +BuKpT QK

′
D

′
qu

� −T TD
′
qp+TK

′
pD

′
qu

� � −T

< 0. (96)

LetY
∆=KQ andY2

∆=KpT. The variablesY andY2 can be respectively considered as matrices of�nu×n and

�nu×np(r ) with no structure. So, the LMI (36) follows.

As the LMI (36) is equivalent to the inequality (94), by a reasoning similar to the one used in§ 4.2.1-B,

the feasibility of (36) is sufficient for the well-posedness of the embedding SNLDI (34). In addition, the

well-posedness conditions are identical for the SNLDI (34) and for the inclusion (35). �

Proof of Theorem 4.7: The following condition, which is sufficient for� P ⊂ �uj
, is obtained following

the above proof of Theorem 4.2 and fixingGζ = 0:

∃ τuj
∈ �+∗ , Suj

∈� (r),

−τuj
u2

j +1≤ 0 (97)−P+ τuj
K

′
WjW

′
j K +K

′
D

′
quSuj

DquK τuj
K

′
WjW

′
j Kp +K

′
D

′
quSuj

(Dqp+DquKp)

� τuj
K

′
pWjW

′
j Kp +(Dqp+DquKp)

′
Suj

(Dqp+DquKp)−Suj

≤ 0.

(98)

The scalarτuj
being positive, an application of the Schur lemma turns the inequality (98) into


−P+K

′
D

′
quSuj

DquK K
′
D

′
quSuj

(Dqp+DquKp) K
′
Wj

� (Dqp+DquKp)
′
Suj

(Dqp+DquKp)−Suj
K

′
pWj

� � −σuj

≤ 0, (99)

whereσuj

∆= 1
τuj

> 0. As the matrixSuj
is positive definite, another application of the Schur lemma to (99)

leads to 
−P 0 K

′
Wj K

′
D

′
qu

� −Suj
K

′
pWj D

′
qp+K

′
pD

′
qu

� � −σuj
0

� � � −Tuj

≤ 0, (100)
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with Tuj

∆=S−1
uj

∈� (r). Pre- and post- multiplying (100) by diag(Q,Tu j, I , I), one gets
−Q 0 Y

′
1Wj Y

′
1D

′
qu

� −Tuj
Tuj

K
′
pWj Tuj

D
′
qp+Tuj

K
′
pD

′
qu

� � −σuj
0

� � � −Tuj

≤ 0, (101)

whereY1 = KQ. Consequently, the condition�P ⊂ �uj
is guaranteed if there existsσuj

∈ �+∗ and

Tuj
∈� (r) such that the inequalities (97) and (101) hold. The BMI (101) could be turned into an LMI

through the change of variableY3
∆=KpTuj

, so thatKp would be defined from the solution of this LMI by

Kp = Y3T−1
uj

. However,{(97),(101)} and the inequality (36) which ensures the stability of the SNLDI must

be jointly solved. As (36) already implies thatKp = Y2T−1, the inequalityY3T−1
uj

= Y2T−1 may not hold,

so that the change of variableY3 = KpTuj
cannot be performed.

If Tuj
= T ∈� (r) is selected, withT the decision variable involved in the inequality (36), then, though

at the expense of some conservatism, the change of variableY2 = KpT can be performed, leading to the

LMIs (37) which can be jointly solved with (36).

Notice that contrarily to what is the case in Theorem 4.2, the inequalities in Theorem 4.7 need not be

strict, as the well-posedness of the static inclusion (35) is already ensured by Theorem 4.6. �

B.5 Proof of results in Section 5.2.2

Proof of § 5.2.2-A.2: Defineξ a = (ξ ′,ξ f )
′ ∈ �n+m×�. The vectorξa belongs toΞ̃a if and only if

∀i = 1, . . . ,n,


ξ

ξ f

1


′

WiW
′
i 0 −Wix0i

� 0 0

� � x2
0i −x2

ωi




ξ

ξ f

1

≤ 0. (102)

Besides,ξa ∈ �P holds if and only ifξa ∈ �P andξa ∈ � f . The relationshipξa ∈ �P is equivalent to
ξ

ξ f

1


′

P1 P2 0

� P3 0

� � −1




ξ

ξ f

1

≤ 0 (103)

while ξa ∈ � f holds if and only if(ξ f −
xf 0

2 )
2
≤ xf

2
0

4 , i.e.
ξ

ξ f

1


′

0 0 0

� 1 −xf 0
2

� � 0




ξ

ξ f

1

≤ 0. (104)

60



Thus, the set relationship�P ⊂ Ξ̃a is true if and only if then inequalities (102) hold for all the vectors

ξa = (ξ ′,ξ f )
′ ∈ �n+m×� which simultaneously satisfy (103) and (104). Applying the� -procedure leads

to a sufficient condition in terms of then matrix inequalities

∃ σ1 ∈ �+ , σ f 1
∈ �+ , . . . ,σn ∈ �+ , σ f n

∈ �+ , ∀i = 1, . . . ,n,


WiW

′
i −σiP1 −σiP2 −Wix0i

� −σiP3−σ f i
σ f i

xf 0
2

� � (x2
0i −x2

ωi)+σi

≤ 0.

(105)

If σi = 0, satisfying the inequality (105) would require that the matrixWiW
′
i be negative semidefinite.

However, this matrix is by construction nonzero and positive semidefinite. Consequently,σ i is strictly

positive. Making the change of variablesτ i
∆= 1

σi
∈ �+∗ andτ f i

∆=
σ f i
σi

∈ �+ , and multiplying (105) byτ i

leads to (44). �
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