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Abstract

This paper attempts to propose a general framework to the multicriteria analysis and synthesis of
visual servoing schemes in robotics. Two of the most prominent control strategies are unified under a
common state-space representation, which is highly nonlinear and possibly uncertain. This model is then
embedded into a Linear Differential Inclusion with linear fractional uncertainty, so that the problem can
be tackled in a robust linear control context. Many visual servoing requirements can be dealt with, e.g.
convergence, avoidance of actuators saturations, image and 3D contraints.

Existing work on the analysis and control of rational systems through quadratic Lyapunov functions is
a seminal basis to the approach. As the symmetry and convexity properties of the consequent ellipsoidal
invariant sets is penalizing in this robotics context, some extensions are presented, which can be of
independent interest.

When possible, the criteria are dealt with through Linear Matrix Inequalities.

Keywords:visual servoing, rational systems, “global linearization”, LFTs, robust linear control, lin-

ear matrix inequalities.

0 Notations

This paper uses some standard notatior i a matrix, themA’, A~L, rankA, traceA, detA, respectively
term the transpose, the inverse, the rank, the trace and the determidam &f assumed to have appro-
priate dimensions so that such operators can be applexhd qn;m) respectively term the identity matrix
of R™" and the null matrix oR™™; when there is no ambiguity,and 0 are used instead. The diag
constructor enables the definition of a block-diagonal matrix from scalars or square submatrices of appro-
priate dimensions. The operator ¢A) extracts thej™ column of the matrixA. The symbolé means
“is equal to, by definition”. The notatioR > 0 (resp.P < 0) means that the square matkRxs positive
definite (resp. negative definite.) Similafy> 0 andP < 0 are used for semidefiniteness. Without loss of
generalityP is assumed symmetric.

More specific notations follow. A vectorr = (r,.. .,rN)/ €N being given, np(r)
is defined as np(r)é SNar. Besides, the following sets will often be referred to:
2(nE{a=diagdylr,....0 ) : ER i=1...,N};  A(NE{Ac2(r):[§|<L i=1... N}
B()2{B=diagB,,...,By) : B c Ri*"i, i=1... N}; #(N2{Sc B(r) :§=S>0,i=1,...,N};
g(N2{GeB(r):G=-G, i=1.. N}



1 Introduction

The advent of fast and efficient visual sensors has led the robotics community to investigate a broader
field of applications. In addition to their former use in low-frequency tasks such as pattern recognition
or scene modeling and interpretation, cameras have been considered as a relevant information source for
tasks operating at fast rate. Consequently, a considerable effort has been made on the problematics of
optical odometry, active vision, visual-based control, to cite few. This paper takes place within the last area
mentioned, which has been a very active field of research for the last fifteen years, see for example [24]
and the journal special issues [27, 33].

The use of visual data in control algorithms shows many advantages compared to a solution exclusively
based on proprioceptive informatibnFor instance, when considering a proprioceptive-based servo of a
manipulator arm, an error-free regulation of the end-effector ptsa constant reference does not ensure
that the task is properly performed, e.g. because of errors in the models of the robot or of its environment.
By contrast, a visual feedback is a fundamental step towards the fulfillment of accurate positioning tasks.
Visual sensors may even be mandatory for tracking moving targets.

This paper assumes that the camera is rigidly attached to the controlled robot or end-effector. Visual ser-
vocontrol schemes can be classified depending on the type of data that is transmitted to the controller [27].
The approach commonly namedsition-based—or “3D” — visual servoinglefines the controlled vari-
able as th&D posei.e. the relative situation between the sensor and the target. This quantity is estimated
from the processed image by a localization algorithm. As localization reliability heavily depends on a good
knowledge of the camera calibration parameters and —when such extra-information is used— of the model
of the target, the robustness of 3D servos may happen to be fairly poor. In addition, though some feeling
can be got about the camera 3D trajectory, no straight conclusion can be established concerning the 2D
apparent motion in the image, so that the target may be losimAge-based—or“2D” — visual servoing
entails a control law that is directly expressed in the space of the visual sensor. In its simplest form, some
dedicatedvisual features—spots, lines, etc.— are fixed to the target, which projections onto the camera
image plane must reach a reference configuration. No 3D pose reconstruction is required, so that this kind
of visual-based feedback is less sensible to calibration errors and can be implemented at a higher rate.
However, even if the image trajectory may be approximately controlled, the consequent 3D trajectory may
get contorted. More recent hybrid %2) servos avoid some drawbacks of the above schemes [30].

As one would expect, visual servocontrol raises sharp problems at the confluence of Computer Vision

and Automatic Control [40]. At the sensor level, fast and reliable algorithms are needed for features

TProprioceptive sensors-e.g. encoders, odometers, gyroscopes, etc.— provide information about a robot internal stagx-while

teroceptive sensors-e.g. visual sensors, laser telemeters, ultrasonic sensors, etc.— are involved in the perception of its environment.
*The wordsposeandsituationterm the pair jfositionattitude).



extraction and labelling, or for localization. On a control point of view, many strategies have been used.
A pioneering work proposed by Espiat al. [19] reformulates the problem in the space of a penalized
output, calledask functior{36], under some regularity conditions. Numerous studies and extensions have
then been developed in this framework. In [28], a robust stabilizing controller for a simplified robot is
synthesized taking into account Lagrangian dynamics. An underactuated rigid body system is visually
servoed using robust backstepping techniques in [23]. Adaptive, LQR and Generalized Predictive control
have respectively been considered in [34] [25] and [22]. In [39], a gain-sched#lgatontroller for a
panftilt platform is synthesized, achieving some robust performance. Problems of task singularities and
convergence are recorded in [6], for strategies entailing the inverse of the Jacobian relating the camera
control input to the derivatives of either 3D situation parameters or 2D parameters in the image. Stability
analysis for recent strategies are presented in [29].

Despite this large amount of work, the analysis and the synthesis of visual-based positioning laws are
still open with respect to convergence, avoidance of actuators’ and sensors’ saturations and guarantee of 3D
constraints, when all those criteria are simultaneously taken into account. So it is, both in situation-based
and feature-based approaches. Some strategies have been proposed to maintain the target into the camera
field of view, through path-planning [33, 43], navigation functions [10], circular-like trajectories [8] or
decoupling issues [42, 9]. A controlleris designed in [41] so as to quadratically stabilize a polytopic system
which locally embeds a task-function based representation while taking into account actuators velocities
bounds and visibility constraints. However, the avoidance of some convergence problems referred to in [6]

is not ensured.

This paper attempts to propose a general framework for the solution of this whole multicriteria problem
in the kinematic case, i.e. when dynamics effects are neglected. More specifically, the positioning of a 6
degrees-of-freedom (DOF) camera with respect to a fixed target is considered in an uncluttered environ-
ment. Position-based and image-based servos are unified into a common state-space §#d€hia
model is then embedded into a Linear Differential Inclusion with LFT uncertain§ygirso that the mul-
ticriteria analysis or synthesis can be tackled in a robust linear control context. The mere application of
existing techniques, shown §4, does not enable the treatment of relevant visual servoing schemes. So,
two extensions —which may be of independent interest— are preseritédareduce their conservatism.

Perspectives and open problems are finally discussed.

2 State space modeling of interactions and Problem statement

As mentioned in the introduction, this paper tackles the multicriteria analysis and synthesis of visual-based

control schemes which aim to drive a perspective camera to a unique relative situation with respect to a



fixed target. Dedicated spots serve as visual features. They are layed on the target in such a way that to any
configuration of their projection onto the camera image plane corresponds a unique sensor-target relative
situation. This is the case when coplanar unaligned spots are used, whose number is at least four [26].
Though the environment can be constrained, it is presumed to be free of mobile obstacles.

A noise-free model of interactions is set up first, in which all the parameters are known. The actuators,
the sensor and the image processing system —particularly the extraction and the labeling of the projections
of the visual features, and, when necessary, the visual-based localization algorithm— are supposed perfect
and instantaneous, so that they do not explicitely appear. As is often the case in the literature, dynamic
effects in the camera motion are neglected. The control input to the so-called kinematic model is thus the
camera velocity screw, i.e. the vector made up of its translational and rotational velocities. The method will

be further shown to easily take into account parametric uncertainties, if any.

2.1 Notations

The following frames are relevant to the forthcoming modeling,
see Figure 1Fy = (0,%3,Y5.Zo) is a frame linked to the world.
Fs= (SX3,Vs, Z2) is rigidly associated to the camera, wiithe X

optical center an@ positioned on the optical axis. The third frame

Fr = (T.X,¥7, 7 ), rigidly linked to the target, is defined as the mage pare \\

situation to be reached i once the positioning is performed. Of """" e
course, all the constraints of the problem must be fulfilled when ,° {

andF; coincide. i

A variable is superscripted by the symbalo depict its value
) ) Figure 1: Frame§,, Fg, F;
at the camera reference situation.

The target is fitted with thé dedicated spot3;, T, ... T,,,
whose perspective projections onto the camera image plane are
termedS;, S,,...S,. Let (ST) = (X, y,,;)/ and (T_'If)(FT) = (ai,bi,ci)/ be the coordinates of;,
i=1,...,M, in framesFg and F;. The metric coordinate(ss_é)(F =(X,Y,, ) of §,i=1,...,M,in
frameFg thus satisfyX; = f 3 andY; = f 1, with f the camera focal length. In addition, one bgs= fZ

andY;" = f?'

2.2 Open-loop mode

Assume first that a 6DOF “free-flying” camera is considered. As previously outlined, the control sig-

nal vectoru is the velocity screw of the camera with respect to the world. Equivalently, one states



ué(vx,vy,vz, Qy, Qy, Qz)', with (Vi Wy, V;)" and (Qx, Qy,Q,)" the entries inFg of the translational and
rotational velocities oFgw.r.t. Fg,.

No dynamic effect is assumed in the camera motion and the target is motionless, so that every variable
of the open-loop system can be determined through a memoryless mapping of the sensor-target relative
situation. The state vector is therefore defineckas(.7’, %)’ with .7 (resp.#) a parametrization of
the relative translation (resp. of the relative attitude) betwegandF;. .7 can be naturally made up
with the entries(ﬁ)(Fs) = (tx,ty,tz)/ in frameFg of the vector joining the origin§andT of Fg andF.

As the Special Orthogonal Group of rotations is not isomorphigpthe definition of% as a 3-tuple of
independentangles is somewhat more involved: care mustindeed be taken in order to avoid the singularities
of this representation during the completion of the task. A convenient choice is the set of Bryanfangles

X = (A, l,V)

". This 3-tuple of attitude parameters is indeed multivalued only when+ Z[27], in
which case the camera optical a@ is orthogonal taz;. Such a configuration cannot happen in a visual
servocontrol task, lest the target would be out of the camera field of view [3].

The output vectoy is defined as the input to the controller. If the control under study is of the position-
based typey is merely the state vector When considering an image-based seswmust be a function
of the vectors® (X, Yy, ,XM,YM)’ made of the projections coordinates of the visual features. Besides,
must be a function of the reference coordinatésLastly, in order to enable the global linearization step
explained ing 3.3,y must be 0 whem = 0. So, for an image-based servo, one getss—s*.

The state equation depicts the effect of the velocity screw onto the relative sensor-target situation.
It is obtained by applying the translational and rotational velocities composition rule. For image-based
servos, the output equation accounts for the interaction between the sensor-target relative situation and the
coordinates of the features’ perspective projections. An outline of the computations concerning the 6DOF
case is given in Appendix A. They lead to the open-loop state space equations (1)—(2) in Figure 2. When
the camera degrees of freedom are restricted, the open-loop statexauatthe control vectarlie in R"
andR"™. Though the results will henceforth be presented teltirigpm ny, these two dimensions will be

assumed equal. Also recall thabelongs tdR?™ .

2.3 Closed-loop system and Problem statement

The open-loop equations (1)—(2) were shown to be highly nonlinear. Moreover, though it hasn't been
supposed so far, they are often affected by some uncertainty, e.g. on the focalfleidtie camera, on

the coefficients;, b;, c, of the target model, etc.
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$The relative attitude betwed® = (S, X3, Vs, Zs) andFy = (T,%7,¥7,7Z) is depicted through the 3-tupl@, i, v) as follows:
an intermediate framg, is first obtained by rotatings of the angleA aroundx_s’; rotating F, of the angley aroundy, leads to a

secondary intermediate franfg the image of which through the rotation of anglaroun@ is (S)@,y_{,ﬁ).



tx -1 0 0 O —t ty Vi

ty 0 -1 0 ¢ 0 —ty Vy
A 0 0 0 -1 —sinAtanp cosAtanu | | Qx
1 0 0 0 0  —cosk —sinA Qy
y inA —cosh
Y 0 0 0 0 % ng“ Q;
y = X (position-based servo) | y= (X —X{,Y;—-Y{,....,Yy — Y,\*,l)/ (image-based servo) )
L — X* CX —az
with [ 575 :C_—; TEA ) and
Y=Y T\GYi bz
z = t;+a(—cosAsinucosy+sinAsinv) + b (cosA sinusinv 4 sinA cosv) + G cosA cosu
GX—a2z = Ctx—at,—a’(—CcosAsinucosy +sinA sinv) +csiny — bic; cospsinv

—a;b;(cosA sinpsinv 4 sinA cosv) + &c; Cosu(cosv — CosA )
Gy, —bz = cty—bt,—b2(cosA sinusinv +sinA cosv)—sinA cospy
—a;b; (— cosA sinprcosv + sinA sinv) + g, (SinA sinp cosv - cosA sinv)

+b;c;(cosA (cosv — cosp) —sinA sinpsinv).

Figure 2: Open-loop modémind the typo error, corrected in red)

Let a visual-based feedback controller having no external input be connected to the above open-loop
model. The first property to be checked or ensured in closed-loop is the convergence of the camera to
the reference final situation. Because of the above choice of the open-loop state vector, this positioning is
performed whenever the equilibrium state 0 of the —autonomous— closed-loop system is asymptotically
stabld. Doing so, “local minima” [6] —viz. convergence to situations such that the control vector is zero
while sands® differ— are avoided.

The other criteria of the problem are dealt with by making some scalar so-called additional variables
Zj, j = 1,...,nz, lie into prescribed intervals. Without loss of generality, each such additional variable
is a memoryless functiod; (X) of the closed-loop state vectroé*(x’,x’c)’, taking the value 0 whenris 0.
Boundedness constraints on additional variables enable the satisfaction of criteria of paramountimportance.
For instance, the visual features’ projections can be restricted to the physical limits of the camera image
plane by defininij =s— s’J‘ including for 3D servos. Actuators saturations can be dealt with as well,
e.g. by defining somé;’s as entries of the velocity screwor norms of subvectors extracted fram3D
constraints, such as constraining the camera to move inside a corridor without hitting its walls, can be
handled even for 2D servos by bounding some distaﬁgesdwj. Last, imposing bounds on the control

signalu or the dii‘ferencesj — sj can enable the avoidance of differential singularities in the loop transfers,

fin fact, the attractivity of 0 is sufficient to ensure the positioning. Nevertheless, asymptotic stability is wanted to prevent,
for instance, camera round-trips through infinity, e.g. as these described by [6] in the case of some image-based inverse Jacobian

controllers.



e.g. when using some 2D inverse Jacobian control schemes.

Such a statement can be viewed as a first step towards a “standard” problem in visual servoing. For
instance, a penalized outpatcan be introduced having in some way the meaning of a task function.
Despite the problem is not fully reformulated in the task space as in [19, 36], it can be associated to the
minimization of a criterion orz or on the transfer from a relevant input sigmato z. In principle, any
type of controller can be considered, whether 3D or 2D, static or dynamic, or even gain-scheduled (e.g.
2D controllers scheduled by 3D data, which would be a special kind%dif 2ontrollers.) Also note that
dynamic effects could be taken into account in the open-loop model, by buildivith the forces and
torques which cause the camera motion, and by defiimigh pose parameters and velocities. Besides, a
finer modeling of the camera could be used, including all its intrinsic parameters rather than just the focal
f, so thats ands* would be expressed in pixel coordinates. Uncertainties on the camera parameters, on the

measurements, or on the coefficieatd,, c; of the target model can be considered as well.

3 Towardsarobust linear control problem

The problem is dealt with in the linear robust control framework, as many results have been developed for
the multicriteria analysis and synthesis of linear uncertain systems. They sometimes lead to convex opti-
mization problems —e.g. entailing Linear Matrix Inequalities (LMIs) [5]— which enjoy nice tractability
properties and can thus be solved with efficient solvers.

The possibly uncertain genuine nonlinear closed-loop system is “embedded” into an uncertain system
described by a linear differential inclusion. So, when dealing with analysis, a property is proved true for
the nonlinear closed-loop system whenever it is satisfied by this embedding inclusion. As for the synthesis,
one may endow the actual closed-loop system with a given property by bestowing this property to each
realization of the uncertain system. Such a linerization technique, referred to as “global linearization” in
[5], handles nonlinearities and uncertainties in a unified manner. Of course, it induces conservatism, in that
many trajectories of the uncertain system —henceforth termed “spurious”— are physically meaningless.
So, the analysis/synthesis conditions, which are only sufficient, may be far too pessimistic. At worst, their
conjunction may lead to a poor performance, or even be void.

The proposed methodology relies on the seminal work of El Ghabal. concerning the analysis
and control of rational systems [18, 17, 14, 13]. In this context, the global linearization step leads to an

embedding linear system with strongly structured uncertainty, hopefully limiting the conservatism.



3.1 Rational systems

Definition 3.1 (Rational system [18]) A system is saidationalif its state space representation has the

(X) ) (A@x(x),cbX(x)) B(d:x(x),wX(x))) (x) -
v) \C(@00.94(x) D@0 0x00)) \e

where @, (.) and ®,(.) are some vector-valued functions, aAd.,.), B(.,.), C(.,.), D(.,.) term some

forml!

matrix functions which depend rationally on their arguments and are well-definé@ in®, ) = (0,0).

When inserted, the vectgraccounts for parametric uncertainties.

In the context of visual servoing, all the attitude coordinates appear as the arguments of trigonometric
functions. Provided that € [—7; 7], u €] — J; Z[ andv € [, 7], a bijective change of variables can be

applied to the state vector, respectively turningt andv into L, M, N, with
Brand) M2tan®) N2tancY
L_tan(z), M_tan(z), N_tan(4), 4

S0 as to get the following equivalent rational representation of the open-loop system (1)—(2):

(X) _ ( 0 B(CDX(X))) (X) XERM, Dy(x) € RNx (5)
y C(Px(x)) 0 u

The interconnection of (5) with m"-order controller

{ Ke(Pex(X Ky (Pex(X
X _ o(Pex(X)) Key(®ex(X)) ) (e , X € R™, Dgy(x) € RNex, (6)
u Ku(@ex(X)) K (Pex(X)) y

leads to the autonomous closed-loop rational system

K=A(D(X)X K R™"™ d(x) c RN. 7)

3.2 Equivalent Linear Fractional Transforms

Definition 3.2 (LFT of arational system — Well-posedness) It can be shown [18] that(5) can be

turned into the form

V([0 B [ B ) @) 1 - Dy (@ ) (e o)) ] @
y C& 0 Dgp ol \ X gp=ol\ X q qu u

with Ay, (y(X)) = diag(Pxy (X1, .-, Py, (X)]

Tolg? " roINX)’

IIThe definition must be somewhat looser than in [18] or [13], for an important reason to be explajr&dage 43.



For = (Topps---s role)/ being an adequate vector M'x, and §,, G, B}, D}, C;, D7, D§, Some appropriate

EoD (Px(X))) # 0, (8) is saidwell-

constant matrices. Moreover, for all values of x such ttiet(l — D¢,

posedand can be equivalently represented by

X 0 B B X
y |=| ¢ o Dbj u | P =g (Pu(¥) ()
o Ci Diu Dip P

which is the interconnection of an LTI system of state vector x, input vem‘tqnt/) , and output vector
(v,q"") , with a Mo(ro) x Np(r,,) state-dependent matrix gaiky, (Px(x)) joining ¢f and p. With a slight
word misuse(8) and (9), which are equivalent under the well-posedness assumption, will henceforth be

termedLinear Fractional Transform (LFTOf (5), see [44].

The LFT (9) satisfies the  relationships {BA, (Px(X))(1 — DFWAN(qu(x)))_lcgI =0,
-1 . . .
D} o1 (@x(X)) (I — D52 (Px(x))) "D, =0}, which specialize into{C;=1, Dj,=0, C;=0}
wheny =x. Some systematic rules shown in [44] and [13] can be used in order to build an LFT of a
rational system, this representation being nonunique.
As expected, similar arguments hold for the closed-loop system, namely, there exist constant matrices

A, B, Ci, D, such that (7) is equivalent to the LFT

% A B £\ .
= . . , P = A(P(X) (10)
& Ci Dip p

with A(®(x)) = diag(®, (X)Ir_,..., Py (M)l ), T = (ry...ry) €NV,

under the well-posedness assumptian{¢ : det(l — IigpA(CD(E))) # 0}.

This section ends with the definition of the minimality of an LFT, which will turn to be an important

notion in the sequel.

Definition 3.3 (Minimality of an LFT) An LFT is saidminimalif the vector r is such that g(r) £ SN

has the least possible value.

From [17], any rational system entailing monomials of maximum degreén ®, can be turned into

an LFT whose feedback matr&(®) = diag(®,Ir,, ®,lr,,...) satisfiesr; > m for everyi. Yet, to our
knowledge, there is no analytical technique enabling the computation of the minimal LFT of a rational
system. Neverthelesag hocarguments can sometimes be used in conjunction with the systematic building

rules mentioned above. Several numerical approaches to the reduction of LFTs are also referenced in [13].



3.3 Global linearization

Assume that the following assumption holds:

Hypothesis 3.4 (Boundedness & Well-posedness) The vectord = ®(x) € RN involved in(7) takes its

values in a parallelotop& 4 M., [@,; ®;] defineda priori, viz.

xE€Z A{E R : O(x) € Z, with Eé_ﬁ[gi@i]}, (11)

onto which the closed-loop LF{LO)is well-posedi.e.

Voez2 ﬁ [®; D], det(l — D},A(P)) #0. (12)

Consider the uncertain linear system
g =A(5" % (13)

with & a time-varying uncertain parameters vector taking any value in the paralleBidgeelementary
reasoning shows that a state trajectory of the genuine nonlinear closed-loop system (7) also satisfies (13)
if and only if the boundedness condition (11) is satisfied all along this trajectory. As aforementioned, the
embedding of the genuine nonlinear system (7) into the uncertain linear system (13) will be referred to as

“global linearization”.

Definition 3.5 (SLNDI) Under Hypothesis 3.4, the uncertain linear syst@) can be put into the form

i\ (& B
¢ & D

with A =diag(o;ly,,...,04lr ), r=(ry...r "eN ,andvi=1,...,N, &' € [D; D],
ith 6ﬁ di 611: 1 6!& N 1 N N d N 6|ﬁ i

of the LFT

>

) , P =08 & (14)

el
gas

which can be considered as the connection of an LTI system with a time-varying uncertain matrix gain
A(S%).
Through anormalization—or loop-shifting— step, thoroughly described in [13, 1],4) can be turned

to the simplified form —in which the boundis and ®; implicitly appear in the definition of the matrices

ORI

with A2 A(8) = diag(8ylr ..., &yl ), T = (ry...1y) €NV, andvi=1,...,N, & € [-1;+1].

A, Bp, Cq, Dgp—

>

) , P=A4 (15)

©

Notice thatA with no argument henceforth represents a time-varying uncertain matrix gairirofwith
no memory, instead of a matrix function. The representat{@d$and (15) are respectively termed an

unnormalized and normalizestructured Norm-Bounded Linear Differential Inclusion (SNLDI)

10



3.4 Comments

Rational systems look fairly well suited to visual servoing. On the one hand, the controllers (6) encompass
many usual 2D or 3D strategies. For instance, the inverse Jacobian 3D schemes mentioned by Martinet in
[32], whose equations are= —AB*(0)x andu= —AB™" (X)X, respectively correspond to a linear static
state feedback = Kx and to a nonlinear rational static state feedbackK (P (x))x. Similarly, the
inverse Jacobian 2D controllens= —A [J(s*,Z")]" (s— ") andu= —A[J(s,2)]* (s—s*), proposed in Es-
piauet al.[19] and thoroughly studied in [6], can also be dealt with. Indeed, the so-called image Jacobian
J(.,.) —defined froms= J(s,z)u— is a rational function o§ and of the vector made up with the depths

z = ﬁ ?S so that these 2D servos respectively correspond to a linear static output feedbsdls — s*)

and a static gain-scheduled output feedhaekK (P «(X)) (s— s*). The proposed method can also handle
dynamic output feedbacks by associating constant matrideg(t9, Ky (.), Ku(.), K(.). The general case

(6) corresponds to a dynamic gain-scheduled output feedback

On the other hand, the aforementioned additional variab}es Zj (X),j=1,.. -N,, are rational. For
controllers like (6), they can be written, Wiihzj (.) arational function well-defined at O,

G =2, (@, ()% @ () R . (16)

As outlined in the introduction to this section, the multicriteria analysis or synthesis is performed on the
whole set of the trajectories of the SNLDI (15) embedding the original nonlinear closed-loop system (7).
Care must be taken to limit as much as possible the conservatism of this strategy. First, the choice of the
bounds®; and®, come from a compromize: the parallelotgpenust be wide enough to handle relevant
trajectories of the closed-loop system (7), while sufficiently restricted to limit the number of spurious
trajectories. Next, as the entries of the uncertain vedfoin (13) are implicitly assumed independent
with each other, no instantaneous relationship should exist between the comporebefofe the global
linearization process. Lastly, other sources of conservatism will appear in the next section, coming from
the underlying robust control methods. One of these lies in the use of an outer approximation of the SNLDI
(15), rather than (15) itself, which is all the more conservative as the size of the uncertaintnistigh.

So, minimal LFTs must be determined when possible.

Some important points on the well-posedness issue in Hypothesis 3.4 are also of concern. The well-
posedness of the LFT of a rational system on a%etequires that the rational matrix functions involved
in this system be well-defined ofd”. In addition, the references [13, 1] show that the well-posedness of
the unnormalized SNLDI (14) o& is equivalent to assuming that (14) is well-posed at the centeramid

the normalized form (15) is well-posed ¢r1;+1]". Yet, the well-posedness of (14) at the centeE o6

**Notice however that?D controllers as these of Mal&t al.[30] may not straightly fit in this framework.
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a necessary condition for the computation of the matriseB,, Cq, Dgp involved in (15). So, once these
matrices are given, to ensure the well-posedness of the unnormalized SNLDI (Z4jtgust remains to
verify that de{l — DqpA) is nonzero for al in A (r) —viz. that the normalized SNLDI (15) is well-posed
on|[—1;+1]". This is why, unless explicitely mentioned, only normalized SNLDIs will be considered.

At last, it may be noticed that even though the functid(®(&)) in the closed-loop equation (7) is
well-defined on a se2” when detl — IigpA(CD(E))) is nonzero on?’, it is not necessarily the case for
all the matrix functions appearing in (5)—(6), e.g. because of internal simplifications. In the same vein as
a remark in§ 2.3, a way to avoid this potential problem is to ensure the boundednesarafs— s* by

introducing them as additional variables.

This paper henceforth assumes tatx) is equal tax and®dc4(X) is made with a subset of the entries of
X, so that®d(x) = x which is the most immediate choice whatever the considered visual servo. Quite often,
CDZJ- (x) = x can be assumed as well. Then, necessary conditions for the well-posedness of some LFTs can
be established from the following notes.

In the 6DOF case, the matrix functid@(x) involved in the open-loop equation (5) can be shown to
be well-defined as soon &8 = tan(%) belongs to the open intervat- 1;+1], which is always true. In
addition, if a 2D servo is considereglis set to the difference— s*, and the matrixC(x) comes to be not
well-defined as soon asis such that at least one target spot, $ayadmits a null depth along th@’ axis
of frameFg, i.e. when the value of implies thatdi € {1,...,M} : z; = ﬁ'z_’s = 0. Such a sensor-target
situation does not occur in a problem formulation taking into account image constraints, since it implies
that some target points would belong to a plane including the camera optical 8angorthogonal to the
optical axis. In fact, the;’s are all strictly positive.

The same obviously holds on the matrix funth)E} (x) in equation (16) when the additional variable
{; is defined as the differenég — X or Y; — Y;" in order to handle image constraints. The reference [1]
shows thatZZJ_ (x) in (16) is well-defined whatever the vaIue>oWhean terms the 3D distanad%Dj from
the centelS of frameFg to a wall. These conclusions are usefuZiij (x) is also written as an LFT, see
§4.2.4-A.

The reader is referred to [1] for a discussion on cases in whjghandv lie in wider intervals and/or
uncertainties affect (7). Controllers showing a rational dependenceL{X) instead of®c(x), which
lead to®(X) (resp.CDZj (X)) as argument of (7) (resp. of (16)), are also briefly outlined therein. In this
paper, results concerning additional variables will be presented under the assm!?ﬂﬁ)b Xinstead of

@, (X) = x, which leads to a simplified formulation.
]
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4 First step tothe satisfaction of the criteria

In this section, conditions are given guaranteeing some specifications of the standard visual servocontrol
problem stated if§ 2.3. As®(x) has been set to = and= are equal. The bounds; and®; correspond

to thei entryx; of x and will thus be respectively denotggdandy;.

4.1 Basics
4.1.1 Convergenceof the camerato thereferencesituation

As aforementioned, the asymptotic stability of the equilibrium state O of the closed-loop system (7) is a
sufficient condition for the correct positioning of the camera at the reference final situation.

By § 3.3, as soon as Hypothesis 3.4 on boundedness and well-posedness is satisfied, the set of the state
trajectories of the SNLDI (15) contains all the trajectories of the genuine closed-loop system that belong to
S Az XR"={EcRMM : (&, ... &) €Z,}. So,if (15) is well-posed for all the admissible values of
A, ensuring the asymptotic stability of this SNLDI is sufficient for the convergence to 0 of all the trajectories
of (7) that wholly lie inif”. Yet, it is important to notice that though the asymptotic stability of the SNLDI
(15) is global, nothing can be said about the convergence of these responses of the nonlinear closed-loop
system (7) that do not completely remainﬁ@. For instance, if the responses of (7) can just be surrounded
by a set?f éi x R™ such thaE, C =, the asymptotic stability of the “broader” inclusién= A(5*)%,

with &% € =, should be studied instead.

The global asymptotic stability of the SNLDI (15) is proved by finding a ma®ix O such that the
quadratic Lyapunov functioW (¢) = £'P& decreases along all the state trajectories of this inclusion, i.e.
such thatw < 0 for all the admissible realizations &f As an immediate consequence, each of the
nested ellipsoids centered at the origin O and corresponding to a constant value of the Lyapunov function
V is an invariant set, in that it encloses all the inclusion’s trajectories beginning in it. The focus will be
often put on@@Pé{E e RM - g/pg < 1}. Further, the closed-loop decay réte—or largest Lyapunov
exponent— is at least when the inequalityw < —2aV(X(t)) is satisfied. Then, the relationship
K(ty) € & implies that for all subsequent tineX(t) lies in the Shunken ellipsoie=2 %) &, C &.

From the above arguments, the ellipsgigd can be made an inner approximation to the attraction
basin of the equilibrium 0 of the closed-loop system (7) by ensuring the well-posedness of the embedding
SNLDI (15) for all the admissible values & and by putting additional constraints &so that the set

relationship&, =, holds. As ) belongs tosy, the constraint}, C =, requires that Q1) € =5

Qn+m;1
Moreover&, is symmetric w.r.t. the origin, so that the relationsifipc = is equivalent ta%, O, C =,

TNo boundedness assumption is madecoms no output feedback is considered showing a rational dependemce on
HThe decay rate is the largg8t> 0 such that lim, , ., €*!||X(t)|| = 0.
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with 0, 2{& e RMM : £2 < x2and&? <x2 i = 1,...,n} the widest symmetric parallelotope enclosed

by Z;. So, in the case of an asymmetHg, to take into account some values»in™=,\[;, the global
linearization step must be performed by replacingby its smallest symmetric outer parallelotope. This
modification of course induces some conservatism, in that the obtained SNLDI concerns a broader set of

uncertain parameters.

4.1.2 A priori knowledge about theinitial sensor-target relative situation

Many visual servoing problems involve some knowledge of the initial sensor-target relative situation. For
instance, in an analysis context, one may want to check if a given control can steer the camera from a
relative situatiorx, to the reference pose, without willing to compute a fine approximation of the whole
convergence basin. Similarly, when synthesizing a visual-based control law, this initial situation, though
unknown, may be supposed to belong to a predefined et

Such cases can be dealt with by makid enclose the closed-loop initial state vector

%= (%0:0(pny))’ € RM™ or the setdy = {& = (£6,0(yy))" € R™M™ : &) € &}, respectively.

4.1.3 Additional constraints

The actuators saturations are taken into account by keeping into predefined admissible symmetric lim-
its the norm of some subvectors extracted frame.g. by requiring thafu ;| = |V\/j'u| <71, for each
i=1,....ny, whereW, écolj(lnu). Besides, the target is kept visible from the camera if and only if
X;—Xj € [xij*;iij*] andY; -Y/ € [Xij*;V—Yj*], j=1,...,M, with X, X, Y andY the physi-

cal dimensions of the camera image plane. Similarly, the camera is kept in a corridor without hitting its
walls if and only if a 3D distancel3Dj is kept in the security intervmj ;mj].

The expressions aifj corresponding to all these specifications noticeably fall into two different classes.

A Case Zj = ZZ_Y( € [—Zj;?j] Such a constraint corresponds to the avoidance of the actuators satura-
]
tions when a static state feedback Kxis used, e.g. witIZZ_ = V\/j'K. It is satisfied if and only ik& <7, ,
] ]
I =2 . ~ .
wheredz_ é{f eR™M : & Z, Z, &<} Asing4.l.land4.1.2X€ o/, can be guaranteed by adding
] J J J

constraints o so that£}, C <7, . Notice that the set/, is convex and symmetric w.r.t. the origin.
J ]

B Case (=2, ()”())?e[zj;?j] Avoidance of actuators saturations when the controller is not
i S
a static state feedback, 2D constraints and 3D constraints involve an additional va&ijab'te
the form {; =Z, (X)X The set membershig; [Zj;?j] is then equivalent tox € «7, , where
] _ _ J

g .
5. As was done before,€ o7,
J

Zj+£- =
5 ande =

oy BLECR™™ 1 (2, (£)E )" < {P)with {, =
j ]
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can be ensured by “sizing® so thaté}, lies intoﬂzj. When the camera is at the reference pose, all the
specifications are satisfied. In other words; ‘WZJ , which impliesfj2 < ij

It can be observed —e.g. for 2D and 3D specifications— that the@jelis generally asymmetric
w.r.t. the origin. Because of the symmetry of the invariant ellips§ig expectingé, C ‘Q{Zj prevents
the initial states; € szzj such that—X, ¢ %Zj from being handled. In addition, contrarily to the case
Zj = ZZJX € [fZJ- ; Zj], ‘Q/Z,- is not necessarily convex. A§, is convex, the initial stateg, € ‘Q/Z,- such that
the line segment betweeg and—X, does not wholly lie int0;z%Zj cannot be considered either.

At last, let's remark that the functiorEZj (.) corresponding to 2D or 3D constraints are part of the
problem data. The same holds E)er and/orZZj (.) concerning actuators saturations in an analysis context.
Nevertheless, when the aim is to avoid the actuators saturations in a synthesis context, the controller is an
unknown of the problem, and so aZezj and/orZZj (.). Dealing with actuators saturations in a synthesis

problem is thus the object of a special treatment.

4.1.4 Handlingtheconstraintsthrough Matrix I nequalities

All the specifications considered so far can be expressed as the negativeness of a quadratic fugction of
p, g whenever other quadratic forms of these variables are negative. Sufficient conditions —which are
sometimes nonconservative— can thus be obtained throug#ftpeocedure [5], leading to LMIs oR or

Q = Pl and other variables.

Conditions on the SNLDI (15) must take into account the relationghipAqg. In order to handle it

through the?’-procedure, the following lemma, coming from [18, 13, 15], is used.

Lemma4.l Let the setsA(r), (r), ¢(r) be defined following§0.  Whatever the cou-

ple (§G) in .Z(r) x 4(r), the set%(r)é{(p,q) :3A€ A(r), p=Aqg} in included into the set
A !

7562 {(pa: (D (§ %)@ =0}

The conservatism of the quadratic outer approxima#o(s,G) coming from this lemma is somewhat
limited, in that the mathematical properties of the maftiare taken into account, viz. its block-diagonal
structure, the fact thal € R and|§| < 1,i=1,...,N. However, this outer approximation is all the more
pessimistic asip(r) grows, see for example the discussion in [1]. So, to limit the conservatism of the
overall approach proposed in this paper, the SNLDI (15) should be obtained from a minimal LFT.

As 7 (r) is a subset o/ (S,G) whatever the admissible matricBandG, these matrices will hence-
forth be considered as decision variables, whose values are looked for so as to enable the most helpful

handling of the various criteria.
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415 From feasibility to optimization problems

The multicriteria analysis or synthesis has been turned into a feasibility problem concerning thePmatrix

or Q= P~ and other quantities. Several solutions generally exist, but all are not relevant to the visual
servocontrol problem in hand. So, the search should be guided by a criterion to be minimized. Some hints
are hereafter given, from which the definition of an optimization problem is left to the reader.

In order to get a good characterization of the multicriteria basin of convergence of the camera, or to
make one controller ensure the positioning from many initial sensor-target situations, it is worth determin-
ing the maximum “size” invariant ellipsoid,. As mentioned in [5], the volume aof}; is a decreasing
function of logdetP)). Likewise, the sum of squares &}’s principal axes lengths is a decreasing func-
tion of tracgP)T. The maximization of this last criterion through the minimization of t(@ds a convex
problem when the constraints involve LMIs &n If LMIs on Q = P~ are used, the volume @f, can be
maximized by minimizing logdet Q 1)), which is also a convex problem.

The introduction of the closed-loop decay raténto the study can show several practical advantages.

On the one hand, the feasibility of the forthcoming matrix inequalities can be checked for a fixed value
of a, e.g. to determine which initial camera situations can be steered to the reference pose within a given
settling time while satisfying the various criteria. On the other handan be introduced as a decision
variable. The minimization of—a) subject to the inequality > 0 together with the different constraints

thus leads to the maximum closed-loop decay rate that can be ensured by this approach. If the matrix
inequalities are linear whea is fixed, this optimization problem is a Generalized Eigenvalue Problem

(GEVP), which is quasiconvex and can still be efficiently solved.

Unless explicitely mentioned —e.g. §%.2.4 and; 4.3.4, which is an original contribution [2] though
using fairly classical arguments—, the forthcoming matrix inequalities have been established in the work
of El Ghaouiet al. [18, 17, 14, 13] or can be straightly infered. Such standard results are thus given
without proof, but these are gathered in [1]. Dynamic state feedbacks are not considered, as analyzing or
synthesizing such controllers for the considered SNLDIs through quadratic Lyapunov functions leads to
no enhancement compared to static state feedbacks. The synthesis of output feedbacks, though essential
in practice, is not dealt with for space reasons and because —except for some full-rank gain-scheduled

controllers— it leads to nonconvex problems, see [1] for details on their application.

TMore precisely, the sum of squaresdfs principal axes lengths is equal to 4trgeel), which is indeed a decreasing function
of trace(P).
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4.2 Resulting conditions for multicriteria analysis

Recall that the closed-loop nonlinear system is embedded into the normalized SNLDI (15). In an analysis
context, which is the topic of this section, the matrided3,, Cq andDgp, defining this SNLDI are known.

When possible, these matrices are determined so as to get a minimal LFT.

4.2.1 Convergenceof the camerato thereferencesituation

A Global asymptotic stability of the SNLDI (15) Assume that a value of > 0 is presumably given.
The quadratic stability of the SNLDI (15) as well as the decay satge ensured if the following LMI on
P, SandG s feasible:

AP+PA+C,Cy+2aP PBp + C;Dqp+C,G

IP>0, Sc.7(r), Ge¥(r), N om < '~
* DpSDqp— S+ DpG+ G Dgp

<0. (17)

B Satisfaction of the Hypothesis 3.4 The references [18, 20] give the following sufficient condition

for the well-posedness of the normalized SNLDI (15):

3Se.7(r), Ge%(r), such thaDy,SDqp— S+ BgyG+ G Dgp < 0. (18)
Yet, the matrix inequality (18) is satisfied as soon as (17) holds, so that (17) does ensure the well-posedness
of the SNLDI used to embed the genuine nonlinear closed-loop system.

Fori=1,...,n letW écoli(l )) andp; émin(|>_<i|; [X.|). The constraint, C if éEf x R™, which

(n+m
ensures the boundedness assumption during the building of the SNLDI, is satisfied if and only if the fol-

lowing 2nLMIs on P andt;,i=1,...,n, are feasiblé:
I eR™, . heRT™, Vi=1,...,n, —Tipi2+1§0andriV\/iV\l,/—P§O. (29)

The problems (19) and (17) are simultaneously solved.

4.2.2 Apriori knowledge about theinitial sensor-target relative situation

Assume that the initial sensor-target situatignis perfectly known. The initial closed-loop state vec-
tor Xy= (x6702m;1))’ € R(™M pelongs to the ellipsoid’, if and only if the following trivial LMI on P is

satisfied:

%P, —1<0. (20)

*The LMIs (19), (22), (28), (30) concern boundedness constraints of the|fEfif < % VX XPX< 1, withuv > 0. They are
obtained by a straight application of tbé-procedure, but can be shown to be equivalent to the simpler LMIs developed in [18, 13],

see§ B.1.
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In order to analyze the convergence from every initial sensor-target relative situation in
the ellipsoid goé{f €R": & =x,+Ez zz<1} centered onx, it is sufficient to make &,
enclose  &2{& = (86, 0m)) € RMM = & € G} ={& e RMM : & =%+ Ez 22< 1}, with

- E 0. . Lo I

E= (o< )O;"'"”)). A necessary and sufficient condition is the feasibility of the LMI gy and
mn mm

P1

E'PE — 1, E'PX
I1,e R, orem ) %o <o0. (21)
* XPX— 1+ 1,

Note that the above equations return to enclqgser &, by the ellipsoids, which is the intersection of

ép with thex-space. Of course, a common solution is looked for the problems (20)/(21), (19) and (17).

4.2.3 Constraintsof thetype{; = szie [ffjfj]

The conditions, C 7, , with 7, é{f e RMM : E/Z/Z-ZZ- < sz}, is satisfied if and only if the following
] J J J
LMl'on P andt, , to be added to the problef(19), (17}, is feasible:
]

+x -2 !
HTZJ_ e R™, —TZij+1§OandTZjZZjZZj—PgO. (22)

424 Constraintsof thetype {; = Z, (X)X € [éj;?j]

As mentioned in §4.1.3-B, the aim is to guarantee the set inclusiefy C ﬂj, with

%Zj é{g c Rm - (zZj (§)& —Zj)z < ZJZ} Two different methods are hereafter given to solve this

problem. Though, to our knowledge, these are original —for this problem seems not to have been

considered in the literature— they rely on fairly classical arguments. Their proof is given in Appendix B.2.
Both methods rely on the definition of a S@Zj such that%’Zj C ﬂzj, and ensure the relationship

ép C ‘%Zj' In the first one,@zj is determined through the global linearization{gf= ZZJ- (X)X, while the

second approach definé%z_ as the intersection of some quadratic functions deternmaddubc
]

A Global linearization of Zj = ZZ,- (X)X The paragraph§3.2-§ 3.3 led to the global linearization of
the rational closed-loop system (7). K§j (.) is a rational function well-defined at 0, a similar process
can be performed on the expressiyn= ZZ,- (X)X assuming that € =, i.e.X= (x’,x’c)/ € if, and under a
well-posedness assumption. After normalization, one gets an embedding static inéll.(sidx%) in the

form of the following LFT:

. ¢, By \[ % | :
= . s Pp =87 0p, With Ay € A(rp), Tp = (Fpseeeslz ) (23)
q, Cq, Dap, P ‘
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Here also, according to a remark§i3.4, if the matricesfz, f)pz, (fqz, [3qu can be computed, it remains
to verify that for allA, in A(r,), the determinant det — f)qu A,) is nonzero to ensure the well-posedness
of (23). Then, whatever the vectriiri =, there exists a realization of the uncertain mafrixin A(rz)
such that the equalirzZj (X)X={¢;(X.A,) holds.
Let %)”Zj é{é e RMM : the inequality(Zj(E,AZ) — Zj)z < 212 holdsfor all AZ € A(rz)}. Returning
briefly to the unnormalized form of (23) readily shows that, under the well-posedness assumption, the
set @Zjé%zj nZ ={&ci :voez,, Z (8%)& — Zj)z < {?} is included into the set/, ng; =
{&e if : <ZZJ- (&)E— Zj)z < ZJZ} So, the constraint}, C %’Zj é(%zj mif) is a sufficient condition for
ép C “Z{Zj' The set inclusioré, C =; is ensured by the LMIs (19). Thus, to makg C MZ] hold, it is

sufficient to add some constraints guaranteeing the relatio&hip*’fz_ and the well-posedness of (23).
]

Theorem 4.2 The feasibility of the following LMI on Pcz, SZ and GZ is a sufficient condition for the

well-posedness 0f23) and the set relationshig}, C ‘sz —which, if&, ¢ Z; holds, then ensures that

A =~
bp C %’Zj :(‘5Zj N=;) C dzj—:

1, eR™, S, € 7(r,), G, €9(rp), T,;M; +M,—M,; <0, (24)
NS R R 7
P O O ZCZ CZDpZ — ZZj
with  My=|[x 0 0|, M= * DpZDpZ _DpZZj ,
* * —1 * * ZJZ—ZJZ
</ S =/ B =/
quSZCqZ quSZquZ +Cq GZ 0

* * 0

The problemg24), (19), (17) are jointly solved.

Note that a set of decision variablés g SZJ-' GZJ-} and of vector/matrlce$rzj, CZ,-’ Dpzj, qu,-’ quzj}
must be defined for each additional variab]e The indexj has not been made explicit in order to simplify

the notations.

B Inner approximation of oy by the intersection of quadratic functions Assume that
J
a set of I, >1 scalar numbers3¥ <0 and matricesF} € RV ("M, VK —Vk e Rimtmx(nem),
J J J J J

[
k=1,...,1 has been predetermined in ad hoc way so that,%’z_éﬂifilﬂ‘g_cdz_ where
] — J ]

g
k& (&) fik (€ Sk i i k i}
,%’ij{f c R(+m) - (1) NZ,- (1) <0} and NZ,- ) Making &}, lie into each sel@Zj thus en

sures that}, C %’Zj, and consequently th&t, C ;z/ZJ
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[
Theorem 4.3 The relationshipsp, C 2, = ﬂ;ilﬁg_ holds if and only if the following,| LMIs on P and
] - J J

¥, k=1,...,I,, are satisfied:
J J

i P 0
31 e R™,.., 19 € BT, vk=1,...,1,, T8 R — <o0. (25)
j ¢ SRS « -1

The problem$25), (19), (17) are jointly solved.

4.3 Conditionsfor the synthesisof a linear static state feedback u = Kx

When the aim is to synthesize a linear static state feedbacKx, the normalized SNLDI (15) into which

the nonlinear closed-loop system is embedded has the form

)‘( BuK Bp X ) !
= , P=Ag, withAc A(r), r=(ry,....ry) - (26)
q DquK  Dgp p

Notice that in this whole section, the closed-loop state vectsrequal to the open-loop state veckaso
that=, and=, defined in Hypothesis 3.4 arih.2.1 match. The matricéy, Bp, Dqu andDqp, as well
as the virtual signalp andq and the matrix gaid, are involved in the normalized SNLDI that would be
obtained by globally linearizing the open-loop LFT (9) in the case wherx, see the remarks following

Definition 3.2. When possible, a minimal form of the open-loop LFT (9) would be looked for.

4.3.1 Convergenceof the camerato thereferencesituation

A Global asymptotic stability of the SNLDI (26) and satisfaction of the well-posedness assumption
(12) Consider a fixedr > 0. The quadratic stability and the well-posedness of the SNLDI (26) as well

as the decay rate are ensured if the following LMI 0Q, Y, T andH is feasible:

BpTB,+BuY +Y'By+2a B,T D, +Y Dl + BoH
3Q>0,YeRW" TeS(r), He¥(r), ( piTR T u Q P! Pap quT Bp ><O

(27)

The value oK is then computed from the solution of (27) Ky=Y Q1.

B Satisfaction of the boundedness assumption (11) When a static state feedback is considered,
the boundedness assumption which underlies the definition of the SNLDI (26) returns to the constraint
ép C =;. Though the matrix inequalities (19) obtained in an analysis context can be adapted to guarantee
this property, they involve a matriR related to the matrixQ in (27) by the bilinear equalitPQ=1. To

keep the whole feasibility/optimization problem convex, the constednt =; should be reformulated if

possible as an LMI which does not involve the maix
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Fori=1,...,n, letW écoli (In) andp; émin(|>_<i |;[X:|). The constraing, C =; is satisfied if and only

if the following 2n LMIs onQ ando;, i = 1,...,n, are feasible:

Jo, eR™,...,on R Vi=1,...,n, —p?+ 0 <0, and (_Q QW) <. (28)

x -0

The problems (28) and (27) are simultaneously solved.

4.3.2 Apriori knowledge about theinitial sensor-target relative situation

For the reasons mentioned§4.3.1-B, the constraints (20) and (21) obtained in the analysis context are
replaced by LMIs which do not explicitely involve the varialfle

The following LMl onQ (resp. orQ anda,) is equivalent to (20) (resp. (21)) whemis set to 0, and is
thus necessary and sufficient fgy € &5 (resp.é”oé{f eR":&=x,+Ez Z7z<1} C 8p3)

!

L ~Ogn Oy E
( XO)gO. <respEGO€IR§+, *  0p—1 X §0-> (29)

* —Q
*  —Q
A common solution is looked for the problems (29), (28) and (27).

4.3.3 Avoidance of the actuator ssaturations

The j constraint on the actuators is satisfied if and onkWﬁKx € [-U;;h;] with W, écolj (In,)- A nec-
essary and sufficient condition fé, C ., with 7, Bigem: EK'WWKE < w2} is the feasibility of
the LMIs onQ, Y andauj,

(30)

_ Y'W.
Eauje]R”,UJZJrGungand( Q 'l <o.

* _UUJ

The problems (30), (28) and (27) are simultaneously solved.

434 Constraintsof thetype {; = Z, (X)X € [éj;?j]

This section shows how the LMIs in Theorems 4.2 and 4.3 —which were develogedam— can be

turned into LMIs which do not explicitely involve the matrix

A Global linearization of {; = Z, (X)X
J
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Theorem 4.4 The following LMI on Qo,. T, and H,, which is equivalent t¢24), is a sufficient condition
. . . = A = .
toép C %Z,- —which, ifép C = holds, then ensures thé}, C '%)Z,- _(%Zj N=;) C ‘Q{Zj :

R, O R, O
x —0,0?> -0, o

3o, eR™, T, € 7(r,), H, €4(r,), ¢ ¢ ¢| <o, (31)
* * R, 0
* * * -1

with Ry = Dap, T, Dgp, = T, +Cq, QCq, + Dap,Hy — HDap,» Ry = Dap, T, Dpy, +Cq, QC7 + HDp
I o N/ ~ </
R =Dy, T, D, — 07 +C,QC;.
The problemg31), (28) and (27) are jointly solved.

As was the case for the analysis conditions, the variad»}es‘l’Z and HZ’ as well as the quantitie§, c,,
lipz, qu, 15qu, should have been indexed pywhich was ommited to alleviate the notations. The proof

is given in Appendix B.3.

B Inner approximation of “Zfz- by the intersection of quadratic functions The notations are these
J

of §4.2.4-B, but the matrice§/zk_ are assumed positive semidefinite so that they can be expressed as
J

~ !

VE = RE R . Recall tham = 0 as the controller is static.
] J J

Theorem 4.5 The following set of ZI LMIs on Q ando¥, which is necessary and sufficient for
] J

[
NS gk : !
ép C %’Zj = ﬂk;l %’Zj, can be obtained fror{25).

k gk 1 EkOEK  +k “k OBK
| 9¢,Pe, TR QFg g P QR
aag_eW*,...,o;JeW*,Vk:l,...,lz_, * 1 0 <0. (32
i i j )
k 2 BK
* * fGZj I(n+m) + RZJ- QRZJ-

The problemg¢32), (28) and (27) are jointly solved.

4.4 Conditionsfor the synthesisof a nonlinear static state feedback

This section aims at synthesizing the paramekei@nd K, of a nonlinear rational static state feedback

having the form

u= (K +KpA(X) (1~ (Dgp+ Daukp)A(x) ) _quuK> X. (33)

As explained in [1], the use of such a controller enables to keep the Aamegrix in the LFTs of the

open-loop system and in closed-loop, thus making easier the determination of a minimal closed-loop LFT.
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The normalized SNLDI (15) representing the uncertain linear system into which the nonlinear closed-loop

system is embedded has the form

( x) ( BiK  (Bp+BuKp) ) ( X ) .
_ , p=Aqg, with A e A(r). (34)
q DquK  (Dgp+ DquKp) P

The remarks made at the beginning;@f.3 concerning the open-loop still hold.
Similarly to the global linearization process that was performeédii2.4-A so as to get the embedding
static inclusiont; (X, AZ) in the form of the LFT (23) for the rational expressipn= ZZ,- (X)X assuming that
X € =; and under a well-posedness assumption, the global linearization of the rational static state feedback

control (33) leads to the normalized static inclusion

( u(x,A) ) ( K Kp ) ( X ) _
, p=Aqg, with A e A(r). (35)
q DquK  (Dgp+ DquKp) p

Though the results of this section are not explicitely mentioned in the robust control literature, they can

be obtained through fairly classical arguments.

4.4.1 Convergence of the camerato thereference situation
A Global asymptotic stability of (34) and satisfaction of the well-posedness assumption (12)

Theorem 4.6 Consider a fixedr > 0. The quadratic stability of the SNLI¥B4), the well-posedness of the
inclusions(34) and(35), as well as the decay rate are ensured if the following LMl on Q, Y ,and T is

feasible:

Y'B,+BuY +2aQ ByT +ByY, Y'Dyy

| Q> O, Y € ]Rnuxn, Y2 c ]Rnuxnp(r), Te y(r), * —T TD:]D+Y2/D <0. (36)

!
qu
* * T

The values of K and Kare then computed from the solution(@6) by K=Y Q! and K, = Y,T~1.

The proofis given in Appendix B.4.

B Satisfaction of theboundednessassumption (11) As was the case for the synthesis of a linear static
state feedback ifi4.3.1-B, this hypothesis is ensured by joining td ®1Is (28) onQ ando,,i=1,...,n,
to the problem (36).

4.4.2 Apriori knowledge about theinitial sensor-target relative situation

Similarly to the synthesis of a linear static state feedback, the constggint;, or &, C & is ensured by

uniting to the problen{(36),(28) the LMI (29) onQ developed ir§ 4.3.2.
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4.4.3 Avoidance of the actuator ssaturations

The j constraint on the actuators is satisfied by means of the condifipx %j, with
Q%jé{f €R" : UW,W,u< %, ubeing defined by (33) Considering the inclusion (35) coming from the
global linearization of the control law (33), and using the same reasoning{&2mM-A, the constraint
EpC Ay, é(%j N=¢), with %Jé{f eR" : VA € A(r), (V\IJ-' u(E,A))2 < UJ-Z}, turns to be sufficient to guar-

antee that, C E;z/uj.

Theorem4.7 The condition &p C %y, —which, if &, C=; holds, then ensures that
ép C %’Uj é(%}. N=) C Q%j— is satisfied if the following LMIs on Y ,,.YQ, T and oy, are feasi-
ble:

-Q 0 Yw Y'Dyy
x —-T Y,W. TD,,+Y,D.
3oy, €R™, —0?+ 0y <Oand 27 ap T i2ran) . (37)
* * quj 0
* * * -T

The problemg37), (28), (36) are simultaneously solved.

It must be kept in mind that the matrik involved in the LMI (37) is the same as in the LMI (36)
related to the stability of the SNLDI (34). One could repldac@ Theorem 4.7 by another decision variable
T,j € Z(r) in order to reduce the conservatism of the approach. Yet, in this case, the change of variable
Y, = KpT would be forbidden, so that the inequalities (37) and (36) should be replaced by Bilinear Matrix
Inequalities (BMIs). The proofis given in Appendix B.4.

444 Constraintsof thetype {; = Z, (X)X € [éj;?j]

As was the case for the synthesis of a linear static state feedback, depending on whether the global lin-
earization onj = ZZ- (X)X (§4.3.4-A) or an inner approximation @VZ- by quadratic forms§4.3.4-B) is
J J

used, such constraints are ensured by either Theorem 4.4 or Theorem 4.5, respectively.

45 Casestudies

The above developments are applied to two case studies. The first one concerns the multicriteria synthesis
of a 3D servo for the positioning of a 3DOF camera, while the second one concerns the analysis of a 2D
servo on a 2DOF camera. The detailed computations can be found in [1] and are not reported here. The

focus is only put on the most prominent properties.

24



45.1 Casestudy #1: multicriteria synthesis of 3-DOF position-based servo

The admissible movements of the considered camera are any translation in théTplgpez;) parallel

to the ground and an azimuth rotation around the downward vertical@ds X This restricted prob-

lem is meaningful to us because it represents a pan-camera mounted on an holonomic robot NOMADIC
XR4000, see Figure 3. In this case study, the control vector and the state vector are respectively set to

Figure 3: 3-DOF position-based control (perspective and upper orthogonal views)

u=(V,Vz, Q)" andx = (ty,t,, Létan(%))l with A the azimuth anglez—>/s,_z\_T’ aroundxg = X7. The target
is fitted with four spotsT;, i =1,...,4, whose respective coordinates expressed in the figynieelong
to the set{(0.05¢;,0.1¢,,1.5)', ¢, = +1,&, = £1}. The aim is to synthesize a static linear position-based
servo —state feedback controller— such that the convergence is ensured with the maximum decay rate
a. The control signal must satisfy the loose constrajgs<Vy, = 1.5ms™ %, |V,| <V,=15ms ! and
|Qx| < Qx=1rads™!. The reference situation is such tfiaties in the axis of symmetry of a 4m wide
corridor, with the axisz; orthogonal to the walls. The 3D contraint on the camera motion is thus modeled
by [dgp| < Ay =2M, wheredwé Z)T.é Concerning the 2D constraints, a unity camera focal length
f = lis assumed, and the virtual bounds corresponding to the physical limits of the image plane are termed
X =—-XandY = —Y. As the choiceglX = 0.3m,Y = 0.25m} leads to an unfeasible probleX,= 0.3m
andY = 0.4m are considered instead. The initial state vector is sgf te (0.5,0.8, 0.1)/, for a farther
initial sensor-target situation would make the problem unfeasible.

The nonlinear closed-loop system is embedded into the normalized SNLDI (26), which is computed
assuming thak; = [fy;fy| x [T %] x [-L;L], with { =3m, ;=2m, L = 1. This SNLDI is obtained
from a minimal LFT, and turns to be well-posed whatever the value &D constraints are dealt with
through the approach developed§d.3.4-A. The static inclusion used to embed the additional vari-
abled, can be shown to come from a minimal ever well-posed LFT. A minimal LFT can also be de-
fined for the additional variables; — X" andY; —Y;*, for which the well-posedness necessary condition
xeﬁ’lé{(ty,tz, L):Vie{l,..,4}, z= S_')Ii'z # 0} outlined in§3.4 turns to be sufficient in this case
study. However, taking into account the 2D constraints by globally linearizing this LFT and applying the

results of 4.3.4-A leads to an unfeasible LMI problem. So, the 2D constraints are dealt with by approxi-
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Fig. 6: 6, C By C oy Fig. T:6p C By, C iy,

mating the target visibility domain through quadratic functions determaagdubc[1].
The solution, with the MATLAB LMI Control Toolbox [21], of the GEVP problem consist-
ing in the minimization of—a subject to the LMIs{(a > 0),(27),(28),(29),(30),(31),(32)leads to
1.88 —0.63 203

K= (—0.18 095 4.55) anda =0.3810. To fix some ideas, the following relevant subsets of the state
—4.97 —1.98 4199

space are drawn in Figures 4,5,6¢§’F:,é{5 : §'PE <1}, %lé{f Wy <Vl d%lé{f LWy =Vyl,
Ao ={E © [dgp| < Dy} 0= (€ : dap| = Tpary 11 95 S{E © X0 <X}, 0y £{E X =X,
o E{E 1 Yy <Y}, 04, £{E - |Y,| =V}, and the boundariad#, (resp.0#,, ) of the sets,_(resp.
%Ylé 93\1(1 N %%1) resulting from the inner approximation&@ﬂ‘xl (resp.;z{Yl) by quadratic functions. Simi-
lar sets would be obtained for the other target spots and actuators. The fagi thelongs to the above sets

confirms the satisfaction of the considered constraints. Simulation results would also corroborate this [1].

45.2 Casestudy #2: multicriteria analysis of 2-DOF image-based servo

A 2-DOF camera is considered whose possible displacements are made of translations and rotations along
and around the optical axi& = z;, so thatx = (t;,N étan(%)) andu = (V, Qz)/. A target fitted with 2
asymmetric spot§,, T, is used, whose respective coordingies b, ,c)’ and(a,, b,,c)’ expressed in frame

F; satisfya;=a,=0,b; =1,b, = -2, c= 15, see Figure 8. The camera is moved by the image-based

Figure 8: 2-DOF image-based control (perspective view)

control lawu = —A[J(s*,z")] "y described in [6], witly = s— s* as beforez"= (c,c)’, A = 0.1 andJ(s*,Z")
the image Jacobiad(s,z) —defined bys= J(s,z)u— computed at the reference situation. No 3D con-
straint is imposed on the motion. The actuators limits¥dge< V, = 1.5ms ! and|Q,| < Q, = 1rads™ .

The camera focal length is selected to be- 1, and the virtual limits of the image plane are set to
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Figure 9: Static output feedback multicriteria analysis

—X=X=4mand-Y =Y =3m. The aim is to determine the maximum size multicriteria basin of at-
traction, viz. the “widest” subset of the state space into which the convergence as well as the other criteria
are ensured.

A closed-loop minimal LFT (10) can be straightly computed from the closed-loop state equa-
tion. The necessary conditioneﬁzé{(tz,N) 1z = ﬁ@ #0, i=1,2} mentioned in§3.4, ie.
xeﬁzé{(tz,N) . tz# —c}, turns out to be sufficient for its well-posedness. So, the normalized closed-
loop SNLDI (15) is computed assuming thalies in the parallelotop& ; = [—t; ;] x [-N;N], ;=1m,

N = 0.8, which is included intoﬁ{é (tz,N) : t, > —c}C €,. The image and actuators constaints are
taken into account through inner approximations by quadratic functions of the admissible sets they define,
following the approach developed§r.3.4-B.

An ellipsoidé}, is looked for such that the sum of squares of its principal axes lengths is maximum. The
solution, with the MATLAB LMI Control Toolbox [21], of the LMI problem consisting in the minimization
of trace(P) under the LMIs{(17),(19),(25) leads toP = (134, £..), with € ~ 0. The results are illustrated
in Figure 9. The left part of each plot shows the boundaries of the admissible subgpégeterms the
frontier of the setw, into which thei!" actuator does not saturate, ahd, is the boundary of the quadratic
approximation,, of .4, . Likewise, the limitsd.«/, /aﬁx2 ando., /0%’\(2 of the setsay, /%’X2 and
‘Q{YZ/‘%)YZ express the fact that the projection Bf must be kept into the camera image plane. Similar

curves would be obtained for the spigt The details are thoroughly developed in [1].

4.6 Conclusion

At this point, thanks to the insight gained by the solution to the two case studies, a conclusion can be made
concerning the application to visual servoing of the above classical LMI control techniques.

As mentioned in54.1.4, a particular effort is necessary right at the modeling stage to determine a
minimal closed-loop LFT. For instance in Case Study #2, the matmntailed in the closed-loop LFT
(10) and in the open-loop LFT (9) would have been of higher size if (9) had been determined by separately
computing the LFTs related to the open-loop state equation and to the open-loop output equation prior to

their “stacking” via the standard rules mentioned in [44, 13]. Note that the spatial arrangement of the target
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spots may also be adapted to get minimality, e.g. laying them on a plane orthogonalZp-éixés may
make it easier.

Other degrees of freedom which can limit the conservatism coming from global linearization are the
selection of the vector functioh(.) and of the parallelotopg, see§ 3.4. The fact that both scaling matrices
SandG are free also turns to be extremely important in the outer approximation of the SNLDI embedding
the closed-loop system. Indeed, even with a minimal closed-loop LFT, the first results that were obtained in
[3] for Case Study #1 by selectirg= Omp(r);np(r)) —which amounts not to take into account the realness
of A— led to very small coefficients in the third row of the state feedback Kaamd thus a prohibitive
decay rate.

A last source of conservatism due to the underlying Automatic Control techniques basically lies into
the use of a unique quadratic Lyapunov function to check/ensure all the criteria for all the realizations of

the outer approximation of the closed-loop SNLDI.

As foreboded, the geometric properties of the consequent invariant sets turn to be extremely penalizing
in this robotics context. First, as explained at the end 4f1.1, they may require the definition of an
unduly wide=;. More importantly, as is the case in the above case studies, they often lead to an extremely
conservative solution, in that a synthesis problem may be feasible only if the initial and reference sensor-
target situation are very close to each other, and the conclusions concerning an analysis may be poor. The
Figures 5,6,7 confirm that the asymmetry w.r.t. 0 of the admissibleaé;gtand;z%Yi —in which the invariant
ellipsoid &}, is expected to lie— is a source of pessimism coming from the robotics problem itself, as is the
nonconvexity of the region7, into which the 3D constraints are fulfilled, see the discussidj#if.3.B.
Similarly, for Case Study #2, the asymmetrym(i, @Q and.#, prevents any conclusion for some initial
conditions from which the convergence is trivially ensured, x,g= (tz, 0)’ with tzo > 0.9m.

Lastly, subtler well-posedness issues can explain some failures of the method. In the last case
study mentioned, the well-posedness assumption impliessihat=; C ﬁ’;é{(tz,N) itz > —c}, so ini-
tial statesx, = (tz,0)" with t,, > c cannot be considered either. A similar cause can be given for
the inability of the approach developed §#.3.4-A to take into account the 2D constraints in Case
Study #1. Indeed, in order to ensure the well-posedness of the inclusion (23) related to image con-
straints, the parallelotopg; = = involved in the global linearization process is selected to lie into
ﬁfé{(ty,tz,L) Vie{l,...,4}, z = S_)T,z_>S > 0}C ;. As the boundary o7} is “V-shaped”, strong

conditions follow on=;, which prevent many meaningful cases from being considered.

To deal with the last sources of conservatism coming from the robotics problem itself, two extensions
are hereafter presented. These were formerly developed in [1]. First, an analysis method is outlined and

then applied to the Case Study #2. Next, a second method is proposed for analysis as well as for synthesis,
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and its results on the Case Study #1 are shown.

5 Reduction of the conservatism

5.1 An analysismethod

This section proposes some guidelines to get a better inner approximation of the multicriteria basin of
convergence of a visual-based feedback system, while still using the quadratic approach ouikhetis

still assumed tha(x) has been set tg and only static controllers are considered —so fhat == =—

but the results can be straightly extended. The main ideas are first exposed, and then applied to Case Study

#2.

5.1.1 “Directed” ellipsoidal invariant sets

It may be worth selecting among the invariant ellipsofgdsthat verify all the constraints of the problem,
the one —henceforth denoted B§— having the maximum extent along a polar line crossing 0 and
parametrized by a vectd. The computation of’, can merely be performed through an optimization
problem subject to the LMI constraints developefl#2. Notice that the large axis &f, is not necessarily
supported by the directiof. Then, a better inner approximation of the whole basin of attraction of O can

be got by making the unian{e}gg of such ellipsoids.

5.1.2 Optimization processon the parallelotope =;

The parallelotop& ; involved in the global linearization of the closed-loop state equation (7) stands for

a coarse a priori knowledge of the possible state vector values, rather than for a set of constraints to be
satisfied by this vector. Clearly, getting the “maximum size” invariant ellipgiid—e.g.the most extended

along a directior®, or the one having the largest volume— requires the selection of a sufficientlyzyide

When =; is “small enough”, the converse is also true, viz. the larger the exteht;pthe greateip.
However, wherk; is “too big”, the set of trajectories of the SNLDI coming from the global linearization

of the closed-loop equation is very rich, so that the LMIs defirfiggmay not be feasible or at best may

lead to a “small’€,. These effects o ; onto&p, can be observed by doing some simulations.

It thus sounds interesting to maximize the “size” of the ellips@icbver all the possible parallelotopes
=;, whose boundg andx; are considered as decision variables. To carry out this extension, one can rewrite
all the matrix inequalities 0§4.2 starting from the unnormalized form (14) of the closed-loop embedding
inclusion. Yet, though the consequent matrix inequalities entail the parametangx,, i = 1,...,n, they

are nonlinear in the unknowns. For instance, wkes —X;, statingX; 2 )%2 the LMI conditions (17)—(19)
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a&Nn

—>_ Trajectories of the genuine closed-loop system (7)
'—>~} Trajectoires of the SNLDI (15) built under the assumptipn= T
—

Wi

Figure 10: Reduction of the conservatism in an analysis context

ép

ensuring the camera convergence are replaced by the following BRI 8rG, X; andt;, i =1,...,n[1]:

IP>0,Se.7(r),Ge¥(r), X} e R, KeR™, 1, e R™ ..., Th e R,

A'P+PA +CyCi+2aP P8}, + Gt D%+ CE G
Lo pr e | <o (38)
* D5 ,SDip — AS+D;,G+ G Dj,
TWW —P<0and—1,+% <0, with A2 diag(X, I, ., %nlm)- (39)

Consequently, the size &}, over the BMI set defined by (38)—(39) can experience several local maxima,
and the global maximization problem may be computationally untractable.

Fortunately, the “biggest” invariant ellipsoid needs not be accurately computed. Methods developed
in the literature or even less involved calculations can be used as soon as they lead to a lower bound of
the maximum size. For example, as in [18], a finite set of parallelotBgesan be selected, onto which
the “maximum size” ellipsoid is looked for, under the LMI constraints§df2. Of course, the inner
approximationJ {e}é"e proposed above for the basin of attraction of 0 can be tightened by computing each

ellipsoid & as suggested in this section from a “most helpful” parallelotope

5.1.3 Further reduction of the conservatism

Let &£ be an inner numerical approximation of the multicriteria basin of convergence of the visual servo.
For instance¢ can be computed as it has just been mentioned at the end of the above paragraph. This
section shows how’ can be expanded to a subset of a given parallelofbeich thate NN £ 0 and
&NM#&. Inaddition, it is assumed th& N M # I lest the expansion would be already done. As is
often the case in practice, it is assumed that 0 belongsand is outsidé€l. To simplify, the pard& N

of the frontierd & of & which is insidel is supposed to be connected, see Figure 10.

Let the global linearization of the closed-loop system (7) be henceforth performed under the assumption
=; =N. The quadratic stability of the SNLDI (15) —with ; = I therein— can be studied through the

LMI (17), and an invariant eIIipsoié"Pé{E : §&'’Pé <1} can be defined as well. However, the only
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conclusion which can be established is that the trajectories of the so-computed SNLDI just recover these
parts of the trajectories of the genuine closed-loop system which e in

Assume thaP is such that the ellipsoid, crosses the frontie?l of I only once, that is, the inter-
sections, N Al is connected. A reasoning similar §at.1.1 shows that, as time progresses, the parts of
the trajectories of the genuine nonlinear closed-loop system (7) which stajntersect nested ellipsoids
that correspond to decreasing values of the Lyapunov function used to establish the stability of the SNLDI.
So, every trajectory of the genuine nonlinear closed-loop system which begfisTifl crossesS, N ITl.
Consequently, i€, N JTM is a subset of’, then every trajectory of the nonlinear system startingim 1
converges to 0. If the other specifications are ensured&yerrl, then the inner approximatiafi of the
multicriteria basin of convergence can be supplemented@ign M)\ ((&xNM)N&E).

Though this extension still uses quadratic stability arguments, it doesn’t suffer from all the limitations
mentioned in§4.6. For instance, when constraints on additional variables confine the closed-loop state
vector to an asymmetric se#, the inner approximatio# is expanded if and only if&’, N M) is included
in A. Itis readily seen that it is in no way required that the symmetrigggfn M) with respect to 0 also
lies in 4. Inthe same vein, the well-posedness of the SNLDI (15) built under the assurgptierT1 may

not be too strong a requirement.

All the above considerations are turned into LMIsPand other variables. The first one takes account
of &, NM # 0. Then, some edge}l1,0,1,... of the parallelotopél are selected so that they must in-
tersecté, while keeping connected the unione{llzw}(éapm 0,M). For each such edgll, the fact that
(6pnadN) C & is expressed. Further, some matrix inequalities must theoriz&hatust not go through
the remaining edges 6f. These equations depend upon some coordinates of the vertidethaf are not
crossed bys,. Finally, the constraints to be put ¢&, N IM) are described in order to handle criteria other
than stability. The?-procedure is the cornerstone throughout this process.

Assume that a set of polar lines is selected starting from O and intersdttirgach line being
parametrized by a vecté. For each such, & can be best enriched if the above ellipséid—whose part
is merged with— is looked for so as to have the maximum extent alénd he whole analysis method

is summarized in Algorithm 1.

5.1.4 Application to the Case Study #2

This section is meant to illustrate the method on the multicriteria analysis problem of the image-based

2DOF servo already consideredsid.5.2.

A STEP 1of Algorithm 1 In this 2DOF case, the vectér parametrizing any polar line along which

the extent of the invariant eIIipsoidoﬁPé{E : &'Pé <1} is maximized, is merely a scalar. Because of
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Algorithm 1 Summary of the analysis method

STEP1 STEP 2

1. Selectn, directions@l,4.476n9 1. Selectn, directionsé, ... ,Gne

2. FOR j=1...ny DO 2. FOR j=1...ny DO
3 6=06 3 6=6,
4. Selectn- (symmetric) parallelotopes, ,...,=n_ 41 Selectn parallelotopedly,...,Mn,
5: FORk=1...n- DO 5. FORk=1...n; DO
6 Compute the normalized SNLDI (15) with 6 Compute the normalized SNLDI (15) with
= = 5, therein = = I'Iél'lktherein
7 Determinesy, having the maximum extertalong | 7: Determines, having the maximum extetalong
the direction 8 while satisfying the LMI con- the directiond while satisfying the properties men-
straints defined if§ 4.2 tioned in§5.1.3
8: | F this problem is feasibl@d HEN 8: | F this problem is feasibl@ HEN
o: & =&y andl, =1 o: g:gu((gpmn)\((gpmn)mg)),
10: END IF ie.&=&U(&pNMN)
11: END FOR 10: END IF
. A .
12: Selecﬁai =argmax. .y o I 11: ENDFOR
13: END FOR 12: END FOR
14: Define€ = U?gl &y 13: Outputé’
- J
)
0y . 0% &
\) ° 2 /
A ' C '
\\ ;
N ) < )
/)
0.9 dAQ/Y’,
2 X

Figure 11: Static output feedback multicriteria analysis by STEP 1 of Algorithm 1

the symmetry o, —thus termeds,— w.r.t. the origin,&, and&), , are equal, so that thg, directions

By, ..., 6h, can be restricted t{;71]. The analytic expression of the exténs expressed as a decreasing
function —which is parametrized by the andle- of a linear combination of the entries of the matfix

see [1]. Then, for eacB, | is maximized under the LMI$(17),(19} and other LMIs of the form (25), all

the constraints being dealt with in the same way &s4rb.2.n, = 100 such optimizations are performed,
corresponding to evenly spread directions. For each direatioparallelotope&, = [—{;;T; ] X [-N; N,

are selected, witfy, > 0andN, > 0,k=1,...,n. In order to ensure the well-posedness of the embedding
SNLDI (15) built with =; = =,, —T; is selected so thatf, > —c. Figure 11 shows how the results of

Figure 9 can be enhanced by defining the multicriteria basin of convergease 2u Ep-

{6}
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Figure 12: Cases occuring during the finer multicriteria analysis of the image-based 2DOF servo, for

6 € [0;Z]

B Further reduction of the conservatism by STEP 2 of Algorithm 1 Given a directionf and a
parallelotopd = [tz;T;] x [N;N], the ellipsoidé, = {& : &'PE < 1} related to the SNLDI (15) computed
with =; =T is sought for so that its extehtalong the directiorf is maximum. The other constraints
on &, mentioned irg 5.1.3, which involve the multicriteria basin of convergedtdetermined above, are
outlined in this section fof € [0; 7], the extension to other angles intervals being straightforward.

Let Case A (resp. Case B term the case when the point with coordinatés,N)’ lies
outside (resp. inside)s’.  Let [N,;N;] be the widest interval such thaW e [N,;N;] and
[NiNLIC {& e R & =(&,,&,) € &,& =13}, see Figure 12z, T, Ne andNG are similarly defined.

In addition to the LMI (17) related to the quadratic stability;f the considered SNLDI, other LMIs are

defined on the matri so as to ensure that

e in Case AandCase B &, NI # 0; for this to hold, it is sufficient to have> | with | the length

defined in Figure 12;

e in Case AandCase B (6pNad,M)C &, with 4,1 the “West” edge off1; this constraint, which
can be written(&, Ny, M)= (&pN{& : N <& <N}N{& : & =t,})C &, is turned into the more
suitable form for the”’-proceduref, ¢ [utz;Ntz] forall & = (El,EZ)’ such that € &, & =tz and
&, € [N; NJ; notice that the consequent LI\]I is trivially satisfied when the interse¢tigm 1) is

empty;

e in Case AandCase B (6pNddl)C &, with 41 the “South” edge of1; this is equivalent to
(Epn{& :1,<& <t}n{&: & =N})C & and leads to an LMI similar to the one related to the

“West” edge;

e in Case A & must not cross the “East” edgkI of M, i.e. §,C {€ : 2 <t?}; in Case Bthe
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relationship(&, N dcM)C & must hold, viz(&pN{E : N <& <N}N{&: & =T,})C &;

e in Case AandCase B &, does not cross the “North” edgk, 1 of N; the corresponding LMI o
and other variables can be got through tHeprocedure so thafC {& = (&,,&,)" : £2 <N}

All the above constraints guarantee that fonglliin (£, N M), there exists an instabf such thatx(t)
belongs td1 for all anterior timet € [0,t,] while x(t;) € &, so that the convergence is ensured foxglin
(&N ). To deal with the remaining specifications, the LMIsand other variables —hereafter denoted
Zj_LMI k(P, )<0,k=1,.. "IZJ-_ that were developed i§4.2.3 and§ 4.2.4-B to ensure constraints like
8p C QQ{ZJ, are turned into new LMIs which are sufficient for the much less conservative set relationship

(&NN) C Ay Typically, LMIs of the following form are obtained through th#é-procedure:
J
k k k [-WwW, N K [ -WW 6w,
1y > 0T, >0 M (P g (T B ) (TN 20 ) <00 40)

with N = '\H'T*, N = %ﬂ, t,= 22— andf, = 55=.

Zl

STEP 2 of Algorithm 1 is applied picking, =200 evenly spread directiors, ..., 6y, in [0; 21].
For each directionnp, parallelotoped, = [tz,;t;] x [&;N_k] are selected witﬂm;N_k] c[-11 and
Tz € [-1.5;20. Figure 13 shows how the inner approximatig, ¢, , of the multicriteria basin of
convergence formerly computed in STEP 1 can be expanded’igtg, , There,d.o, andd.«. respec-
tively term the frontiers ofr,— ,%1 N %2 and.a = ,xz%xl N %Yl N ,;z%xz N %Yz. The new inner approxima-
tion &51ep 1S Noticeably consistent with the fact, acknowledged in [6], that the convergence fails for all
initial conditions such tha = £180°.

The proposed strategy has also been applied to the analysis of the static linear image-based control
law u= —A[J(s*,Z")] Ty, whereA = 0.1 as before, and* = z +50%. Such a study is highly significant
in robotics, because an usual practical goal is to build an image-based control entailing a Jacobian matrix
parametrized solely from the 2D data perceived at the reference sensor-target situation —thus the depen-
dence ors*, viz. on X7, Y{, X5, Y5— without the exact knowledge of the whole target model —from
which the uncertainty on the depth. Figure 14 compares the consequent inner approximatiog,,, of
the multicriteria basin of convergence witly - ,computed above for the nominal valuezt The sym-

bol 0.4, represents the boundary of the sét, ,= <7, Ny in which the actuators and 2D constraints
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are satisfied in the most unfavorable case. Notedhat,,, is fairly wide despite the constancy of over
time is not taken into account.
All these results were confirmed by simulations runs. a&hhocmethod is proposed in [1] for the

determination of initial states from which the camera hits the target plane.

5.2 A method for analysisand synthesis
52.1 Basics

This second approach rests on the definition of a fictitious variabteRR evolving autonomously accord-

ing to the first-order differential equation

so thaix, (t) liesin [O;Xfo] forallt, and converges to 0 agoes to infinity. Similarly to what was donefr,

the genuine closed-loop nonlinear system (7) augmented biye. with state vectoxa"é ()?’,xf)’, can be

embedded into an uncertain linear system represented by an SNLDI. The global stability of this SNLDI can

be studied through a quadratic Lyapunov function, which leads to the definition of an invariant ellipsoid

Ep={E cRMML . g 'PE <1}. Yet, because of the above propertyxgf, every trajectorya(.) which

starts from an initial stat&,g in the “slice” %é(éapﬂ {&a= (E’,Ef)’ eRMMxR: & € [O;Xfo]}) stays

in 5. Equivalently, every trajectory(’) which is issued from an initial state, Tying in the projection

@Pé{f eR™M: 3¢, e 0%t ), (§,&;)" € F} of I onto the space of the vectaxsremains inp.

Then, the boundedness assumption (11) of Lemma 3.4 and the other specifications are guaranteed by

constricting the set?, to an admissible area of thespace. As shown in Figure 15, the so obtained

invariant set#, can be asymmetric w.r.t. the origin, thus circumventing some sources of conservatism.
This whole section still assumes thitx) = xin (7). The sets ; and;zfZj keep their former definitions,

except that the parallelotof®, = [i1[x;%] includes 0 but is not necessarily symmetric. Wrﬁlg still

stands foi=; x R™, the augmented parallelotofig is defined a&,2 =, x R™ x R,

5.2.2 Implication on analysis

Let the genuine closed-loop system (7) be globally linearized under Hypothesis 3.4. If the consequent

normalized SNLDI is put into the form of (15), then the following SNLDI can be got for the augmented
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Figure 15: Method for analysis and synthesis based on the definition of an asymmetric invariant set —

Basics

closed-loop system:

g
g>z

( )( e NBpa )()’(’:a)’ﬁaAqa (42)
a Cqga Dgpa Pa

Wlth AEA(I’), r:(rlv"'arN)lv ﬁa:ﬁ, qa:q7
A _ (A0 & 8 < (¢ -
Aa= (0 —“f)  Bra= (0(1:n5(f))) + Coa = (% Oy ), Dapa=Dap-

O

A Convergence of the camerato thereference situation

A.1 Global asymptotic stability of the SNLDI (42) and satisfaction of the well-posedness as-
sumption (12) An application of the results developedsid.2.1 enables to conclude that the quadratic

stability and the well-posedness of the SNLDI (42) are ensured if

* Ijl Siqpa— S+ D:]paG+G/[3qp

IP>0, Se ./ (r), Ge¥(r), (
gpa

AP+ PRa+ € aaa PEpa+ CyaSDapat Cral )<0
a

(43)

As the matrixA; depends linearly ow ., the matrix inequality (43) is an LMI (resp. a BMI) when, is

fixed (resp. whem; is a decision variable.)

A2 Satisfaction of the boundedness assumption (11) Define x,233%, x 25%

1<

W £col(Ih,m), and let the matrixP be decomposed intd® = (F} E;), with Py e RMmx(ntm)

P,e RMMx1 P c R¥*.  The constraint%?, C =;, or equivalently 7, C =, which ensures the
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boundedness assumption during the building of the SNLDI (42), is satisfied if:

3TleR**,TfleR”,...,rneIRi**,rfneR**,

TWW — Py P, — WXy
_ X
Vi=1,....n, * —Py— 1y, rfi% <0. (44)
* * T (%G — %) + 1

The matrix inequalities (44) is are linear (resp. bilinear) in the decision variablesw@e’s fixed (resp.

whenxfO is itself a decision variable.) The proof is given in Appendix B.5.

B A priori knowledge about the initial sensor-target relative situation The convergence of
the camera is ensured from the initial sensor-target situatipr(resp. from every initial sensor-
target situation in goé{f eR":&{=x,+Ez 7z< 1}) if the “slice” J, encloses the initial
state vectorxa”oé (x(),OEm;l),xf o)’e]Ri(”*m“) of the augmented closed-loop system (resp. encloses
g’aoé{g e RIMHMHD) - g — Kag+ E.z, Z/ZS 1} with Eaé <0<mi-n> Oi:i::wi>1)> c R("+m+1)x(”+m+1).) Be-
cause of the boundedness of the last entrygf the “slice” % enclbses the admissible initial states if
and only if &, does so. A necessary and sufficient conditionXgy € &p (resp.é";,lo C &p) comes from

§4.2.2 as the matrix inequality dh(resp. onr, andP)

EaPEa— Tl mia E.P%ag
* SagP%ag — 1+ T,

!

KaoPXag— 1 < 0. <resp J1,€eRT, < O.) (45)

Note that these equations —which are LMIs (resp. BMIS) xif0 is fixed (resp. a deci-
sion variable)— return to enclose&,, or Ogao by the intersection ofé, with the subspace

{& e RM™HD Cpr= = &m=0, & = Xfo}'

C Constraints of thetype Zj € [—?J- ;?J-] As previously outlined, each constraint of this kind is taken
into account by making?, lie into an admissible seﬂz/z_ defined in thex-Space, or equivalently, by
J
making .7 lie into szfaz_é;z/( x R. A reasoning similar t¢ 5.2.2-A.2 is used to handle constraints like
J J

{j=12,%Xe [f?j ;fj], leading to the sufficient condition
J

2% P P 0
31, eR™, 1, €R' * _r, —p, 1, o |<o (46)
Z,- s ’ Gy 3 4y 2 -
=2

To deal with constraints lik§; = Z, (X)X e [Zj ;?J-], two different methods were developedid.2.4.
J S

The matrix inequality (24) obtained through the first method —viz. the global linearization of

37



(= Z, (X) *— here becomes
J

1, eR™, 1,  €RT, S, € (1), Gy €9(r,), TyMyg+Myy — Mgy + T, Mg, <0, (47)

4 4
PP, O O 5 C, 0 Cby, -Gy 00 0 O
X
_ x« Py 0 0 « 0 0 0 x —1 0 o
with M, = , M, = | Mgy = )
Oa la ~o ~7 3a
* x 0 O * % DpszZ poZZJ- « = 0 0
* *x x —1 * K * 212*212 * *x %= 0
C(’]Z SZqu 0 C&Z SZ Dq p, + Gy, G ¢ 0
* 0 0 0
MZa* ~/ ~ ~/ /o~
* * * 0

In addition, the matrix inequalities (25) obtained through the inner approximatiazvrzofby quadratic
]

functions must be replaced by

1 +x 21 + lz; el +
HTZJ_GIR T7e €R ,...,TZJ_ eR ,TUE]R ,

i 0K PP O 0 0 0
X
szl,...,lzj,r'z‘j x 0 0 |—|x P O [+ [+ -1 <o (48)
* % B'Z‘_ *  *x =1 * * 0
]

As is the case for (44), the matrix inequalities (46), (47) and (48) are LMIs (resp. BMIs) xv]fbeils
fixed (resp. whetxfO is a decision variable.) Their proof is straightforward, using some arguments similar

to these mentioned in Appendix B.5 concerning the progfmR.2-A.2.

5.2.3 Synthesisof alinear static state feedback u = KzX,

When the synthesis of such a control is of concern, the normalized SNLDI (42) into which the augmented

closed-loop system is embedded has the fo:r;mA; (X, X )" being the augmented open-loop state vector,

Xa Aa+BuaKa  Bpa Xa

= , P=A4Aq (49)
q DquaKa Dqpa p
. 0 0 Bu Bp
with A€ A(r), Aa= (O —af) , Bua= (O(l;nm) , Bpa= (0<1;np<r))) ;Dgua= Dqu, Dgpa= Dgp-

The remarks made at the beginning§ef.3 concernings ¢, =, By, Bp, Dqu, Dqp, P, g andA still hold,
though under the noticeable assumption that= [, [x; %] is a nonnecessarily symmetric parallelotope

including 0.
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A Comments concerning the control law u=Kx Following the same reasoning as §mt.3.1-A,
the following matrix inequality is sufficient for the quadratic stability and the well-posedness of the

SNLDI (49):

3Q>0, Ka=(K,0,_ ., )withK e R**" T e .#(r), He¥(r),

(nu;1)
AaQ+ QA, + BpaT Bja+ BuaKaQ+ QKyBla  BpaT Dgpa+ QKaDgya+ BpaH

* Dgpal Dgpa— T +DgpaH + H Dgpa

<0.  (50)

This is a BMI. In§ 4.3.1-A, a similar inequality could be turned into an LMI through the change of variable

Y = KaQ, and the state feedback gdfn was then deduced from the solution of this LMI Ky =Y QL.
Unfortunately, in the present case, such a change of variable cannot be performed because of the above
structure ofK,. The synthesis of a contral= Kx will henceforth be left apart, i.e. the control variable

will also depend on the fictitious variablg so that the feedback gak, € R*("+1) has no prescribed

structure.
B Convergence of the camerato thereferencesituation

B.1 Global asymptotic stability of the SNLDI (49) and satisfaction of the well-posedness as-
sumption (12) The aforementioned change of variable turns the sufficient condition (50) for the quadratic

stability and the well-posedness of the SNLDI (49) into
3Q>0,Y e RWMD T e o(r), He¥(r),
AaQ+ QA; + BpaT Bja+ BuaY +Y'Byg Bpal Dypa+ Y Dgua+ BpaH

* quaTD;pa—T—i—quaH—&-H/D

<0, (51)

!

apa,
which is an LMl onQ, Y, T andH when the value ofr; is fixed, and a BMl omQ, Y, T, H anda

otherwise. Of coursé§s =Y Q1 follows.

B.2 Satisfaction of the boundedness assumption (11) As the matrix inequality (51) is expressed
interms ofQ = P~1, an equivalent formulation of the sufficient condition (44) for the boundedness assump-
tion is sought for, which does not explicitely involve the variaBleYet, such an equivalent formulation
would remain bilinear in the decision variables. So, the LMI (44) is still united to (51), along with the
nonconvex constraiffQ=1. As P andQ are positive definite, this last constraint is equivalent to the

conjunction of an LMI orP andQ together with a rank constraint, namely,

H (PQ) = P >0, rank# (P,Q) = n+ 1. (52)
g Q
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The set of matrix inequalitie§(51),(44),(52} is a Cone Complementarity Problem, which can be effi-

ciently solved with the algorithm [16] of El Ghaoui, Oustry and Ait-Rami.

C Apriori knowledge about theinitial sensor-target relativesituation  As for analysis, the constraint
Xag € Ip OF <§"0 C Y is ensured by the matrix inequality (45) BnTo improve the convergence of the cone
complementarity linearization algorithm [16], an equivalent formulation of this constraint in ter@ssof

introduced, which has the form of (29):

1 Xa/ _00|n+1 O(n+1;1) Ea
°| <o <resp3crO€]R+, * Oy—1 Xag §0>- (53)
* —Q
* * -Q

D Avoidance of the actuators saturations and Constraints Zj:ZZj(i)ie[éj;?j] The
j" constraint on the actuators is satisfied by means of the conditigncC %auj, with
ngaujé{f e R ; E'K'aV\/jV\/j'KaE <T?}. Though less restrictive, this condition does not lead to
LMis. So, &y C %auj is considered instead, which leads to LMIs similar to (30), except@andY are
matrices ofR(M1*("+1) gndR™ > (1) respectively.

The constraintg; = Z,. (X)X e [Zj ;fj] are ensured by the matrix inequalities (47)/(48).
J S

5.2.4 Synthesisof anonlinear static state feedback

In the same vein as if4.4, the aim is to synthesize the parametegsand K, of the nonlinear state

feedback
-1
U= ( Ka+KpA(X) (1 = (Dgp+Dqukp)AX) ) Daula | %a (54)

For the reasons mentioned §5.2.3-A, the matrixK, € Rw*("*+1) has no predefined structure, i.e. the
control signalu also depends on the fictitious variatile

Similarly to § 4.4.1-A, the changes of variabl¥s= K,Q andY, = KT can exhibit the following con-
dition for the global asymptotic —quadratic— stability and well-posedness of the SNLDI into which the

augmented closed-loop system is embedded:

3Q>0,Y e Ru*(M 'y, e RuxMm) T . o(r),

AaQ+ QA +Y Bya+BuaY  Bpal + BuaY, Y'Dyua
x -T T Dypa+ YoDgua | <O- (55)

* * T
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The boundedness assumption is ensured in the same way&aiB8-B.2. The set of matrix inequalities
{(55),(44),(52) is a Cone Complementarity Problem, which can be efficiently solved with the algorithm
of El Ghaoui, Oustry and Ait-Rami [16].

Thea priori knowledge about the initial sensor-target situation is taken into account through the LMIs
of §5.2.3-C.

As in §5.2.3-D for the synthesis of a linear state feedback, ensuringtteonstraint on the actuators
by means of the conditiof, C %auj does not lead to LMIs. Likewise§p C %auj is considered instead,
which leads to LMIs similar to (37), except that the dimensionQp¥ have changed{D qu,Dqp} are
replaced by{Dqua, Dgpa}, @andT is the decision variable involved in (55).

Atlast, the constraint§; = Z, (X)X € [Zj ;?J-] are ensured by the matrix inequalities (47)/(48).
J S

5.25 Application to Case Study #1

The above results are applied to the case study which was first considefddbid. The criteria are
unchanged, except that a tighter 2D constraint is considered. The bounds of the virtual image plane cor-
responding to a unit focal length= 1 are set to-X = X = 0.3m and-Y =Y = 0.25m. The initial state
Xy = (2.06,4.79, 0.46)" is selected so that the camera starts in the vicinity of a wall, fairly far from the
target.

When the aim is to synthesize a linear static state feedhaekKsX;, the SNLDI into
which the augmented closed-loop system is embedded is defined under the boundedness assump-
tion =; = [ty;§y] x [tz ] x [LiL] with § =2.2m, ty=-0.21m, ;=4.9m, t;=-0.3m, L =0.49 and
L =—-0.02. Further, selectimg;fo = 0.51 anda; = 0.14 and solving the problem with the MATLAB LMI
Control Toolbox leads to the controllir, = (—76?4 “aio. 3681 -%igg) .

~551-0.84 6569 —2965

The corresponding camera 3D trajectory is shown in Figure 16. The settling time is about 25s. The
admissible sets represented in Figures 17-18 do enclose the invariafg s&hanks to the asymmetry of
P, the initial sensor-target situatiog can be taken into account despite the 2D constraints are violated at
—Xo- Nevertheless, as the set, in which the 3D constraints are satisfied is nonconvex while the invariant
setZp defined by this extension remains convex, some initial relative situatiplysng in .o, cannot be
taken into account as soon g, leavesa,, for at least ong/in [0;1].

The solution of the problem can even be improved by synthesizing a nonlinear static state feedback of
the form (54). Selecting a slightly different parallelotape for the definition of the embedding SNLDI as

well as different values fox; j anday, leads to a 155 settling time thanks to a “tighter” fit#f, into the

admissible sets, see [1].
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Figure 16: u=KyXy: Upper Figure 17: u=KaXa: Figure 18: U= KzXa:
view of the 3D camera motion Satisfaction of the 3D con- Satisfaction of the 2D con-
(1frame's) straint by the invariant set straint onY; by the invariant set

5.3 Strengths and weaknesses of the extensions

The analysis method proposedsib.1 can partly reduce the global linearization conservatism through the
definition in STEP 2 of small-sized parallelotopésAs it puts some set relationships only on parts of the
used ellipsoidss,, all the former problems induced by the symmetry or the convexity of these ellipsoids
are circumvented. An interesting point is that this feature is obtained with no increase in the complexity of
the consequent LMI feasibility/optimization problems. Unfortunately, these results seem difficult to use for
the multicriteria analysis of visual feedbacks of order higher than three, and cannot be trivially extended to
the synthesis.

The approach described §5.2 seems somewhat more generic, in that it can be applied to analysis or
synthesis, even for higher-order visual feedbacks. By putting constraints on the invariat¥ slimeits
projectionZ;, it enables the reduction of the conservatism coming from the symmetry w.r.t. 0 of ellipsoidal
invariant sets. However, as was the cas§ 4n this technique is limited by the fact tha#, is convex.
Lastly, the complexity of the consequent feasibility/optimization problems can be strongly influenced,
depending on whether (@(fo, a;) are parameters or decision variables, and(iijs a controller input or

not.

6 Related developments

Other Matrix Inequalities, still rooted in the work of El Ghaoui and co-authors, were developed for this
multicriteria visual servocontrol problem. Due to space reasons, they are not included in this paper. The

reader is referred to [11, 1].

The synthesis of an interesting class of nonlinear rational static state feedback controllers is a tractable
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problem. Its application to Case Study#1 enables a 40% reduction of the settling time compared
t0§5.2.5[11, 1].

The synthesis of output feedback controllers leads to difficult —nonconvex— problems entailing BMIs.
Yet, if the scaling matrixG involved in the outer approximation of the closed-loop SNLDI is set to

G= —thus inducing some conservatism—, then a solution enjoying nice tractability prop-

Otmp(rin(r)
erties remains theoretically possible. Indeed, an application of the elimination lemma leads to a Cone
Complementarity Problem ensuring the existence of a stabilizing controller. The controller further follows
from the solution of an LMI problem [13], which can straightly take into account 3D and 2D constraints.
Dealing with the actuators saturations still raises very sharp issues if LMIs are sought [1]. All these prop-
erties hold when the approach is extended following the guidelings.af

A similar tradeoff between tractability and conservatism occurs when the aim is to synthesize a gain-
scheduled output controller. However, this case shows three main differences [18, 13, 1]: the consequent
problem may get convex, putting contraints on the actuators is easier, and a “pseudo-invariance” property

is refered to when dealing with 2D and 3D constraints.

As already noticed —e.g. i§4.6—, the above method may fail because of well-posedness issues when
2D servos are considered, and/or if 2D constraints are handled through Theorem 4.2 or 4.4. The selection
of the mappingsp(.) andd:\Zj (.) inthe LFTs (10) and (16) is of paramount importance, and defining them
as the identity function is often inappropriate. Instead, a convenient choice should be so that bounding
®(¢&) (resp.d)Zj (§)) by a parallelotopé& would enablef to lie into a tighter subset ; of a connected
component of the sef onto which (10) (resp. (16)) is well-posed. This is a tricky problem, all the more
because the entries ¢X(.) (resp.d)Zj (.)) should be kept independent of each other,55&4d.

Even when considering such modifications along with the arguments developB@irthe synthesis

of 2D servos has seemed to lead to a blind alley V\(Eeﬂo(np(r) ")" Like in the “easier” state feedback

Np
synthesis problem considered in Case Study #1408, the high conservatism induced by this settin@Gof

often prevents the feasibility of the consequent LMI problem or the meaningfulness of its solution.

7 Conclusion

A generic framework has been proposed to the multicriteria analysis and synthesis of kinematic visual-
based positioning schemes. A basic “standard” problem has been stated, through the definition of a rational
state space representation including uncertainties, if any. The interest of such a formulation is that the
problem is not limited to the stabilization part, by the very fact that various criteria —e.g. actuators, 2D
or 3D constraints— can be handled through rational additional variables. Thanks to a global linearization

step, the problem has been dealt with in the robust linear control framework. Yet, the mere application of
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existing robust control results has proved unsatisfactory. The sources of failures have been analyzed, and

two extensions have been proposed to partly reduce the conservatism coming from the applicative domain.

The proposed open-loop model shows several potentialities, mainly, a statement of the convergence
problem relying upon a sound definition of a state vector, some versatility in handling the criteria, and
an ease of enrichment so as to take account of unmodeled properties 2-3edloreover, it enables a
“control system” approach to visual-based localization. Indeed, this last problem can be tackled as the
“dual” —in the sense of duality between control and estimation— of visual servoing, in that it consists
in estimating/forecasting the relative camera-target situation from the knowledge of the visual data and of
the camera command input. An LMI solution has been proposed in [4] based on a slight extension of the
results of El Ghaoui and Calafiore [15]. A rational discrete-time open-loop model is set up under zero order
hold (ZOH) hypothesis. Its global linearization leads to a Structured Norm-Bounded Recursive Inclusion,
so that some “dual” robust filtering techniques apply.

The suggested modeling, however, show several drawbacks. The concealment of the difference be-
tween 3D and 2D methodologies into its mathematical structure may induce a loss of intuition compared
with other approaches to visual servoing. Moreover, through the used control framework, it makes the
synthesis of 2D servos a difficult —nonconvex— problem, which is a severe limitation. To open up a
possibility of success, the solution of the raw BMIs for output feedback synthesis could be checked as well
as the selection of another rational open-loop model which “bridges the gap” with existing work, e.g. by
redefining the visual features or by deliberately disregarding the sensor-target relative situation. Note that
the extensions of 5 may remain useful so as to get rid of the symmetry and convexity properties of the
Lyapunov level sets, and that the avoidance of local minima may need special attention.

Significantly better results might be got concerning the synthesis of gain-scheduled output feedbacks,
e.g. by enhancing the approach of [38] by the recent work of Scherer [37]. More generally, still in the
context of SNLDIs, it would be worth finding LMI relaxations so as to enable the paran®tiéesinto
more general sets —e.g., in an ellipsoid rather than in a parallelotope—, to investigate alternate choices
of Lyapunov functions, or to allow actuators saturations rather than avoiding them. This last topic is
particularly relevant in the kinematic context, for in this case it is likely that a saturated control enlarges

the convergence region.

As an overall conclusion, the proposed methods can be helpful for the analysis of any visual-based
controller and for the synthesis of 3D servos. Due to their potential conservatism, the synthesis methods
might better express themselves —included for 2D servos— when used to propose a systematic tuning
of existing controllers, e.g. to select a parametewhich can bestow nice properties to the inverse static

Jacobian controllen = —A [J(s*,Z°)] Ty seen in Case Study #2, in the vein of [31].
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An ongoing work aims at keeping in this robotics context the powerful LMI framework for the analysis
and synthesis of control systems. A new LMI approach to the analysis and synthesis of rational systems
using biquadratic and polyquadratic Lyapunov functions is being assessed [12]. Homogeneous Polynomial
Lyapunov functions as introduced in [7] are planned to be checked as well. Insights gained from works
developed in the visual servoing community —e.g. concerning the choice of the visual features, the vector
space in which the problem is stated, etc.— will then be included. The aim is obviously to limit the
conservatism, so that a multicriteria LMI-based strategy can soon be versatile enough to be embedded on a

real robot.
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A Development of the open-loop model (1)+2)

Due to space reasons, only an outline of the computations is given.
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Notations The equations of rigid body kinematics often entail so-cakettinsic quantities such as

3 x 1 vectors, 3x 3 matrices, etc. Rather than handling such expressions directly, if is often convenient
first writing equations which involvatrinsic quantities, i.e. mathematical entities whose meaning makes

no assumption upon the basis in which they are expressed. Developments are therefore pursued as far as

possible using intrinsic equations. The equations are projected on a selected basis at the end.

A vector V (resp. atensor?) is an intrinsic mathematical entity whose extrinsic expres(sﬁrj(,:)
(resp.(?)(F)) in the canonical basis of a franfe® is a 3x 1 column vecto(resp. a 3« 3 matrix) V can
term a position, a translational or rotational vector, etc. Mathematical operations —e.g. addition, scalar
product, dot-product on vectors, cross-product on vectors, tensor-vector product, etc.— are then straightly
defined upon intrinsic quantities through their extrinsic representations.

Performing theime-derivatiorof a vector V' or of atensor%) with respect to afrarge means thaf is
supposed time-invariant during the differentiation. The result is denEﬂ%@} . or {%ﬂ} e respectively.

Among the main tensors are thatation tensorand theskew-symmetric tensoiThe rotation tensor
2% JFo characterizes the relative attituderfw.r.t. F. Its extrinsic expression iR, reads as

(—>

yS)(FO)

= - =
(Fegra) ) =P = <(Xs)<Fo> (Zs)<Fo>)~

As for the skew-symmetric tensﬁ associated with a vectav , it is defined by
= 0 —cb
v :a,b,c’:> v <c Oa).
(Ve =@ = (),
Finally, the formula
= /
Ve = Zeym (T %Fz//a>

_
relates the extrinsic expressions of a vecto(resp. of a tensof) within two distinct bases.

These notations are consistent with those used in the body of the paper, see the defirition af,

X, Y, &, b, cin§2.1, andoty, ty, t,in §2.2.
Analytical expressions

Stateequation This equation depicts the effect of the camera velocity screw onto the relative sensor-

target situation. The camera velocity screw is made of any translational velocity vedtqrvaf.t. F,

SLetF = (O, X, Y, Z) be any frame, anB = (X, V¥, Z) its associated basis. Though with a slight word and notation misuse,
the whole document terms “extrinsic expressiorkah frameF” the extrinsic expression in badgof an intrinsic quantityX, and

equally uses the notatiomX)<F) or (X)<B).
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—e.g. [%} C together with the rotational velocity vectcﬁ_f,:s//Fo of Fsw.r.t. F5. The control inputu
o
of the open-loop model has been defined as its extrinsic expression wittg thasis, namely,

o ((2)

’ !/
- ,
(o = (V. Wy, Vs, 4, Q4 Qy) 56
S (FS)< Fs//Fo)(FS)> (Vi Wy, Vz, Q0 Qy, Qz) (56)

The translational velocities composition law and the composed derivation formula of a vector read

as [35]

& =P ) &7
and _ —
{ﬁh - [@L +6Fs//Fo xTS 8)

0]

As the target is assumed motionless in the fraigeattached to the environment, the time derivativet

w.r.t. F5 is equal to the null vector. Equations (57) and (58) then lead to

The extrinsic representation of (59) iy follows:

t 10 0 0t t
y)=(0-101t 0 —)u (60)
£ 0 0-1-t t O

Besides, the rotational velocities composition law and the rotation tensor time-derivation law read

as [35]

e rho = Vet ey r (61)
and .
A% ,0)y = =
Fr//Fs N -
[ dt }F B QFT//Fs%FT//FS' (62)

The fact that the target is motionless also implies ﬁé’%//':o = 6, so that (61) and (62) combine into

SH

o 'FT//FS)} -
.

—a

LD
1

Fo/ /o P e/ R (63)

The extrinsic form of this equation in frantg, is then computed. Finally, expressing the maﬂ],)gT//FS

=
—which is also the extrinsic forné%FT//Fs) (Fs>_ as a function of the 3-tupl@\, i, v) of Bryant angles

which parametrize the relative attitude betwégrandF; [35], leads to

(}\ ) —01 —sinA tse)l\nu cos)\_ta;u gx (64)
n = —co —sin y | .

: A —cosk

v 0 Zow cosi Q,

Equations (60) and (64) join into (1). Notice that the Jacobian matrix involved in (1) is always full rank.

Moreover, its entries are all well-defined, and its singular values are finije ZffZ [mod 2r1].
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Output equation Recall that the position-based case sums up to the trivial equation The determi-

nation of the output equation (2) in the image-based case follows the two following steps.

e The coordinate(sS_')D(FS) = (%Y zi)/ of the targets spofg, i = 1,...,M, in the camera framgg are

first related to theircoordinatéﬁ)( = (&,b;, I) in F; by the equations
— - "
Sy = Dy + Ty
= (ST)(F + %y Fr//Fs (T T|) (Fr)" (65)
The entriegty, ty,t;,A, 4, v)" of the state vector appear in this relatlonthro(@ﬁ') andﬁ,: R

e The computation ofy=s—s* follows, where the entries ofs:(xl,Yl,...,XM,YM)/ and
s = (X5 Yy, X5, Ys) follow the equations of perspective projectiofy = 3, Yi="f3
X: =2 andy; = f2,

Notice that the denominator of each subequation of (2) which expresses the coordinates of the projec-
tion § of a spotT, is 0 iff z = ﬁ[z_’s is 0. This case cannot occur, because it would imply Théelongs
to the plane containing the optical center and orthogonal to the optical axiszFaxtst indeed be strictly

positive so thall; can be in the camera field of view.

B Proofs

B.1 Proof of “boundedness’ constaints

Proof of (19), (22), (28), (30). The constraints to be satisfied have the form
1 ~ o
||CK|)? < _» With v > 0, holds for allxX'such thakPg < 1. (66)

Two approaches can be developed so as to prove them.

e Likein[18, 13], it can be noticed that
vC'C-P<0 (67)

(or its “Schur complement equivalent form” similar to [18]-(9)) is a sufficient condition, since this is
equivalent to

V&, XC'CR < x’Px
e Besides, rewriting (66) as

(%Y (%C "3) (%) <0, with u > 0, holds for allX'such that(¥)' (5 9) (¥) <0
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enables a straight application of tl¥-procedure, which leads to the necessary and sufficient condi-
tion

Jo >0, such that(c(/)C o%) -o(59) <o

As C'C is positive semi-definiteg cannot be 0. By setting= % one gets the equivalent necessary

and sufficient condition to (66)

3t > 0, such thatr (Céc 01) -(5%) <o

or, equivalently,
3t > v, such tharC'C—-P < 0. (68)

Yet, (67) and (68) are equivalent. Indeed,
e (67) trivially implies (68);

e if (68) holds, then
VX, TRC'CXK—XPX<0

and, aC'C > 0,

VX, TX'C'CX > uXC'CX;
these last two equations thus imply

VX, UXC'CX—XPX <0,

i.e. (67).

Notice that (68) is equivalent to (19) (resp. (22)) wher-W, and v = Flz (resp. wherC = ZZ- and
[ J

1
U= =.
ij)

The “Schur complement forms” of (67) and (68) can be shown to be respectively equivalent to the LMIs

(69) and (70) given below, which invol@ = P~ (recall thatP > 0 andQ > 0):

vl cQ
() =
Jo €]0;u0 Y such that(g('j CQQ) >0. (70)

Notice that (70) is equivalent to (28) whén=W, andv = L.
A

Assume that

||CKK||? < % with v > 0, holds for allX'such thax'P% < 1 (71)
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must be ensured in the context of state feedback synthesiskwitly Q—1, Q = P, (69) and (70) are
straightly equivalent to the LMIs (72) and (73) given below, which invohvandQ:

1
(L\’(/C,' CQY ) >0 (72)
Jo €]0;07Y such that(Y‘/’é, Cg) > 0. (73)

It can be readily noticed that (72) (resp. (73)) is equivalent to the “additional LMI” given in the right
column of [18, p. 1277] whe@ = | andu = - (resp. to (30) whe =W/ andv = 3,.) O
max J

B.2 Proof of resultsin Section 4.2

Proof of Theorem 4.2: Consider the representation (23). The set membev&hiﬁg_ holds if and only
J

if the inequality

!
X X C

Xe A o

ZCZ CZDpZ 7CZZJ'
P M, P <0, withM,; = * DpszZ 7DpZZj , (74)
1 1 * * G

is satisfied for allp, expressing the relationship, = A,q, with A, € ‘(rz) andq, = (fqzi+ f)qu P,
By Lemma 4.1, whateve(rSaZ,GaZ) € y(rz) X g(rz), the set of(X, pz) which satisfy (23) is included in
{(%p) : (P 0;) € # (S, Ga,): A = Cq, %+ Dagp, P}, i.€. in the set of%, p,) such that

~ ~ ~/ ~ ~I ~ ~/
X X qu Saz qu qu Saz quZ + qu Gaz 0
1 1 * * 0
(75)
MoreoverXe & is equivalent to
X X P O O
P, My P <O,withMy=1|%x 0 0 |- (76)
1 1 * x =1

So, to ensure the relationshif, C €, , it is sufficient that there exists a couple of matrices
J
(Saz’Gaz> € Y(rz) X %(rz) such that (74) holds for allX, pz) which satisfy (75) and (76). Applying

the.”-procedure leads to the following sufficient condition:

3 Ta, € RT, o, eR', Saz € S(r,), GaZ €g(r,), M; + Ta, Mg — 0, Mg < 0. (77)
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If o, = 0, satisfying the inequality (77) would require that the maf&;C, + Tazéaz Saz(fqz) be negative
semidefinite. However, this matrix is by construction nonzero and positive semidefinite. Conseqngntly,

is strictly positive. Multiplying (77) byr, 2 G—lz e R™*, one gets:
3 Ta, € R*, T, € R, Saz € y(rz), GaZ € %(rz), T, M, + T, Ta, M, — M, <0. (78)

The varlablesa ,Sé1 andGa appear in (78) only in the form of the produ@szra and( TazGaz>'
In addition, if Ta, = 0, for the inequality (78) to hold, it is necessary that the me(tEbﬁZDpz) be negative
definite, which is not the case. Consequentl,)g, is strictly positive, thereforer, Ta, Saz) € (r,) and
(T, Ta, Gaz) €9(r,). Replacing the expressiols, Ta, Sﬁz) and(t, Ta, Gaz) by the variabless, € 7(r,)

andG, € ¢(r,) leads to the condition
3t eR™,'S, € 7(r,), G, €4(r,), T,M+M,—M;<0. (79)

It remains to guarantee the well-posedness of (23), that is —once the matf'%(;esﬁpz,
Cq, Dgp, can be computed— to ensure the propeth, € A(r,), det(l —Dqp,4;) #0.
As proved in [20], a sufficient condition is the existence Sgey(rz) and Gze%(rz)
such that Dy, SZquZ—SZJr[N);pZGZJrG'Zf)qu<0. Yet, the inequality (79) implies that
Dap sZquZst+quZGZ+G’55qu+D'pzling 0, so qu S;Bqp, =S, + D4 GZ+G Bap, < 0.
Consequently, in order to ensure thagpzszliqu fSZJqupZGZJrGZquZ is negative definite, the

inequality (79) is made strict, which leads to the condition (24). O

Proof of Theorem 4.3: A vectoré € R(™™ belongs to the se®f if and only if (E> Nk (5) <0.
! 1

1
. . (¢) (P 0} [¢ .
Similarly, & € R™™ pelongs to&, if and only if <0. Applying the .-
1 * =1 1
procedure leads to the following necessary and sufficient conditiofifar %‘2 :
J
~ P O
Jof eR", N§ —af ( ) <0. (80)
i j e -1

If Ulz(- = 0, satisfying the inequality (80) would require that the maﬁ:li?_( be negative semidefinite. How-
] J
ever, this is not the case Ieﬁ" would beR"™ ™, Consequentlya'g_ is strictly positive. Multiplying (80)
J

by T —k— € R™, one gets:
ZJ

. P 0
arf eR™, TENE - ( ) <o0. (81)
j i I
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|
Finally, &, ¢ 2, = ﬂ;ilﬁg_ holds if and only if for allk=1,...1,, there exists a positive scalaf
] - ] J ]

such that (81) is true, thus leading to (25). |

B.3 Proof of resultsin Section 4.3

Proof of Theorem 4.4: Asthe scalanrZ in the LMI (24) is strictly positive, by applying the Schur lemma

this inequality can be turned to

</ ~ </ B =/ </
quSZCqZ -P quSZquZ +quGZ 0 CZ
* B, S,Dqp, — S, + Dy, G, +G,D 0 D
qp{ 4 qu 4 qp{ { 4 qpl . pf <0. (82)
* * —TZZJ-Z—i—l -
* * * -1

The matrixS, is positive definite, sSEl exists and':?l > 0aswellags, + G}S}lGZ) > 0. Moreover, the
block-diagonal structure C(SZ + G/ZS? lGZ) and of its inverse implies that both these symmetric positive

definite matrices belong tﬁ”(rz). StatingTZ £ (SZ + G}S?lGZ)fl € Y(rz), the inequality (82) becomes

</ ~ </ B 1 </
quschz -P quSZ(quz +S? GZ) 0 C;
X (Byp, +S,1G,)'S, (Bgp, +S;1G,) — T; 1 0 B
4P, g Sy = AR T P i el o (83
* * -7, ij +1 -
1
* * * 7¥
The matrixSZ being positive definite, applying the Schur lemma to (83) leads to
=/ =/
-P 0 0 C; qu
-1 N/ S/ / 1
* —TZ 0 Dpz quz +G55?
xox —T+1 0 <0, (84)
1
* * * % 0
* * * * —szl

so that, after a permutation of th8%and 5" rows and of the 29 and 8" columns, one gets

- ~/
P G, 0 0

=/
{
1 = 1
* 7% O O quZ -+ gz GZ
* x T, F+1 ¢ 0 <0. (85)
* * * —% P
* * * * _TZ_l
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The matrixT{l being positive definite, by applying the Schur lemma, the inequality (85) is equivalent to

—P Co, 0 o/
x =S4 Bap, +5,16,)T, (Bap, + 5,16, 0 Bop, T, B, + 5,26, T, 5, .
* * —TZZJ-Z +1 —2
* * * —% + Iipszlj’pZ
(86)
DefineH, 2 —TZGZ§Z1. So,Hé = SzleTz- Yet, by the matrix inversion lemma,

holds, so that

Morover, the block-diagonal structure if, implies that this matrix belongs Eé(rz). The second block-

diagonal term of (86) can be thus written:

8,1+ (Bap, +5;7G,) T, (Bap, +5,1G,)
- |5quTZ15;wZ +DBgp,H, + H’ZligmZ —(S,*+5,%6,T,G,S, Y
_ f>quTZf);mZ + f)quHZ + lef)&pg ~T,.
So, the inequality (86) becomes

=/ /
P &, 0 ¢,
X N/ X V] X N/ ey
* * fTZZjZJrl 72
1 ~ ~
* * * 1 —|—DpZTZD’pZ

The proof ofHZ € g(rz) and the steps leading to the inequality (87) are similar to these of El Ghaali[18, 13] in their proof
of (27).
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The matrixP being positive definite, the application of the Schur lemma leads to

R, 0 R,
x —T,02+1 - | <0, (88)
* * R3

with R, = f)quTfowZ -T, + f)quHZ + H’fowZ —i—éqZQéaZ,
R, = f)quTnypZ +Héf>’pz —i—éqZQé’Z,
R, = —% + f>pzTZf>’pZ +éZQé’Z,
Q=pP1L

At last, pre- and post- multiplying (88) by dialg X, 1) > 0 and applying the Schur lemma leads to
p p T,

R, 0 R, 0
« _Llzz _17 1
AU <0. (89)
* * R, 0
* * * -1

As the variablerZ € R appears in the inequality (89) only under the fogi;n the change of variable

o, 2 Ti € R™ can be performed, leading to the expected condition (31). O
4

Proof of Theorem 4.5: By applying twice the Schur lemma, the inequality (25) becomes

k 3K Bk k EK
TZJ s —-P TZJ_ FZJ- 0
« pk 1| <0, (90)
it
* * -1
. k . g . .
and, as the matm(Zj I(Mm) is positive definite,
k K =K
-P TZ,- FZJ- 0 RZJ-
x TEBE 1 0
P <o. (92)
* * -1 0
1
* * * _r_‘g_l(n+m)
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Pre- and post- multiplying (91) by didty,,. . +.1, | (nim) > O leads to:
G
= =K
—P 4 0 RZJ-
* %szj + 0
g 5 <0 (92)
* * -1 0
1
* * * _r_‘g_l(n+m)

J

The matrixP being positive definite, a last application of the Schur lemma on this inequality gives

1pk | FkAck 1 =k ABK
fﬁzj +F Qg f P 9%,
* -1 0 <0 (93)
1 Sk ARK
* * _r_‘g_l(m—m)—i_RZjQRZj

J

whereQ=P~1. The variabler'z‘_ € R appears in (93) only under the for@%r, so that the change of
j g
— € R™ can be done, leading to (32), whatever the ordi& the controller. a

T
¢

. A
variablegf =
J

B.4 Proof of resultsin Section 4.4

Proof of Theorem 4.6:  The reasoning performed by El Ghaetial. in [18, 13] concerning the quadratic
stability and the well-posedness of the closed-loop SNLDI (26) when the aim is to synthesize a linear static
state feedback controller, cannot be extended to the synthesis of a nonlinear static state feedback, lest BMIs
would be obtained. It is hereafter shown that an LMI condition can be obtained from the analysis LMI (17)
if the matrix G is fixed toG = O(np(r);np(r)) € ¢(r). Though this choice induces extra conservatism, the
whole feasibility/optimization problem is kept convex.

Replacing into (17) the matrices involved in the definition of the closed-loop SNLDI by their expres-

sions given in (34), and selectil@—= O(np(r);np(r)), it follows:

K'ByP-+PBUK + K'D SDyK +2aP  PBy+ PBKp + K D S(Dgp+ DguKop)

. < 0. (94)
* (Dgp+ DquKp) S(Dgp+ DquKp) — S
The matrixSbeing positive definite, an application of the Schur lemma leads to
K'B,P+ PByK +2aP PB,+ PBKp K'Dqu
* -S Dyp+ KpDgu | <O, (95)

* * T
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whereT2S L. After a pre- and post- multiplication by the symmetric matrix di@gr,!) > 0, with

Q2P1, this inequality becomes

QK'B,+BuKQ+2aQ BpT +ByKpT QK Dy
* -T TDyp+ TK,Dyu | <O (96)
* * T

LetY 2 KQ andY, 2 KoT. The variable¥ andY, can be respectively considered as matriceB®f" and
R *M(") with no structure. So, the LMI (36) follows.
As the LMI (36) is equivalent to the inequality (94), by a reasoning similar to the one u§&dari-B,
the feasibility of (36) is sufficient for the well-posedness of the embedding SNLDI (34). In addition, the

well-posedness conditions are identical for the SNLDI (34) and for the inclusion (35). a

Proof of Theorem 4.7: The following condition, which is sufficient fof', C %y, , is obtained following

the above proof of Theorem 4.2 and fixiﬁg =0:

It €R™, §, €.7(),

~Tu Uf+1<0 (97)

—P+ 1y K'WW/K +K'Dg,S; DguK T KWW/ Kp + K'DgyS;, (Dgp + DauKp) 0
* Tu, KgW,W,Kp + (Dgp+ DguKp) Sy, (Dap+ DauKp) — Sy,

(98)

The scalarruj being positive, an application of the Schur lemma turns the inequality (98) into

~P+K'DguSy, DquK K'DquSy, (Dap+ DauKp) K'W,
* (qu+ unKp) SJJ_ (qu+ unKp) — SJJ_ K;JVVJ S 07 (99)
* * —0y,

J

wherecruj £ % > 0. As the maltri)ﬁJj is positive definite, another application of the Schur lemma to (99)
i

leads to
-P 0 KW K'Dgy

x-S, KW, D, +K.D,
j Sk | qp p=qu SO, (100)
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with Ty, e Sﬁjl € 7(r). Pre- and post- multiplying (100) by di&@,T,;,!,1), one gets

Q 0 vw v
* —Tuj TqupV\/j Tuj qu—i—Tququu <0, (101)
* * quj 0
* * * fTUj

whereY; = KQ. Consequently, the conditiof, C %i is guaranteed if there exis’t:zuj cR™ and
Tuj € Z(r) such that the inequalities (97) and (101) hold. The BMI (101) could be turned into an LMI
through the change of variab%séKpTuj, so thatK would be defined from the solution of this LMI by
Kp= Y3Tu71. However,{(97),(101} and the inequality (36) which ensures the stability of the SNLDI must
be jointly solved. As (36) already implies thip, = Y, T 1, the inequalityw(g,Tu;l =Y,T~1 may not hold,
so that the change of variabig = KTy, cannot be performed.
If Tuj =T € .(r) is selected, witfT the decision variable involved in the inequality (36), then, though
at the expense of some conservatism, the change of vaMableK,T can be performed, leading to the
LMIs (37) which can be jointly solved with (36).
Notice that contrarily to what is the case in Theorem 4.2, the inequalities in Theorem 4.7 need not be

strict, as the well-posedness of the static inclusion (35) is already ensured by Theorem 4.6. o

B.5 Proof of resultsin Section 5.2.2

Proof of §5.2.2-A.2: Defineéy = (&, Ef)’ € R™M x R. The vector, belongs ta=, if and only if

E) [WwW 0 -Wxy )\ (¢
Vi=1,....n | & * 0 0 & | <0 (102)
1 *x % X -%x5) \ 1
Besidesé, € 5 holds if and only ifé, € &, andé, € &;. The relationshif, € &; is equivalent to

3 PR B O 3
Gl [~ P of]é&]|=<0 (103)
1 * o+ =1 1

X
while &, € &} holds if and only if(&; — %) <0 e

& 00 O &
& x 1 ——2||& | <=0 (104)

60



Thus, the set relationshig, C 2. is true if and only if then inequalities (102) hold for all the vectors
&a= (&',&;) € R™™ x R which simultaneously satisfy (103) and (104). Applying tHeprocedure leads

to a sufficient condition in terms of thematrix inequalities

WW —aP,  —gPR, —WiXy
. i
Hale]R+,afle]RJf,...,ane]R*,afne]R+,v|:17...,n, % —0P— 0y, e <0.
* * (% — %) + 0

(105)

If g, =0, satisfying the inequality (105) would require that the maww' be negative semidefinite.
However, this matrix is by construction nonzero and positive semidefinite. Consequgnidystrictly
positive. Making the change of variablesé é e R™ and Ty é% € R*, and multiplying (105) byr;

leads to (44). O
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