
The Complexity of Model Cheking Mobile Ambients

Witold Charatonik

1;2

Silvano Dal Zilio

3

Andrew D. Gordon

3

Supratik Mukhopadhyay

1

Jean-Mar Talbot

1;4

May 2001

Tehnial Report

MSR{TR{2001{03

Mirosoft Researh

Mirosoft Corporation

One Mirosoft Way

Redmond, WA 98052

1

Max-Plank-Institut f�ur Informatik, Germany.

2

University of Wro law, Poland.

3

Mirosoft Researh, United Kingdom.

4

Laboratoire d'Informatique Fondamentale de Lille, Frane.

Publiation History

A portion of this work appears in the book Foundations of Software Siene

and Computation Strutures: 4th International Conferene, FOSSACS 2001,

F. Honsell, M. Miulan (Eds.), Springer Leture Notes in Computer Siene

2030:152{167, 2001.

Abstrat

We settle the omplexity bounds of the model heking problem for the

repliation-free ambient alulus with publi names against the ambient

logi without parallel adjunt. We show that the problem is PSPACE-

omplete. For the omplexity upper-bound, we devise a new representa-

tion of proesses that remains of polynomial size during proess exeution;

this allows us to keep the model heking proedure in polynomial spae.

Moreover, we prove PSPACE-hardness of the problem for several quite

simple fragments of the alulus and the logi; this suggests that there

are no interesting fragments with polynomial-time model heking algo-

rithms.

Contents

1 Introdution 1

2 Review of the Ambient Calulus and Logi 2

2.1 The Ambient Calulus with Publi Names 2

2.2 The Logi (for Publi Names) . 4

3 A Model Cheking Algorithm 6

3.1 A Polynomial-Spae Representation 6

3.2 Size of the Representation . 11

3.3 A New Algorithm . 12

4 Complexity Lower Bounds 14

4.1 The Full Calulus and Logi . 14

4.2 Mobile Ambients Without I/O, No Quanti�ers 16

4.3 Immobile Ambients With I/O, No Quanti�ers 18

5 Conlusion 24

Referenes 25

A Corretness Proofs 26

A.1 Proof of Proposition 3.1 . 26

A.2 Properties of the Auxiliary Funtions 30

A.3 Proof of Proposition 3.2 . 34

A.4 Proof of Proposition 3.3 . 37

A.5 Proof of Proposition 3.4 . 37

A.6 Proof of Proposition 3.9 . 41

A.7 Proof of Proposition 3.10 . 42

B Hardness Proofs 45

B.1 Proof of Lemma 4.1 . 45

B.2 Proof of Lemma 4.3 . 45

B.3 Proof of Lemma 4.5 . 48

1 Introdution

The ambient alulus of Cardelli and Gordon (1999a, 1999b, 2000a) is a formal-

ism for desribing the mobility of both software and hardware. An ambient is

a named luster of running proesses and nested sub-ambients. Eah omputa-

tion state has a spatial struture, the tree indued by the nesting of ambients.

Mobility is abstratly represented by re-arrangement of this tree: an ambient

may move inside or outside other ambients.

The ambient logi (Cardelli and Gordon 2000b) is a modal logi designed

to speify properties of distributed and mobile omputations programmed in

the ambient alulus. As well as standard temporal modalities for desribing

the evolution of ambient proesses, the logi inludes novel spatial modalities

for desribing the tree struture of ambient proesses. Serendipitously, these

spatial modalities an also usefully desribe the tree struture of semistrutured

databases (Cardelli and Ghelli 2001). Other work on the ambient logi inludes

a study of the proess equivalene indued by the satisfation relation (Sangiorgi

2001) and a study of the logi extended with onstruts for desribing private

names (Cardelli and Gordon 2001).

The model heking problem is to deide whether a given objet (in our ase,

an ambient proess) satis�es (that is, is a model of) a given formula. Cardelli

and Gordon (2000b) show deidability of the model heking problem for a �nite-

state fragment of the ambient alulus against the fragment of the ambient logi

without their parallel adjunt modality. This �nite-state ambient alulus omits

the onstruts for unbounded repliation and dynami name generation of the

full alulus. The parallel adjunt modality is omitted beause it is de�ned as an

in�nite quanti�ation over proesses. Cardelli and Gordon give no omplexity

analysis for their algorithm. Still, given the various possible appliations of

the logi, it is of interest to analyse the omplexity of model heking mobile

ambients.

In fat, a naive analysis of the algorithm of Cardelli and Gordon gives only

a doubly exponential bound on its use of time and spae. A more sophistiated

analysis based on results in this paper shows that their algorithm works in

single-exponential time on single-exponential spae.

In this paper we settle the omplexity bounds of the model heking prob-

lem for the �nite-state ambient alulus (that is, the full alulus apart from

repliation and name generation) against the logi without parallel adjunt.

Our main result (embodied in Theorems 3.11 and 4.2) is that the problem is

PSPACE-omplete. Hene, this situates model heking the ambient logi in

the same omplexity lass as model heking onurrent programs against CTL

and CTL

�

(Kupferman, Vardi, and Wolper 2000).

As we disuss in Setion 2, there are two reasons why Cardelli and Gordon's

algorithm uses exponential spae. One of them is that a proess may grow

exponentially during its exeution; the other is that there may be exponentially

many proesses reahable from a given one.

In Setion 3, we present a new model heking algorithm that avoids these

problems as follows.

1

� We avoid the �rst problem by devising a new representation of proesses

using a form of losure. The main feature of this representation is that sub-

stitutions that our when ommuniations take plae within an ambient

are not applied diretly, but are kept expliit. These expliit substitu-

tions prevent the representation blowing up exponentially in the size of

the original proess. The idea of using losures omes from DAG represen-

tations used in uni�ation for avoiding exponential blow-up. A sequential

substitution that we use here an be seen as a DAG representation of the

substitution.

� To avoid the seond problem, we �rst devise a non-deterministi algorithm

for testing reahability that does not have to store all the reahable pro-

esses, but instead tests it on-the-y, and then remove nondeterminism

using Savith's theorem (Savith 1970). Hene we prove Theorem 3.11,

that the model heking problem is solvable in PSPACE.

We show this upper bound to be tight in Setion 4; Theorem 4.2 asserts

that the model heking problem is PSPACE-hard. Atually, we give PSPACE-

hardness results for various fragments of the logi and of the alulus. For

instane, by Theorem 4.4, even for a alulus of purely mobile ambients (that

is, a alulus without ommuniation or the apability to dissolve ambients)

and the logi without quanti�ers, the problem is PSPACE-hard. Moreover, by

Theorem 4.6, for a alulus of purely ommuniative ambients (that is, a alulus

without the apabilities to move or to dissolve ambients) and the logi without

quanti�ers, the problem is also PSPACE-hard. Often in the study of model

heking �xing the model or the formula makes the problem easier. Here this is

not the ase. Even if we �x the proess to be the onstant 0, the model heking

problem remains PSPACE-hard. Although we do not prove PSPACE-hardness

for �xed arbitrary formulas, our result is not muh weaker: Theorem 4.7 asserts

that for any level of the polynomial-time hierarhy we an �nd a �xed formula

suh that the model heking problem is hard for that level.

We end the main part of the paper with onlusions in Setion 5. Ap-

pendixes A and B ontain proofs of properties stated without proof in Setions 3

and 4, respetively.

2 Review of the Ambient Calulus and Logi

We present a �nite-state ambient alulus (that is, the full alulus (Cardelli and

Gordon 2000a) apart from repliation and name generation) and the ambient

logi without parallel adjunt. This is the same alulus and logi for whih

Cardelli and Gordon present a model heking algorithm (Cardelli and Gordon

2000b).

2.1 The Ambient Calulus with Publi Names

The following table desribes the expressions and proesses of our alulus.

2

Expressions and Proesses:

M;N ::= expressions P;Q;R ::= proesses

n name 0 inativity

in M an enter M P j Q omposition

out M an exit M M [P ℄ ambient

open M an open M M:P ation

� null (n):P input

M:M

0

path hMi output

A name n is said to be bound in a proess P if it ours within an input pre�x

(n). A name is said to be free in a proess P if there is an ourrene of n outside

the sope of any input (n). We write bn(P) and fn(P) for respetively the set

of bound names and the set of free names in P . We say two proesses are �-

equivalent if they are idential apart from the hoie of bound names. We write

Mfn Ng and Pfn Ng for the outomes of apture-avoiding substitutions

of the expression N for the name n in the expression M and the proess P ,

respetively.

The semantis of the alulus is given by the relations P � Q and P ! Q.

The redution relation, P ! Q, de�nes the evolution of proesses over time.

The strutural ongruene relation, P � Q, is an auxiliary relation used in the

de�nition of redution. When we de�ne the satisfation relation of the modal

logi in the next setion, we use an auxiliary relation, the subloation relation,

P # Q, whih de�nes the spatial distribution of proesses and holds when Q

is the whole interior of a top-level ambient in P . We write !

�

and #

�

for the

reexive and transitive losure of ! and #, respetively.

Strutural Congruene P � Q

P , Q are �-equivalent) P � Q (Strut Re)

Q � P) P � Q (Strut Symm)

P � Q;Q � R) P � R (Strut Trans)

P � Q) P j R � Q j R (Strut Par)

P � Q)M [P ℄ �M [Q℄ (Strut Amb)

P � Q)M:P �M:Q (Strut Ation)

P � Q) (n):P � (n):Q (Strut Input)

P j Q � Q j P (Strut Par Comm)

(P j Q) j R � P j (Q j R) (Strut Par Asso)

P j 0 � P (Strut Zero Par)

�:P � P (Strut �)

(M:M

0

):P �M:M

0

:P (Strut :)

Redution P ! Q and Subloation P # Q:

n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)

m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)

3

open n:P j n[Q℄! P j Q (Red Open)

hMi j (n):P ! Pfn Mg (Red I/O)

P ! Q) P j R! Q j R (Red Par)

P ! Q) n[P ℄! n[Q℄ (Red Amb)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

P � n[P

0

℄ j P

00

) P # P

0

(Lo)

The following example shows that the size of reahable proesses may be

exponential, and that there may be a redution path of exponential length. The

algorithm given in (Cardelli and Gordon 2000b) may use exponential spae to

hek properties of this example.

Consider the family of proesses (P

k

)

k�0

, reursively de�ned by the equa-

tions P

0

= (n):(p[n℄ j q[0℄) and P

k+1

= (n

k+1

):(hn

k+1

:n

k+1

i j P

k

). Intuitively,

the proess P

k+1

inputs a apability, alls it n

k+1

, doubles it, and outputs

the result to the proess P

k

. We have the following, where M

1

= M and

M

k+1

=M:M

k

.

hin q:out qi j P

0

!

1

p[in q:out q℄ j q[0℄

hin q:out qi j P

1

!

2

p[(in q:out q)

2

℄ j q[0℄

hin q:out qi j P

2

!

3

p[(in q:out q)

4

℄ j q[0℄

hin q:out qi j P

k

!

k+1

p[(in q:out q)

2

k

℄ j q[0℄

Sine (in q:out q)

2

k

is a sequene of 2

k

opies of in q:out q, the proess

p[(in q:out q)

2

k

℄ j q[0℄ redues in 2

k+1

steps to p[0℄ j q[0℄. Therefore, we have

hin q:out qi j P

k

!

(k+1)+2

k+1

p[0℄ j q[0℄.

This example points out two fats. First, using a simple representation of

proesses (suh as the one proposed in (Cardelli and Gordon 2000b)), it may be

that the size of a proess onsidered during model heking grows exponentially

bigger than the size of the initial proess. Seond, during the model heking

proedure, there may be an exponential number of reahable proesses to on-

sider. Therefore, a diret implementation of the algorithm proposed in (Cardelli

and Gordon 2000b) may use spae exponential in the size of the input proess.

These remarks motivate the approah taken in this paper. First, we devise a

new representation for ambient proesses that remains of polynomial size with

respet to to the input proess. Seond, we give a non-deterministi algorithm

for testing reahability that uses only polynomial spae in the ombined size

of the problem; then by an appliation of Savith's theorem (Savith 1970) we

remove nondeterminism and obtain a deterministi version that itself uses only

polynomial spae.

2.2 The Logi (for Publi Names)

We desribe the formulas and satisfation relation of the logi.

4

Logial Formulas:

� a name n or a variable x

A;B ::= formula

T true

:A negation

A _ B disjuntion

0 void

�[A℄ ambient math

A j B omposition math

A�� loation adjunt

9x:A existential quanti�ation

�A sometime modality

✧A somewhere modality

We assume that names and variables belong to two disjoint voabularies.

We write Afx mg for the outome of substituting eah free ourrene of the

variable x in the formula A with the name m. We say a formula A is losed if

and only if it has no free variables (though it may ontain free names).

Intuitively, we interpret losed formulas as follows. The formulas T, :A,

and A _ B embed propositional logi. The formulas 0, �[A℄, and A j B are

spatial modalities. A proess satis�es 0 if it is struturally ongruent to the

empty proess 0. It satis�es n[A℄ if it is struturally ongruent to an ambient

n[P ℄ where P satis�es A. A proess P satis�es A j B if it an be deomposed

into two subproesses, P � Q j R, where Q satis�es A, and R satis�es B. The

formula 9x:A is an existential quanti�ation over names. The formulas �A

(sometime) and ✧A (somewhere) quantify over time and spae, respetively. A

proess satis�es �A if it has a temporal suessor, that is, a proess into whih

it evolves, that satis�es A. A proess satis�es ✧A if it has a spatial suessor,

that is, a subloation, that satis�es A. Finally, a proess P satis�es the formula

A�n if the ambient n[P ℄ satis�es A.

The satisfation relation P j= A formalizes these intuitions.

Satisfation P j= A (for A losed):

P j= T

P j= :A

�

= :(P j= A)

P j= A _ B

�

= P j= A _ P j= B

P j= 0

�

= P � 0

P j= n[A℄

�

= 9P

0

:P � n[P

0

℄ ^ P

0

j= A

P j= A j B

�

= 9P

0

; P

00

:P � P

0

j P

00

^ P

0

j= A ^ P

00

j= B

P j= 9x:A

�

= 9m:P j= Afx mg

P j= �A

�

= 9P

0

:P !

�

P

0

^ P

0

j= A

P j= ✧A
�

= 9P

0

:P #

�

P

0

^ P

0

j= A

P j= A�n

�

= n[P ℄ j= A

5

We use �A (everytime modality), ❏A (everywhere modality) and 8x:A (uni-

versal quanti�ation) as abbreviations for :(�:A), :(✧:A) and :(9x::A),

respetively.

3 A Model Cheking Algorithm

We show that the model heking problem an be deided in polynomial spae by

devising a new representation of proesses (Setion 3.1) that remains polynomial

in the size of the initial proess (Setion 3.2). In Setion 3.3 we present a new

model heking algorithm based on this representation.

Sine the redution relation is de�ned up to �-equivalene, we may assume

for the purposes of omputing reahable proesses that the free and bound names

of every ambient proess are distint, and moreover that the bound names are

pairwise distint.

3.1 A Polynomial-Spae Representation

We give in this setion a new representation for ambient proesses based on

normal losures (It is di�erent from the normal form of proesses introdued

in (Cardelli and Gordon 2000b)). We also present basi operations on losures

and prove that losures indeed simulate the proesses they represent. All proofs

not in this setion (in partiular, proofs of Propositions 3.1{3.4) an be found

in the appendix.

Annotated Proesses, Substitutions, Closures:

~

P ::= annotated proess

Q

i2I

�

i

multiset of primes

� ::= prime

M [

~

P ℄ ambient

M(o):

~

P ation, with o�set o � 0

(n):

~

P input

hMi output

� ::= fn

1

 M

1

g � � � fn

k

 M

k

g sequential substitution, k � 0

h

~

P ;�i losure

In a sequential substitution fn

1

 M

1

g � � � fn

k

 M

k

g, the expression M

i

lies

in the sope of the bindings for the remaining names n

i+1

, . . . , n

k

. We denote by

� the empty sequene of substitutions and treat it as the identity substitution. A

sequential substitution � is said to be ayli if either � = � or � = fx Mg�

0

,

where x does not our in �

0

and �

0

is an ayli substitution.

For an annotated proess

~

P , we de�ne free and bound names in the same

way as for ambient proesses. Let names(�) be the set of all names ourring

in �.

We de�ne a partial mapping U from losures to the set of ambient proesses.

Intuitively, it unfolds a losure to the proess it represents by applying the

6

substitution and utting o� the pre�x de�ned by the o�set. Roughly speaking,

the expression U(

~

P ; �) is de�ned if the o�sets within the annotated proess do

not exeed the length of the expression they are assoiated with. The unfolding

U(

~

P ; �) is de�ned as follows.

The Unfolding U(

~

P ; �) of a Closure h

~

P ;�i:

U(

Q

i2I

�

i

; �) =

�

U(�

1

; �) j : : : j U(�

n

; �) if I = f1; : : : ; ng 6= ?

0 otherwise

U(M [

~

P ℄; �) =M�[U(

~

P ; �)℄

U(M(o):

~

P ; �) =

8

>

>

<

>

>

:

N

o+1

: � � � :N

l

:U(

~

P ; �) if M� = N

1

: � � � :N

l

; o < l and N

i

being either a name or of the form

ap N

0

with ap 2 fin; out ; openg

unde�ned otherwise

U((n):

~

P ; �) = (n):U(

~

P ; �)

U(hMi; �) = hM�i

We are only interested in a partiular kind of losure, whih we refer to as

normal. Let a losure h

~

P ;�i be normal if U(

~

P ; �) is de�ned and if it meets some

tehnial onditions about free and bound names

De�nition 1 A losure h

~

P ;�i is normal if:

(1) U(

~

P ; �) is de�ned,

(2) bn(

~

P) \ (fn(

~

P) [names(�)) = ?,

(3) every name n in

~

P ours at most one within an input,

(4) every o�set o ourring in the sope of an input in

~

P is equal to 0, and

(5) � is ayli.

The next proposition says that our representation of ambient proesses with

normal losures preserves their basi properties. We write fg and ++ for the

empty multiset and the multiset union operation, respetively.

Proposition 3.1 (Strutural Equivalenes) Let h

Q

i2I

�

i

;�i be a normal

losure. Then

(1) U(

Q

i2I

�

i

; �) � 0 i� I = ?.

(2) U(

Q

i2I

�

i

; �) � M [Q℄ i� 9M

0

;

~

Q : I is a singleton fig, �

i

= M

0

[

~

Q℄,

M

0

� =M , U(

~

Q; �) � Q.

(3) U(

Q

i2I

�

i

; �) � P

0

j P

00

i� 9J;K : J [K = I, J \ K = ?, P

0

�

U(

Q

j2J

�

j

; �), P

00

� U(

Q

k2K

�

k

; �).

7

(4) U(

Q

i2I

�

i

; �) � hMi i� 9M

0

: I is a singleton fig, �

i

= hM

0

i and

M

0

� =M .

(5) U(

Q

i2I

�

i

; �) � (n):P i� 9

~

P : I is a singleton fig, �

i

= (n):

~

P and

U(

~

P ; �) � P .

Next, we present how the redution and subloation transitions !, # an

be de�ned on losures. Due to this partiular representation and the fat that

some part of the ambient proess is ontained in the sequential substitution,

some auxiliary subroutines are needed.

One an see in the de�nition of U that only expressions M in the anno-

tated proess are a�eted by the sequential substitution. For the subloation

transition, it is important to extrat the name represented by the expressionM

under the substitution �. So, one of those subroutines, nam(M;�), onsists in

reovering from an expression M the name it e�etively represents within the

substitution �.

The redution transition for a losure h

~

P ;�i requires some other auxiliary

subroutines, whih are more spei�ally dediated to the ase where the substi-

tution applied on the expression M leads to a sequene of apabilities in M

0

,

out M

0

, open M

0

. Intuitively, the outome of applying the substitution � to an

expressionM ontained within

~

P is a �nite sequene of either apabilities of the

form inM

0

, outM

0

, openM

0

, or names not bound by the substitution. We need

a subroutine to ompute the length of this sequene in terms of apabilities. To

keep the algorithm in polynomial spae, we must simply be able to ompute

this length without applying expliitly � on M ; this is the role of len(M;�).

Now, from the de�nition of the redution on ambient proesses, one an

see that the redution onsumes one apability: one the redution is done,

the involved apability disappears from the resulting proess. This is slightly

di�erent for the representation we have proposed: a sequene of apabilities an

be partially ontained in a sequential substitution �. This substitution remains

�xed during the exeution of apabilities and the o�set attahed to this sequene

plays the role of a program ounter. Therefore, to perform a redution step one

has to extrat the �rst apability to exeute from a sequene of apabilities,M ,

a substitution, �, and an o�set, o. This is omputed by fst(M; o; �).

The next subroutine introdued here, split(M(o):

~

P ; �), omputes a pair from

a prime, M(o):

~

P , and a sequential substitution, �. The �rst omponent of this

result is the �rst apability to be exeuted in hfM(o):

~

P g;�i (the one in head

position). The seond omponent is the remaining annotated proess one this

�rst apability has been exeuted.

The Auxiliary Funtions nam, len, fst and split:

nam(n; fm Mg�) =

�

nam(M;�) if n = m

nam(n; �) otherwise

nam(n; �) = n

len(�; �) = 0

8

len(M:N; �) = len(M;�) + len(N; �)

len(M;�) = 1 if M 2 fin N; out N; open Ng

len(n; fm Mg�) =

�

len(M;�) if n = m

len(n; �) otherwise

len(n; �) = 1

fst(M:N; o; �) =

�

fst(M; o; �) if len(M;�) > o

fst(N; o� len(M;�); �) otherwise

fst(ap N; 0; �) = ap (nam(N; �)) for ap in fin; out ; openg

fst(n; o; fm Mg�) =

�

fst(M; o; �) if n = m

fst(n; o; �) otherwise

split(M(o):

~

P ; �) =

�

(fst(M; o; �); fM(o+ 1):

~

Pg) if len(M;�) > o+ 1

(fst(M; o; �);

~

P) otherwise

Notie that nam(M;�) is unde�ned if M is of the form �, N:N

0

, in N ,

out N , or open N . Therefore, the expression nam(M;�) is either unde�ned

or is evaluated to a name. Moreover, we an ompute the name returned by

nam(M;�), or whether it is unde�ned, in linear time. The number returned

by len(M;�) an be omputed in polynomial spae

1

. We an ompute the

apability returned by fst(M; o; �) and the pair returned by split(M(o):

~

P ; �),

or whether they are unde�ned, in polynomial spae.

Suppose h

~

P ;�i is a normal losure ontaining an ation M(o):

~

Q. From

the de�nition of a normal losure, len(M;�) > o, and if the ation ours

under an input variable n, then the o�set o = 0. If n ours in M and gets

bound to � by an I/O step, it may be that len(M; fn �g�) = 0. So, in the

transition rule for I/O, we need to re-normalize the losure representing the

outome of the transition. We do so using the following subroutines, norm(

~

P ; �)

and norm(�; �), that return the annotated proess obtained by removing from

~

P and �, respetively, any pre�x M(o) suh that len(M;�) = 0.

The Auxiliary Funtions norm:

norm(

Q

i21::k

�

i

; �) =

�

fg if k = 0

norm(�

1

; �) ++ � � � ++ norm(�

k

; �) otherwise

norm(M [

~

P ℄; �) = fM [norm(

~

P ; �)℄g

norm(M(o):

~

P ; �) =

�

norm(

~

P ; �) if len(M;�) = 0

fM(o):norm(

~

P ; �)g otherwise

norm((n):

~

P ; �) = f(n):norm(

~

P ; �)g

norm(hMi; �) = fhMig

Next, we de�ne a transition relation, h

~

P ;�i ! h

~

P

0

;�

0

i, and a subloation

1

We are not onerned here with time omplexity; a naive algorithm for omputing

len(M;�), as presented here, runs in exponential time in the worst ase. However, it is

quite easy to provide a version of this funtion that runs in polynomial time.

9

relation, h

~

P ;�i # h

~

P

0

;�i, on losures. These relations simulate the redution

and the subloation relations on proesses de�ned in Setion 2.1.

Transitions and Subloations of Closures:

(Trans In)

split(�; �) = (in m;

~

P) nam(M;�) = m nam(N; �) = n

hfN [f�g ++

~

Q℄;M [

~

R℄g;�i ! hfM [fN [

~

P ++

~

Q℄g ++

~

R℄g;�i

(Trans Out)

split(�; �) = (out m;

~

P) nam(M;�) = m nam(N; �) = n

hfM [fN [f�g ++

~

Q℄g ++

~

R℄g;�i ! hfN [

~

P ++

~

Q℄;M [

~

R℄g;�i

(Trans Open)

split(�; �) = (open n;

~

P) nam(M;�) = n

h�; fM [

~

Q℄g;�i ! h

~

P ++

~

Q;�i

(Trans I/O)

~

P

0

= norm(

~

P ; fn Mg�)

hf(n):

~

P ; hMig;�i ! h

~

P

0

; fn Mg�i

(Trans Par)

h

~

P ;�i ! h

~

P

0

;�

0

i

h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i

(Trans Amb)

h

~

P ;�i ! h

~

P

0

;�

0

i nam(M;�) = n

hfM [

~

P ℄g;�i ! hfM [

~

P

0

℄g;�

0

i

(Lo)

nam(M;�) = m

h

~

Q ++ fM [

~

P ℄g;�i # h

~

P ;�i

The ondition for (Lo) ensures simply that the expressionM together with

� is a name. For two normal losures hP ;�i, hP

0

;�

0

i, deiding whether hP ;�i #

hP

0

;�

0

i an be ahieved in polynomial spae. There is no rule orresponding to

(Red �) sine we always keep losures in normal form. The two rules (Trans

Par) and (Trans Amb) orrespond to the ongruene rules (Red Par) and (Red

Amb) for redution.

In the same way as for ambient proesses, we de�ne the relations!

�

and #

�

(on losures) as the reexive and transitive losures of ! and #, respetively.

Proposition 3.2

(1) If h

~

P ;�i is normal and h

~

P ;�i #

�

h

~

P

0

;�i then h

~

P

0

;�i is normal.

(2) If h

~

P ;�i is normal and h

~

P ;�i !

�

h

~

P

0

;�

0

i then h

~

P

0

;�

0

i is normal.

The next proposition says that the representation of proesses as losures

preserves subloations and redutions.

Proposition 3.3 (Subloation Equivalenes) Assume h

~

P ;�i is a normal

losure. If h

~

P ;�i # h

~

Q;�i then U(

~

P ; �) # U(

~

Q; �). If U(

~

P ; �) # Q then there

exists

~

Q suh that h

~

P ;�i # h

~

Q;�i and U(

~

Q; �) � Q.

10

The following proposition is a ounterpart of Proposition 3.3. It refers to

time in the same way as Proposition 3.3 refers to spae.

Proposition 3.4 (Redution Equivalenes) Assume h

~

P ;�i is a normal

losure. If h

~

P ;�i ! h

~

P

0

;�

0

i then U(

~

P ; �) ! U(

~

P

0

; �

0

). If U(

~

P ; �) ! P

0

then

there exists h

~

P

0

;�

0

i suh that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

.

Propositions 3.1{3.4 are enough to prove that normal losures indeed simu-

late the proesses they represent.

3.2 Size of the Representation

We show that losures indeed give a polynomial representation of proesses. To

do this, we have to bound the size of o�sets that our in losures.

For a given objet (a losure or a proess) O, by jOj we mean the length

of its string representation and by kOk the number of nodes in its tree repre-

sentation. We assume that an o�set is represented by a single node in the tree

representation.

Lemma 3.5 Suppose that h

~

P ;�i ! h

~

P

0

;�

0

i. Then kh

~

P

0

;�

0

ik � kh

~

P ;�ik.

Proof By a simple ase analysis on the derivation of h

~

P ;�i ! h

~

P

0

;�

0

i. In

ases (Trans In), (Trans Out) and (Trans Open), the transition either does

not hange or dereases the representation's size. In ase (Trans I/O), the three

nodes representing input, output and proess omposition ((); hi; :) together with

the representation of x and M are replaed with two nodes representing assign-

ment and substitution omposition (; fg) together with the representation of

x and M . Thus the tree dereases by one node. �

Proposition 3.6 Assume h

~

P ;�i is normal and h

~

P ;�i ! h

~

P

0

;�

0

i. Then all o�-

sets used in

~

P and

~

P

0

an be represented by the same number of bits, polynomial

in jh

~

P ;�ij and, with suh a representation, jh

~

P

0

;�

0

ij � jh

~

P ;�ij.

Proof A simple indution on the length of the substitution �

0

proves that the

o�sets in

~

P

0

are bounded by the value kh

~

P

0

;�

0

ik

kh

~

P

0

;�

0

ik

. By Lemma 3.5, they

are also bounded by kh

~

P ;�ik

kh

~

P ;�ik

and then all o�sets used in

~

P and

~

P

0

are

bounded by this value, whih an be represented on kh

~

P ;�ik �(blog(kh

~

P ;�ik)+

1) bits. With this representation of o�sets, inrementing an o�set does not

inrease the size of its string representation. Thus no transitions an inrease

the length of the string representations of losures. �

The following proposition is a key fat in the proof that our model hek-

ing algorithm and also the algorithm of Cardelli and Gordon (2000b) terminate

in exponential time. It implies that the omputation tree of a given proess

might be very deep and very narrow (as in our example in Setion 2) or not

so deep and wider; in any ase the number of nodes in the tree remains ex-

ponentially bounded. A naive argument (without using losures) gives only a

11

doubly exponential bound on the number of reahable proesses: one an prove

that the omputation tree of a given proess is at most exponentially deep

(as our example in Setion 2 shows, this bound is tight) and that the number

of suessors for every node is at most polynomial. For example, the losure

hfn[in n(0):

~

P

0

℄; : : : ; n[in n(0):

~

P

k

℄g;�i has at most k

2

di�erent suessors. These

two fats do not give, however, the exponential bound on the number of nodes

in the tree, whih is given by the following proposition.

Proposition 3.7 Let h

~

P ;�i be a normal losure. Then there exist at most

exponentially many h

~

P

0

;�

0

i suh that h

~

P ;�i !

�

h

~

P

0

;�

0

i.

Proof This is a diret onsequene of Proposition 3.6 and the observation

that there are only exponentially many strings of polynomial length. �

Proposition 3.8 The reahability problem for normal losures is deidable in

PSPACE.

Proof Take any instane h

~

P ;�i, h

~

P

0

;�

0

i of the reahability problem. To de-

ide whether h

~

P ;�i !

�

h

~

P

0

;�

0

i, we �rst de�ne a nondeterministi algorithm

that starting from h

~

P ;�i guesses an immediate suessor of the urrent losure

until it reahes h

~

P

0

;�

0

i or there are no further suessors. By Proposition 3.6

the algorithm requires only polynomial spae (we have to store only the ur-

rent losure and its one immediate suessor); Proposition 3.7 implies termina-

tion. Finally, using the general statement of Savith's theorem (Savith 1970)

(NPSPACE(S(n)) � PSPACE(S(n)

2

)), this non-deterministi algorithm an be

turned into a deterministi one. �

3.3 A New Algorithm

We propose a new algorithm, Chek (

~

P ; �;A), to hek whether the ambient

proess simulated by h

~

P ;�i satis�es the losed formula A. For eah ambient

proess, P , we only onsider the losure, F(P), obtained using the folding fun-

tion de�ned as follows. We prove (Proposition 3.10), that P j= A if and only if

Chek (F(P); �;A) returns the Boolean value T.

The Folding F(P) of a Proess P :

F(0) = fg

F(P j Q) = F(P) ++ F(Q)

F(M [P ℄) = fM [F(P)℄g

F((n):P) = f(n):F(P)g

F(hMi) = fhMig

F(M:P) =

�

F(P) if len(M; �) = 0

fM(0):F(P)g otherwise

For any proess P , the losure hF(P); �i is normal and U(F(P); �) is stru-

turally ongruent to P . Furthermore, F(P) an be omputed in linear time in

the size of P .

12

For the model heking problem, P j= A, we may assume without loss of

generality that the free names of A are disjoint from the bound names of P . We

denote by fn(

~

P ; �) the set (fn(

~

P) [names(�)) r dom(�).

Computing Whether a Proess Satis�es a Closed Formula:

Chek (

~

P ; �;T) = T

Chek (

~

P ; �;:A) = :Chek (

~

P ; �;A)

Chek (

~

P ; �;A _ B) = Chek (

~

P ; �;A) _ Chek (

~

P ; �;B)

Chek (

Q

i2I

�

i

; �;0) =

�

T if I = ?

F otherwise

Chek (

Q

i2I

�

i

; �; n[A℄) =

�

Chek (

~

Q; �;A) if I = fig; �

i

=M [

~

Q℄; nam(M;�) = n

F otherwise

Chek (

Q

i2I

�

i

; �;A j B) =

W

J�I

(Chek (

Q

j2J

�

j

; �;A) ^

Chek (

Q

k2I�J

�

k

; �;B))

Chek (

~

P ; �; 9x:A) = let fm

1

; : : : ;m

k

g = fn(

~

P ; �) [fn(A) in

let m

0

=2 fm

1

; : : : ;m

k

g [bn(

~

P) [dom(�) be fresh in

W

i20::k

Chek (

~

P ; �;Afx m

i

g)

Chek (

~

P ; �;�A) =

W

h

~

P ;�i!

�

h

~

P

0

;�

0

i

Chek (

~

P

0

; �

0

;A)

Chek (

~

P ; �;✧A) =
W

h

~

P ;�i#

�

h

~

P

0

;�i

Chek (

~

P

0

; �;A)

Chek (

~

P ; �;A�n) = Chek (n[

~

P ℄; �;A)

An expression Chek (

~

P ; �;A) is said to be normal if and only if the losure

h

~

P ;�i is normal, A is a losed formula, and fn(A) \ (bn(

~

P) [dom(�)) = ?.

Hene, for the model heking problem P j= A where A is a losed formula, the

expression Chek (F(P); �;A) is normal and moreover we have:

Proposition 3.9 The model heking algorithm desribed above preserves the

normality of Chek (

~

P ; �;A).

Proposition 3.10 For all proesses P and losed formulas A, we have P j= A

if and only if Chek (F(P); �;A) = T.

Theorem 3.11 Model heking the ambient alulus and logi of this paper is

deidable in PSPACE.

Proof To test for a given proess P and formula A whether P j= A we simply

ompute the value of Chek (F(P); �;A). The only problem is to implement

Chek in suh a way that it works in polynomial spae.

In the ase of T;0; n[A℄;A�n;:A, the algorithm an diretly hek whether

the respetive onditions hold. In the ase of A _ B;A j B; 9x:A;�A;✧A, we
have to be more areful about the spae used to ompute the value of disjun-

tions. In a loop we iteratively ompute the value of eah disjunt, reusing the

13

same spae in every iteration. In the ase of �A the subroutine omputing

W

h

~

P ;�i!

�

h

~

P

0

;�

0

i

Chek (

~

P

0

; �

0

;A) ould look as follows.

result F

for all h

~

P

0

;�

0

i suh that h

~

P ;�i !

�

h

~

P

0

;�

0

i

if Chek (

~

P

0

; �

0

;A) = T then result T

return(result)

By Propositions 3.6 and 3.8, every iteration requires only polynomial spae.

The ases of A_B;A j B; 9x:A;✧A are similar. Thus, the spae S(k; j

~

P j+ j�j)

used by the algorithm to ompute Chek (

~

P ; �;A) for formulas A of depth not

exeeding k satis�es the inequality

S(k + 1; j

~

P j+ j�j) � S(k; j

~

P j+ + j�j) + p(j

~

P j+ j�j)

for some onstant and some polynomial p (the onstant omes from the fat

that in the ase of A = B�n the size of n[

~

P ℄ is greater than the size of

~

P ; the

polynomial p estimates the spae needed for testing reahability et). Therefore,

S(k; j

~

P j+ j�j) � k � p(j

~

P j+ k � + j�j).

Finally, the fat that F(P) is polynomial in the size of P and the statement

of Proposition 3.10 omplete the proof. �

4 Complexity Lower Bounds

Below we present lower bounds on the spae omplexity of model heking our

proess alulus against our modal logi, and also for two signi�ant fragments.

The results given here are based on known results about the omplexity of

deision problems for Quanti�ed Boolean Formulas (QBF). We an assume with-

out loss of generality that these Boolean formulas are in prenex and onjuntive

normal form. The alternation depth of a formula is the number of alternations

between existential and universal quanti�ers in its prenex quanti�ation.

Those known results are: (1) deiding the validity problem for a losed

quanti�ed Boolean formula ' is PSPACE-omplete; (2) deiding the validity

problem for a losed quanti�ed Boolean formula ' of alternation depth k whose

outermost quanti�er is 9 is �

P

k

-omplete (Stokmeyer 1976), where �

P

k

denotes

the k-th level of the polynomial-time hierarhy. In partiular, �

P

0

= P and

�

P

1

= NP.

We will use the following formula as a running example of a valid losed

QBF formula:

8v

1

:9v

2

:9v

3

:(v

1

_ v

2

_ v

3

) ^ (v

1

_ v

2

_ v

3

) ^ v

3

4.1 The Full Calulus and Logi

We de�ne an enoding of QBF formulas into ambient formulas. This enoding

is then used to prove Theorem 4.2, that the omplexity of model heking the

ambient logi is PSPACE-hard.

14

In our enoding, we assume that the truth values tt and � used in the

de�nition of QBF satisfation are distint ambient alulus names.

We also use a derived operator for name equality in the ambient logi �rst

de�ned by Cardelli and Gordon (2000b):

� = �

�

= �[T℄��

Then 0 j= m = n if and only if the names m and n are equal. We enode the 8

and 9 quanti�ers over truth values as follows.

8x 2 f� ; ttg:A

�

= 8x:(x = � _ x = tt)) A

9x 2 f� ; ttg:A

�

= 9x:(x = � _ x = tt) ^ A

Enoding QBF Formulas as Ambient Logi Formulas:

[[v℄℄

�

= (v = tt)

[[v℄℄

�

= (v = �)

[[`

1

_ � � � _ `

k

℄℄

�

= [[`

1

℄℄ _ � � � _ [[`

k

℄℄

[[C

1

^ � � � ^ C

k

℄℄

�

= [[C

1

℄℄ ^ � � � ^ [[C

k

℄℄

[[8v:'℄℄

�

= 8v 2 f� ; ttg:[['℄℄

[[9v:'℄℄

�

= 9v 2 f� ; ttg:[['℄℄

The following properties are proved in the appendix. The proof of Lemma 4.1

is by indution on the number of variables quanti�ed in '.

Lemma 4.1 Consider a losed quanti�ed boolean formula ' and its enoding

[['℄℄ in the ambient logi. The formula ' is valid if and only if the model heking

problem 0 j= [['℄℄ holds.

Theorem 4.2 The omplexity of model heking the full logi (inluding name

quanti�ation) is PSPACE-hard.

Proof Straightforward from Lemma 4.1 sine for the �xed ambient proess

0 solving the model heking problem 0 j= ' is PSPACE-hard. So in fat the

expression omplexity, that is, the omplexity of heking formulas against a

�xed proess, is PSPACE-hard. �

The theorem above holds for any fragment of the logi inluding boolean on-

netives, name quanti�ation, and the loation and loation adjunt modalities,

and for any fragment of the alulus inluding ambients. This might suggest

that the omplexity of the model heking problem omes from the quanti�a-

tion in the logi. Below we show that it is not the ase: the problem remains

so omplex even if we remove quanti�ation from the logi and ommuniation

or mobility from the alulus. This suggests there is little hane of �nding

interesting fragments of the alulus and the logi that would admit a faster

model heking algorithm.

15

4.2 Mobile Ambients Without I/O, No Quanti�ers

In this setion, we study the omplexity of the model heking problem for the

fragment of the ambient alulus without I/O and the fragment of the logi

without quanti�ation.

For every QBF variable, v, we assume that v, v

0

and v

00

are distint ambient

alulus names.

Enoding QBF Formulas as Ambient Proesses and Formulas:

[[v℄℄ = v[pos [0℄ j v

0

[0℄℄ j T

[[v℄℄ = v[neg [0℄ j v

0

[0℄℄ j T

[[`

1

_ � � � _ `

k

℄℄ = [[`

1

℄℄ _ � � � _ [[`

k

℄℄

[[C

1

^ � � � ^ C

k

℄℄ = (end [0℄; [[C

1

℄℄ ^ � � � ^ [[C

k

℄℄)

[[8v:'℄℄ = (v

0

[in v:n[out v

0

:out v:P ℄℄;�((n[T℄ j T)) A)) where (n[P ℄;A) = [['℄℄

[[9v:'℄℄ = (v

0

[in v:n[out v

0

:out v:P ℄℄;�((n[T℄ j T) ^ A)) where (n[P ℄;A) = [['℄℄

en(') = (v

1

[pos [0℄℄ j v

1

[neg [0℄℄ j � � � j v

n

[pos [0℄℄ j v

n

[neg [0℄℄ j P;A)

where (P;A) = [['℄℄ and ' = Q

1

v

1

: : : : :Q

n

v

n

:C

1

^ � � � ^ C

k

where eah Q

i

2 f9;8g.

Brief explanation. In the enoding en(') above, the parallel omposition

v

1

[pos [0℄℄ j : : : j v

n

[neg [0℄℄ represents the sequene v

1

; : : : v

n

of (uninstantiated)

boolean variables and P is a proess that instantiates them. An instantiated

variable v

i

is represented by a subproess v

i

[pos [0℄ j v

0

i

[0℄℄ j v

i

[neg [0℄℄ (if its

value is tt) or v

i

[pos [0℄℄ j v

i

[neg [0℄ j v

0

i

[0℄℄ (if its value is �). The proess

P �rst instantiates v

1

by hoosing one of the ambients v

1

[pos [0℄℄ or v

1

[neg [0℄℄

nondeterministially, going inside it, leaving the token v

0

1

[0℄ inside the hosen

ambient and then returning to the top level. It then iteratively instantiates the

variables v

2

; : : : ; v

n

in the same way. The formula n[T℄ j T in the ontext of the

enoding for a quanti�ed variable v

i

above (where n is v

i+1

or end for i = n)

expresses that the instantiation of v

i

has �nished but that the instantiation of n

has yet to start; thus �(n[T℄ j T : : :) and �(n[T℄ j T : : :) express, respetively,

universal and existential quanti�ations over instantiations of v

i

.

In the ase where ' is the formula de�ned previously as an example, one

would obtain en(') = (P;A), where P is the proess depited in Figure 1(a)

and where the formula A is of the form:

�((v

0

2

[T℄ j T)) �((v

0

3

[T℄ j T) ^ �((end [T℄ j T) ^ B)))

where B is the formula given by [[v

1

_ v

2

_ v

3

℄℄ ^ [[v

1

_ v

2

_ v

3

℄℄ ^ [[v

3

℄℄.

More detailed explanation. We explain this enoding with referene to the

ambient proess depited in Figure 1(a). The ambients whose names range over

v

i

desribe an interpretation for the Boolean variables v

i

whereas the ambients

16

v

1

pos [℄

j

v

1

neg [℄

j

v

2

pos [℄

j

v

2

neg [℄

j

v

3

pos [℄

j

v

3

neg [℄

j

v

0

1

in v

1

:

v

0

2

out v

0

1

:out v

1

:in v

2

:

v

0

3

out v

0

2

:out v

2

:in v

3

:

end

out v

0

3

:out v

3

:0

(a) The proess P in en(') = (P;A)

v

1

pos [℄ j v

0

1

[℄

j

v

1

neg [℄

j

v

2

pos [℄ j v

0

2

[℄

j

v

2

neg [℄

j

v

3

pos [℄

j

v

3

neg [℄ j v

0

3

[℄

j

end

0

(b) The irreduible proess for the interpretation v

1

7! tt ; v

2

7! tt ; v

3

7! �

Figure 1: Enoding for mobile ambients without I/O, no quanti�ers

named v

0

i

are the \material" to extend this interpretation. In the initial ambi-

ent, the ambients v

i

enode the empty interpretation and the material is in an

ambient named v

0

1

marking the fat that v

1

is the �rst variable to treat. The

�rst step of redution will move the ambient v

0

1

non-deterministially either in-

side v

1

[pos [℄℄ (the Boolean variable v

1

takes the value tt) or inside v

1

[neg [℄℄ (the

Boolean variable v

1

takes the value �). The next two steps of redution are

deterministi. They aim to leave a mark in one of the ambients v

1

aording to

the �rst non-deterministi hoie and to reah a situation in whih the Boolean

variable v

2

is onsidered. For instane, if the �rst hoie was to instantiate

v

1

with tt then, one would obtain a parallel omposition of v

1

[pos [℄ j v

0

1

[℄℄ and

v

1

[neg [℄℄. The ambients named v

2

, v

3

are kept unhanged and the ambient on-

taining the rest of the interpretation would be of the form v

0

2

[in v

2

:v

0

3

[Q℄℄ where

Q is the internal of v

0

3

in the initial proess. This omputation, onsisting of

one non-deterministi step followed by two deterministi ones, an be arried

on for the variables v

2

and v

3

. Then, when no more redution step is possible,

the resulting proess is a parallel omposition of the empty ambient end [℄ and,

for eah i, of v

i

[n[℄ j v

0

i

[℄℄ and v

i

[n

0

[℄℄ where n; n

0

are distint elements from

fpos ;negg. For instane, the irreduible proess given in Figure 1(b) represents

the interpretation v

1

7! tt ; v

2

7! tt ; v

3

7! � .

17

We said that the ambient proesses enode interpretations. The Boolean

formula itself is enoded in the ambient formula A. One no more redution

step is possible on the ambient proess, this latter represents an interpretation

whose domain is the set of all variables in ': this interpretation is given by the

plaes where the marks v

0

i

have been put. It is easy with an ambient formula to

test whether this interpretation renders true the quanti�er-free part of '. This

role is played by the ambient formula B whereas the remaining part of A aims

to enode the quanti�ers of '.

Let us �rst onsider the outermost quanti�er 8v

1

in ': this quanti�ation

stands for \for all possible interpretations of the variable v

1

". We have desribed

above the mehanism for the instantiation of the Boolean variable v

1

in the am-

bient proess. It onsists of �rst a non-deterministi step, then two deterministi

steps. Whatever the �rst step is, those three steps lead to a situation where

the ambient proess is of the form R j v

0

2

[R

0

℄. It should be notied that those

two proesses (one for eah possibility of the �rst step) are the only proesses

of this form reahable from the initial proess. Therefore, the statement \for

all possible interpretations of the variable v

1

" an be translated as \for all pro-

esses of the form R j v

0

2

[R

0

℄ reahable from the initial proess". This rephrased

statement an be expressed in the ambient logi as �((v

0

2

[T℄ j T)) : : :).

A dual reasoning an be applied then for 9v

2

, the following quanti�ation of

the formula '. In that ase, the statement \there exists an interpretation for

the variable v

2

" is translated into \there exists an ambient proess of the form

T j v

0

3

[T

0

℄ reahable from the urrent proess". This urrent proess is one of

the two proesses after the instantiation of the variable v

2

, that is of the form

S j v

0

3

[S

0

℄. This statement an be expressed by means of the ambient logi by

the formula �((v

0

3

[T℄ j T) ^ : : :). Finally, the quanti�ation 9v

3

is expressed by

�((end [T℄ j T) ^ : : :).

Lemma 4.3 Assume ' is a losed quanti�ed Boolean formula, and (P;A) =

en('). Then P j= A if and only if ' is valid.

Theorem 4.4 The omplexity of model heking mobile ambients without I/O

against the quanti�er-free logi is PSPACE-hard.

Proof Straightforward from the PSPACE-ompleteness of the validity for

QBF and from Lemma 4.3, taking into aount that for en(') = (P;A), both

P and A are of polynomial size with respet to '. �

4.3 Immobile Ambients With I/O, No Quanti�ers

In this setion, we study the omplexity of the model heking problem for the

fragment of the ambient alulus without ation pre�x.

We onsider �xed names end , C, and D. For any QBF variable ambient

name v

0

i

, let

Inst(v

0

i

)

�

= v

0

i

[T℄ j T Inst

+

(v

0

i

)

�

= v

0

i

[v

00

i

[T℄ j T℄ j T

18

and for the name end ,

Inst(end)

�

= end [T℄ j T Inst

+

(end)

�

= end [end

0

[T℄ j T℄ j T

Enoding QBF Formulas as Ambient Proesses and Formulas:

[[v℄℄ = v[0℄

[[v℄℄ = v[0℄

[[`

1

_ : : : _ `

k

℄℄ = D[0℄ j [[`

1

℄℄ j : : : j [[`

k

℄℄

en(C

1

^ : : : ^ C

k

) = (end [C[[[C

1

℄℄ ℄ j : : : j C[[[C

k

℄℄ ℄℄;

❏((D[0℄ j T)) (tt [0℄ j T)))

en(9v:') = (v

0

[htti j h� i j (v):(v

00

[℄ j (v):n[P ℄)℄;

T j v

0

[�((Inst(n) ^ :Inst

+

(n)) ^A)℄)

where en(') = (n[P ℄;A)

en(8v:') = (v

0

[htti j h� i j (v):(v

00

[℄ j (v):n[P ℄)℄;

T j v

0

[�((Inst(n) ^ :Inst

+

(n))) A)℄)

where en(') = (n[P ℄;A)

Brief explanation. The idea of the enoding here is quite similar to that

from the previous setion. A boolean variable v is represented here by two

ambients v[℄ and v[℄, whih after the instantiation are named tt [℄ and � [℄. We

exploit here the nondeterminism of ommuniation: the variable v reads either

the message htti or h� i; then its dual v has to read the other one. The names

v

0

i

and v

00

i

(similar to v

0

i

in the previous setion) are used for distinguishing

the moment when the variable v

i

is already instantiated but v

i+1

is not. The

formula ❏((D[0℄ j T)) (tt [0℄ j T)) requires that in the �nal state, eah ambient

representing a lause (that is, an ambient ontaining D[0℄) ontains at least one

true literal (that is, an ambient tt [0℄).

For the formula ' used in our example, one would have en(') = (P;A),

where P is depited in Figure 2(a).

More detailed explanation. The key idea of this enoding is to use (redu-

tions of) ommuniations for performing the instantiation of the quanti�er-free

part of ' with respet to some interpretation. Therefore, the quanti�er-free

formula C

1

^ : : : ^ C

k

is enoded in the ambient proess itself, inside an am-

bient named end . For instane, in Figure 2(a) for our example, the ambient

end [C[D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄℄ j C[D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄℄ j C[D[℄ j v

3

[℄℄℄ enodes the

quanti�er-free part of ': the ambient end ontains a sub-ambient alled C for

eah lause C

i

in ' and the ambient orresponding to C

i

ontains an ambient

`

j

[℄ for eah literal `

j

from C

i

.

Starting from P desribed in Figure 2(a), let us inspet the behaviour of

proesses through redutions. Two redutions an be performed on P : one

establishes a ommuniation between htti and (v

1

) and the other one between

h� i and (v

1

). One this redution step is performed the name v

1

has been

replaed by either tt or � uniformly at every position and in partiular in the

19

v

0

1

htti j h� i j

(v

1

):(v

00

1

[℄ j (v

1

)):

v

0

2

htti j h� i j

(v

2

):(v

00

2

[℄ j (v

2

)):

v

0

3

htti j h� i j

(v

3

):(v

00

3

[℄ j (v

3

)):

end

C

D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄

j

C

D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄

j

C

D[℄ j v

3

[℄

(a) The proess P in en(') = (P;A)

end

C

D[℄ j tt [℄ j � [℄ j � [℄

j

C

D[℄ j � [℄ j tt [℄ j � [℄

j

C

D[℄ j tt [℄

(b) The proess representing the instantiation of C

1

^ C

2

^ C

3

by v

1

7! tt; v

2

7!

tt; v

3

7! �

Figure 2: Enoding for immobile ambients with I/O, no quanti�ers

ambient named end . Hene, the �rst step of omputation is non-deterministi

and instantiates the literal v

1

. It has also a side-e�et: it reveals an ambient

proess v

00

1

[℄ within the ambient v

0

1

; this proess is a marker for the ontrol

of omputations. Its preise role will be explained later on. The seond step

is deterministi: for eah �rst step, only one seond step is possible. This

seond step aims to instantiate the literal v

1

aording to the instantiation of

v

1

. Indeed, if the �rst ommuniation has onsumed the output htti then for

the seond one only the output h� i remains and vie-versa. So, after the seond

step, the name v

1

is globally replaed by a Boolean value. Moreover, at this

point there are no more ations pre�xing the ambient named v

0

2

and so this

ambient an be now redued using the rules (Red Par) and (Red Amb). The

next redution steps are performed in a similar way: a non-deterministi step

follows by a deterministi one. This leads �nally to replae in the ambient end

all the names orresponding to literals by Boolean values tt and � . As an

example, in Figure 2(b), we have depited the ambient end one the redutions

orresponding to the interpretationM = v

1

7! tt ; v

2

7! tt ; v

3

7! � have been

performed.

20

Now, using an ambient formula it is not diÆult to test whether the inter-

pretation indued from the proess in Figure 2(b) is a model for C

1

^ C

2

^ C

3

:

as C

1

^ C

2

^ C

3

is in onjuntive normal form, M is a model for it if and

only if M renders at least one literal true in every lause C

i

. Aording to

the way redutions are performed and orrespond to instantiations, this is

equivalent to the laim that in the proess from Figure 2(b), every ambient

named C ontains a sub-ambient tt [℄. This an be tested with the formula

B = ❏((D[0℄ j T)) (tt [0℄ j T)), whih is exatly the formula given by

en(C

1

^ C

2

^ C

3

).

In the enoding en(') = (P;A), one part of A aims to test whether the

interpretation orresponding to the redutions is a model of '. The other part

of A is used to enode the quanti�ation of '. Let us illustrate on our example

the ideas of this enoding: for the formula ' from our example, the formula A

is equal to

T j v

0

1

[�((Inst(v

0

2

) ^ :Inst

+

(v

0

2

)))

(T j v

0

2

[�((Inst(v

0

3

) ^ :Inst

+

(v

0

3

)) ^

(T j v

0

3

[�(Inst(end) ^ :Inst

+

(end) ^ B)℄))℄))℄

where B is the result of the enoding of the quanti�er-free part of '. For the

variable v

i

, the intuitive reading of Inst(v

0

i

) is \the next variable to onsider

is v

i

", that is, the instantiation of the variable v

i�1

has been ompleted. The

reading of Inst

+

(v

0

i

) is \the variable v

i

has been partially treated", that is,

the instantiation has been performed for the positive literal v

i

. For the ambient

name end , Inst(end) refers to the ompletion of the instantiation of the variable

v

n

.

The �rst quanti�ation 8v

1

stands for \for all possible interpretations of the

variable v

1

" and the part of ' related with this quanti�ation is

T j v

0

1

[�((Inst(v

0

2

) ^ :Inst

+

(v

0

2

))) : : :)℄

This formula is model heked against the proess P given in Figure 2(a).

As P � 0 j P , the model heking problem is redued to heking the interior

of v

0

1

against the sub-formula of the form �A

1

: all proesses reahable from

the interior of v

0

1

must satisfy A

1

. Let us have a look at the form of those

reahable proesses: the interior of v

0

1

is itself reahable as well as the two

proesses orresponding to the instantiation of the literal v

1

(reahable in one

step). In those proesses v

1

has been replaed by a Boolean value but none

of them satis�es v

0

2

[T℄ j T, that is, Inst(v

0

2

). Now, the proesses reahable in

two steps or more indeed satisfy the formula Inst(v

0

2

); but the ones reahable in

exatly two steps an be distinguished from the others sine these former are the

only ones whih do not satisfy v

0

2

[v

00

2

[T℄ j T℄ j T, that is, Inst

+

(v

0

2

). Indeed, steps

beyond the seond one reveal the marker v

00

2

[℄ inside the ambient v

0

2

. We have

already mentioned the fat that the two steps of omputation orrespond exatly

to the omplete treatment of the variable v

1

whih is the intended meaning of

Inst(v

0

2

)^:Inst

+

(v

0

2

). Therefore, model heking ontinues by heking the two

proesses (the seond step of omputation being deterministi), de�ned as the

21

interior of v

0

1

in whih the literals v

1

and v

1

have been replaed by Boolean

values, against the formula

T j v

0

2

[�((Inst(v

0

3

) ^ :Inst

+

(v

0

3

)) ^ :::)℄

from the enoding of the quanti�ation 9v

2

. It stands for \there exists an

interpretation for v

2

". The proess that is heked against this formula is of the

form v

00

1

[℄ j v

0

2

[R℄. Therefore, it amounts to hek whether the proess R, whih

is the interior of v

0

2

in whih names v

1

; v

1

have been replaed with Boolean

values, is a model for the sub-formula of the form �A

2

. Equivalently, there

must exist a proess reahable from R whih satis�es A

2

. Let us inspet the

proesses reahable from R. Of ourse, R itself is reahable as well as the two

proesses reahable in one step of omputation performing the instantiation for

the literal v

2

. None of these proesses satis�es the formula v

0

3

[T℄ j T, that

is, Inst(v

0

3

). Proesses that are obtained with two steps or more from R do

satisfy Inst(v

0

3

) but only those obtained by stritly more than two steps reveal

the marker v

00

3

[℄ inside v

0

3

and thus, satisfy v

0

3

[v

00

3

[T℄ j T℄ j T, that is Inst

+

(v

0

3

).

Those omputations from R of exatly two steps orrespond to the omplete

treatment of the variable v

2

and satisfy Inst(v

0

3

) ^ :(Inst

+

(v

0

3

)). So, model

heking arries on by heking that one of these two proesses reahable from

R in two steps and de�ned as the interior of v

2

in whih the literals v

1

, v

1

, v

2

,

v

2

have been replaed by Boolean values, is a model for the remaining part of

the enoding of the formula.

Finally, the quanti�ation 9v

3

is enoded as

T j v

0

3

[�(((T j end [T℄) ^ :(T j end [end

0

[T℄ j T℄)) ^ :::)℄

and its treatment is similar to that of 9v

2

. It leads to model heking the proess

named end given in Figure 2(b) against the formula B.

Lemma 4.5 Assume ' is a losed quanti�ed Boolean formula, and (P;A) =

en('). Then P j= A if and only if ' is valid.

Theorem 4.6 The omplexity of model heking immobile ambients with I/O

against the quanti�er-free logi is PSPACE-hard.

Proof This follows from the PSPACE-ompleteness of validity for QBF, from

Lemma 4.5 taking into aount that for en(') = (P;A), both P and A are of

polynomial size with respet to '. �

We an strengthen this result by slightly modifying our enoding. Our pre-

vious enoding is based on an individual treatment for the variables in the

quanti�ation. The improved enoding will be based on the alternation of quan-

ti�ers: roughly, 9v

2

9v

3

an be grouped together by saying that \there exists an

interpretation for v

2

and v

3

". As far as the previous enoding is onerned, the

ambient formula resulting from the enoding of 9v

2

9v

3

will perform two su-

essive tests for reahability; this an be modi�ed in suh a way that only one

22

test of reahability is performed. This will imply for the new enoding that the

markers used to ontrol the model heking (namely, the ambients v

0

) will no

longer be assoiated with the variables but with the alternation of quanti�ers.

Those ambient names will range over a

i

where i is an integer. We de�ne for

those a

i

's:

Inst(a

i

)

�

= a

i

[T℄ j T Inst

+

(a

i

)

�

= a

i

[a

i

[℄ j T℄ j T

The Revised Enoding:

en(8v:') = en(8v:'; 1)

en(9v:') = en(9v:'; 1)

en(8v:'; i) = (a

i

[htti j h� i j (v):(a

i

[℄ j (v)):P;

T j a

i

[�(Inst(a

i+1

) ^ Inst

+

(a

i+1

)) A)℄)

where en

8

('; i) = (P;A)

en(9v:'; i) = (a

i

[htti j h� i j (v):(a

i

[℄ j (v)):P;

T j a

i

[�(Inst(a

i+1

) ^ Inst

+

(a

i+1

) ^ A)℄)

where en

9

('; i) = (P;A)

en

8

(9v:'; i) = en(9v:'; i+ 1)

en

8

(8v:'; i) = (htti j h� i j (v):(v):P;A) where en

8

('; i) = (P;A)

en

9

(8v:') = en(8v:'; i+ 1)

en

9

(8v:'; i) = (htti j h� i j (v):(v):P;A) where en

9

('; i) = (P;A)

en(C

1

^ : : : ^ C

k

; i) = (a

i

[C[[[C

1

℄℄ ℄ j : : : j C[[[C

k

℄℄ ℄℄;❏((D[0℄ j T)) tt [0℄ j T))

[[`

1

_ : : : _ `

k

℄℄ = D[0℄ j [[`

1

℄℄ j : : : j [[`

k

℄℄

[[v℄℄ = v[℄

[[v℄℄ = v[℄

The statement of Lemma 4.5 still holds for this new enoding. Furthermore,

in the enoding (P;A) of the Boolean formula ', the ambient logi formula A

depends only on the alternation depth and the outermost quanti�er of '; for

any two Boolean formulas '; '

0

having the same alternation depth k and the

same outermost quanti�er Q, if en(') = (P;A) and en('

0

) = (P

0

;A

0

) then

A = A

0

.

Theorem 4.7 For every integer k there exists a formula A

9

k

suh that the om-

plexity of model heking proesses against A

9

k

is �

P

k

-hard.

Proof Let A

9

k

be the formula suh that for any losed quanti�ed Boolean

formula ' of alternation depth k whose outermost quanti�er is 9, en(') =

(P

'

;A

9

k

). Due to the remark above, we know that this formula exists and

furthermore, is of size polynomial in k.

Now, by Lemma 4.5, every instane of the validity problem for a losed

quanti�ed Boolean formula ' of alternation depth k whose outermost quanti�er

23

is 9 an be redued to the model heking problem P

'

j= A

9

k

for en(') =

(P

'

;A

9

k

). Thus, sine the size of P

'

is polynomial in the size of ', the theorem

follows. �

5 Conlusion

We show in this paper that the model heking problem of the repliation-

free ambient alulus with publi names against the ambient logi without

omposition-adjunt is PSPACE-omplete. In order to prove this omplexity

bound, we have proposed a new representation for proesses, alled losures,

that prevents the exponential blow-up of the size. We use this representation

together with a new algorithm to prove the PSPACE upper bound.

We also have shown that there is little hane to �nd polynomial algorithms

for interesting subproblems: model heking remains PSPACE-hard even for

quite simple fragments of the alulus and the logi.

Possible diretions for future work inlude investigations of the model hek-

ing problem for extensions of the logi and the alulus. Reently, Cardelli and

Gordon (2001) have presented an extended version of the logi that allows rea-

soning about restrited names; it seems that there is no diÆulty in extending

our algorithm to deal with name restrition.

24

Referenes

Cardelli, L. and G. Ghelli (2001). A query language based on the ambient

logi. In Proeedings ESOP'01, Volume 2028 of Leture Notes in Computer

Siene, pp. 1{22. Springer.

Cardelli, L. and A. D. Gordon (1999a). Types for mobile ambients. In Pro-

eedings POPL'99, pp. 79{92. ACM.

Cardelli, L. and A. D. Gordon (1999b). Equational properties of mobile ambi-

ents. In Proeedings FoSSaCS'99, Volume 1578 of Leture Notes in Com-

puter Siene, pp. 212{226. Springer. An extended version appears as

Mirosoft Researh Tehnial Report MSR{TR{99{11, April 1999.

Cardelli, L. and A. D. Gordon (2000a). Mobile ambients. Theoretial Com-

puter Siene 240, 177{213.

Cardelli, L. and A. D. Gordon (2000b). Anytime, anywhere: Modal logis for

mobile ambients. In Proeedings POPL'00, pp. 365{377. ACM.

Cardelli, L. and A. Gordon (2001). Logial properties of name restrition. In

Proeedings TLCA'01. Springer.

Kupferman, O., M. Y. Vardi, and P. Wolper (2000). An automata-theoreti

approah to branhing-time model heking. Journal of the ACM 47 (2),

312{360.

Lloyd, J. (1987). Foundations of Logi Programming. Springer-Verlag.

Sangiorgi, D. (2001). Extensionality and intensionality of the ambient logis.

In Proeedings POPL'01, pp. 4{13. ACM.

Savith, W. (1970). Relationships between nondeterministi and deterministi

tape omplexities. Journal of Computer and System Sienes 4 (2), 177{

192.

Stokmeyer, L. J. (1976). The polynomial-time hierarhy. Theoretial Com-

puter Siene 3 (1), 1{22.

25

A Corretness Proofs

This appendix ontains proofs of results stated in Setion 3.

A.1 Proof of Proposition 3.1

Proposition 3.1 onerns the relationship between normal losures and stru-

tural ongruene. In this appendix we develop enough fats about losures and

strutural ongruene to prove it.

We begin with a proposition that normality is preserved by deomposition

with ambient or parallel omposition.

Proposition A.1

� h

~

P ;�i and h

~

Q;�i are normal and fn(

~

P) \ bn(

~

Q) = bn(

~

P) \ fn(

~

Q) =

bn(

~

P) \ bn(

~

Q) = ? i� h

~

P ++

~

Q;�i is normal.

� for all expressions M suh that M does not ontain names from bn(

~

P),

hfM [

~

P ℄g;�i is normal i� h

~

P ;�i is normal.

Proof For the �rst point: from right to left, it is straightforward from the

de�nition of U that if U(

~

P ++

~

Q; �) is de�ned then both U(

~

P ; �) and U(

~

Q; �)

are so. As fn(

~

P ++

~

Q) = fn(

~

P) [fn(

~

Q) and bn(

~

P ++

~

Q) = bn(

~

P) [bn(

~

Q), if

bn(

~

P ++

~

Q)\(fn(

~

P ++

~

Q)[names(�)) = ? then bn(

~

P)\(fn(

~

P)[names(�)) =

bn(

~

Q)\ (fn(

~

Q) [names(�)) = ?. If for

~

P ++

~

Q bound variables our at most

one within an input and o�sets in the sope of an input are equal to 0, then it

is so for

~

P and

~

Q. The last ondition for normality on sequential substitution

is obvious. The three other onditions follow diretly from the normality of

h

~

P ++

~

Q;�i. From left to right, the de�nition of U implies that if h

~

P ;�i and

h

~

Q;�i are de�ned then h

~

P ++

~

Q;�i is de�ned. Now, fn(

~

P ++

~

Q)\bn(

~

P ++

~

Q) =

(fn(

~

P)[fn(

~

Q))\(bn(

~

P)[bn(

~

Q)). We have fn(

~

P)\bn(

~

Q) = bn(

~

P)\fn(

~

Q) = ?

by assumption and fn(

~

P)\bn(

~

P) = fn(

~

Q)\bn(

~

Q) = ? as h

~

P ;�i and h

~

Q;�i are

normal. So, fn(

~

P ++

~

Q)\ bn(

~

P ++

~

Q) = ?. By normality of h

~

P ;�i and h

~

Q;�i,

names(�)\bn(

~

R) = ? for

~

R 2 f

~

P ;

~

Qg. So, names(�)\bn(

~

P ++

~

Q) = ?. h

~

P ;�i

and h

~

Q;�i being normal and as by assumption bn(

~

P)\ bn(

~

Q) = ?, every input

variable ours at most one within an input in

~

P ++

~

Q. The last onditions

on o�sets in the sope of an input and on sequential substitution is obvious.

For the seond point: It is easy to see that U(fM [

~

P ℄g; �) is de�ned i� U(

~

P ; �)

is so. The set of names ourring free in M is exatly the set fn(fM [0℄g). Now,

as bn(fM [

~

P ℄g) = bn(

~

P) and fn(fM [

~

P ℄g) = fn(

~

P) [fn(fM [0℄g), fn(fM [

~

P ℄g) \

bn(fM [

~

P ℄g) is empty i� fn(

~

P) \ bn(

~

P) is empty (taking into aount the

assumption that bn(

~

P) \ fn(fM [0℄g) = ?) and bn(fM [

~

P ℄g) \ names(�) =

bn(

~

P)\ names(�) = ?. Finally, the last three statements are obvious to hek.

�

In the proof of Proposition 3.1 we will have to show that some proesses

are equivalent if and only if some onditions hold. In partiular, we will have

to show that if these onditions do not hold, the proesses are not equivalent.

26

Although it is relatively easy to prove equivalene of proesses, it is not so

easy to prove their inequivalene (whih requires showing that no equivalene

proof exists). We use Theorem A.2 and Propositions A.3{A.5 below as tools for

proving inequivalenes needed in Proposition 3.1.

Let us onsider � the signature used to build proesses from the ambient

alulus with publi names. The signature � ontains an in�nite number of

onstants used as names. It ontains moreover 0 and � as onstant symbols, the

apabilities in; out ; open and hi as unary funtion symbols. Finally, the binary

funtion symbols j; [℄; :; () belong to �.

Let us denote T

�

the set of all terms over �. Any ambient proess from

the ambient alulus with publi names an be written as a term over this

voabulary. And of ourse, some terms from T

�

are not ambient proess, as for

instane, h0 j 0i.

The set T

�

indues a anonial algebra that we denote T

�

: the algebra

T

�

has for arrier the set T

�

and eah funtion symbols from � is interpreted

syntatially in T

�

.

The strutural ongruene relation � de�ned in Setion 2.1 over pairs of

ambient proesses an be viewed as a relation de�ned over T

�

�T

�

. One should

notie that the set of axioms de�ning � is a set of de�nite Horn lauses, and

thus, (T

�

;�) is a Herbrand model for this set of axioms. Moreover, as we

onsider the least relation satisfying these axioms, the struture (T

�

;�) is the

least Herbrand model for this set of axioms. This implies that two proesses P;Q

are struturally equivalent if and only if P � Q belongs to the least Herbrand

model of these axioms.

Note that if � is not assumed to be the least relation satisfying the axioms

but for instane the greatest one, then one would have P � Q whatever P;Q

are.

The following theorem is a diret onsequene of two well-known fats (Lloyd

1987), that (1) every model of a set of Horn lauses an be translated to a

Herbrand model, and (2) that every Herbrandmodel ontains the least Herbrand

model. Essentially, the theorem says that anything that does not belong to some

model annot belong to the least model.

Theorem A.2 Let S be a set of de�nite Horn lauses de�ning a relation symbol

�. Then for all algebras A, for all strutures R de�ned over A and giving an

interpretation for � suh that R j= S,

R j= s � t if (T

�

;�) j= s � t

That is, if there exists a struture R suh that R j= S and R j= s 6� t, then

(T

�

;�) j= s 6� t.

Let us onsider now the algebra

^

A de�ned over �; the arrier D

^

A

is the least

set suh that

� the onstants from � exept � and 0 belong to D

^

A

,

� the empty string and the empty multiset belong to D

^

A

,

27

� for any d

1

; d

2

2 D

^

A

, the items in d

1

, out d

1

, open d

1

, hd

1

i, (d

1

)d

2

and

d

1

[d

2

℄ belong to D

^

A

,

� for any d

1

; : : : ; d

n

2 D

^

A

, the string d

1

: : : d

n

and the multiset fd

1

; : : : ; d

n

g

belong to D

^

A

.

The funtion symbols from � are interpreted in

^

A as follows.

� The onstants from � exept � and 0 are interpreted syntatially.

� The onstants � and 0 are interpreted respetively as the empty string and

as the empty multiset.

� The funtion symbols in , out , open , hi, () and [℄ are interpreted syntati-

ally.

� For the funtion symbol :: d

1

:d

2

is the string obtained by onatenation of

d

1

and d

2

if both d

1

and d

2

are strings. Otherwise, elements from fd

1

; d

2

g

that are not strings are transformed into a string of length one and then,

the onatenation is performed.

� For the funtion symbol j: d

1

j d

2

is the multiset obtained by union of d

1

and d

2

if both d

1

and d

2

are multisets. Otherwise, elements from fd

1

; d

2

g

that are not multisets are transformed into a singleton multiset and then,

the union is performed.

The algebra

^

A is extended into a struture

^

R in whih � is interpreted as

the binary relation $ over D

^

A

� D

^

A

. The relation $ is de�ned reursively as

follows: d $ d

0

i�

� d and d

0

are both the empty string.

� d and d

0

are both omposed strings suh that d

h

and d

0

h

, the �rst two

elements of d; d

0

satisfy d

h

$ d

0

h

and d

t

and d

0

t

the two strings obtained by

removing the �rst element in respetively d and d

0

satisfy d

t

$ d

0

t

.

� d and d

0

are both the empty multiset.

� d and d

0

are both non-empty multiset and there exists d

e

and d

0

e

respe-

tively in d and d

0

suh that d

e

$ d

0

e

and dr d

e

$ d

0

r d

0

e

.

� d and d

0

are respetively of the form hd

1

i and hd

0

1

i and d

1

$ d

0

1

.

� d and d

0

are respetively of the form ap d

1

and ap d

0

1

and d

1

$ d

0

1

where

ap belongs to fin; out ; openg.

� d and d

0

are respetively of the form d

1

[d

2

℄ and d

0

1

[d

0

2

℄ and d

1

$ d

0

1

, d

2

$ d

0

2

.

� d and d

0

are respetively of the form (d

1

)d

2

and (d

0

1

)d

0

2

and d

1

$ d

0

1

,

d

2

$ d

0

2

.

Proposition A.3

^

R is a model of the axioms for �.

28

Proof By ase inspetion. �

Proposition A.4 For any proess P , for any M , for any name n, for any

ap 2 fin; out ; openg,

� for any proess Q, we have 0 6�M [P ℄, 0 6� (n):P , 0 6� hMi, 0 6� apM:P

and 0 6� P j Q if P 6� 0.

� if P 6� 0, then for any proesses Q;P

0

suh that Q 6� 0, we have P j Q 6�

M [P

0

℄, P j Q 6� (n):P

0

, P j Q 6� hMi, P j Q 6� ap M:P

0

.

� for any proesses Q;P

0

and for any M

0

, we have M [P ℄ 6� (n):Q, M [P ℄ 6�

hM

0

i, M [P ℄ 6� ap M

0

:P

0

and M [P ℄ 6� M

0

[P

0

℄ if M;M

0

are two di�erent

sequenes or if P 6� P

0

.

� for any M

0

, we have hMi 6� ap M

0

:P , hMi 6� (n):P and hMi 6� hM

0

i if

M;M

0

are two di�erent sequenes.

� for any proess Q, for any names n;m, we have (n):P 6� ap M:Q and

(n):P 6� (m):Q if n;m are two di�erent names or if P 6� Q.

� for any proess Q, for anyM

0

and for any apability ap

0

2 fin; out ; openg,

we have apM:P 6� ap

0

M

0

:Q if either ap 6= ap

0

or M;M

0

are two dif-

ferent sequenes or if Q 6� Q.

Proof It is easy to hek that all the statements above holds for

^

R. Using

Proposition A.3 with Theorem A.2, those statements hold for ambient proesses

and �. �

Proposition A.5 For any sequential substitution �, for any prime � suh that

hf�g;�i is normal, U(�; �) 6� 0.

Proof Straightforward from the de�nition of U and Proposition A.3 �

Restatement of Proposition 3.1 Let h

Q

i2I

�

i

;�i be a normal losure.

Then

(1) U(

Q

i2I

�

i

; �) � 0 i� I = ?.

(2) U(

Q

i2I

�

i

; �) � M [Q℄ i� 9M

0

;

~

Q : I is a singleton fig, �

i

= M

0

[

~

Q℄,

M

0

� =M , U(

~

Q; �) � Q.

(3) U(

Q

i2I

�

i

; �) � P

0

j P

00

i� 9J;K : J [K = I, J \ K = ?, P

0

�

U(

Q

j2J

�

j

; �), P

00

� U(

Q

k2K

�

k

; �).

(4) U(

Q

i2I

�

i

; �) � hMi i� 9M

0

: I is a singleton fig, �

i

= hM

0

i and

M

0

� =M .

(5) U(

Q

i2I

�

i

; �) � (n):P i� 9

~

P : I is a singleton fig, �

i

= (n):

~

P and

U(

~

P ; �) � P .

29

Proof For the �rst point, if I = ? then

~

P = fg; so, by de�nition for U ,

U(

~

P ; �) � 0. Now for the other diretion, the losure h

~

P ;�i being normal, if I

is not empty, then by Proposition A.4 and the de�nition for U , U(

Q

2I

�; �) 6� 0.

For the seond point, for the diretion from right to left: U(

Q

i2I

�

i

; �) �

U(f�

i

g; �) � U(fM

0

[

~

Q℄g; �) sine I is a singleton fig and �

i

=M

0

[

~

Q℄. Now, by

de�nition for U , U(

Q

i2I

�

i

; �) � M

0

�[U(

~

Q; �)℄ � M [U(

~

Q; �)℄ sine M

0

� = M .

So, U(

Q

i2I

�

i

; �) � M [Q℄. From left to right: let us assume that I is not a

singleton. For I = ?, aording to the �rst point, U(

Q

i2I

�

i

; �) � 0 and thus,

by Proposition A.4, U(

Q

i2I

�

i

; �) 6� M [Q℄ for any M;Q. Now, the losure

h

~

P ;�i being normal, if I ontains at least two elements then by de�nition of

U , U(

~

P ; �) � R

0

j R

00

for some R;R

0

6� 0 by Propositions A.5 and A.4 .

Thus, still by Proposition A.4, U(

~

P ; �) 6� M [Q℄ whatever M , Q are. So, I is

a singleton. Now, if �

i

6= M

0

[

~

Q℄ or M

0

�;M are two di�erent sequenes, one

again from the de�nition of U and Proposition A.4, U(

~

P ; �) 6� M [Q℄. Finally,

sine U(

Q

i2I

�

i

; �) =M [U(

~

Q; �)℄, we have U(

~

Q; �) � Q.

For the third point, from right to left: we have P

0

j P

00

� U(

Q

j2J

�

j

; �) j

U(

Q

k2K

�

k

; �). By de�nition of U , sine J;K are disjoint and J [K = I ,

P

0

j P

00

� U(

Q

i2I

�

i

; �). From left to right: by de�nition, U(

Q

i2I

�

i

; �) =

U(�

1

; �) j : : : j U(�

k

; �) where I is assumed to be f1; : : : ; kg and the �

i

's are

primes. Sine U(

Q

i2I

�

i

; �) = P

0

j P

00

, there must exist I; J two disjoint sets of

indies suh that I [J = 1::k, P

0

� U(

Q

i2I

�

i

; �) and P

00

� U(

Q

j2J

�

j

; �).

For the fourth point, from right to left: from the de�nition of U , we have

U(

Q

i2I

�

i

; �) = U(�

i

; �) = hM

0

�i. So, using the hypothesis, U(

Q

i2I

�

i

; �) �

hMi. From left to right: similar to the seond point.

For the �fth point, from right to left: from the de�nition of U , we have

U(

Q

i2I

�

i

; �) = U(�

i

; �) = (n):U(

~

P ; �). Using the hypothesis, U(

Q

i2I

�

i

; �) �

(n):P . From left to right: similar to the seond point. �

A.2 Properties of the Auxiliary Funtions

Here, we state and prove orretness properties needed in subsequent setions

of the auxiliary funtions nam , len , fst , and split .

First, the funtion nam is orret in the following sense.

Proposition A.6 nam(M;�) = n i� M� = n.

Proof Straightforward by indution over the length of the sequential substi-

tution �. �

Seond, the funtion len has the following property.

Proposition A.7 len(M;�) = l i� M� = N

1

: : : : :N

l

with N

i

being either a

name or of the form ap N

0

with ap 2 fin; out ; openg.

Proof The proof goes by indution on the length of the sequential substitu-

tion �.

30

For � being the empty sequene �: M� = M = N

1

: : : : :N

l

. By de�nition,

len(N

1

: : : : :N

l

; �) =

P

l

i=1

len(N

i

; �). Sine eah N

i

is either a name n or of the

form in N

0

, out N

0

or open N

0

, we have len(N

i

; �) = 1. This is equivalent to

len(N

1

: : : : :N

l

; �) = l.

For � being the sequene fx M

0

g�

0

of length at least 1:

let M = N

0

1

: : : : :N

0

k

. By indution over k:

- k = 0: in this ase, M = � and Mfx M

0

g� = �. So, l = 0 and by de�nition

len(M;�) = 0.

- k = 1: in this ase M = N

0

1

and we have three ases

� N

0

1

is of the form ap N

0

for some ap 2 fin ; out ; openg: in this ase,

Mfx M

0

g� is of the form apN

00

and by de�nition, len(M;�fx Mg) =

1.

� N

0

1

is a name di�erent from x: in this ase, Mfx M

0

g� = M� and

len(M; fx M

0

g�) = len(M;�). Using the indution hypothesis, M� =

N

00

1

: : : : :N

00

l

i� len(M;�) = l, therefore Mfx M

0

g� = N

00

1

: : : : :N

00

l

i�

len(M; fx M

0

g�) = l.

� N

0

1

= x: in this ase, Mfx M

0

g� = M

0

� and len(M; fx M

0

g�) =

len(M

0

; �). By indution hypothesis M

0

� = N

00

1

: : : : :N

00

l

i� len(M

0

; �) =

l, so Mfx M

0

g� = N

00

1

: : : : :N

00

l

i� len(M; fx M

0

g�) = l.

- k > 1: using the indution hypothesis, len(N

0

1

: : : : :N

0

k�1

; fx M

0

g�) = l

0

i�

N

0

1

fx M

0

g�: : : : :N

0

k�1

fx M

0

g� = N

00

1

: : : : :N

00

l

0

and for the expression N

k

,

len(N

k

; fx M

0

g�) = l

00

i� N

0

k

fx M

0

g� = N

00

l

0

+1

: : : : :N

00

l

0

+l

00

. By de�ni-

tion, len(M; fx M

0

g�) is the sum of len(N

0

1

: : : : :N

0

k�1

; fx M

0

g�) and of

len(N

0

k

; fx M

0

g�). So, we an onlude that Mfx M

0

g� = N

00

1

: : : : :N

00

l

0

+l

00

i� len(M; fx M

0

g�) = l

0

+ l

00

. �

Third, we state the orretness of fst in Proposition A.9. To prove it, we

need the following lemma.

Lemma A.8 Let h

~

P ; fx Ng�i be a normal losure. Then h

~

P fx Ng;�i is

normal and U(

~

P ; fx Ng�) � U(

~

P fx Ng; �).

Proof For the normality of h

~

Pfx Ng;�i: we an show that U(

~

Pfx Ng; �)

is de�ned by indution over the struture of proesses and primes. The only non-

trivial ase is for

~

P = M(o):

~

P

0

: then,

~

Pfx Ng = Mfx Ng(o):

~

P

0

fx Ng.

Sine U(

~

P ; fx Ng�) by assumption and U(

~

P

0

fx Ng; �) by indution hypoth-

esis are de�ned and (Mfx Ng)� = M(fx Ng�), U(

~

Pfx Ng; �) is de�ned.

For the seond statement, sine h

~

P ; fx Ng�i is normal, x and names from

N are not bound in

~

P , so bn(

~

Pfx Ng) = bn(

~

P) and fn(

~

Pfx Ng) on-

tains fn(

~

P) and some possibly other names that do not belong to bn(

~

P). So,

fn(

~

Pfx Ng) \ bn(

~

Pfx Ng) = ?. Moreover, as the bound names from

~

P do

not our in fx Ng� and bn(

~

Pfx Ng) = bn(

~

P), bn(

~

Pfx Ng)\names(�) =

?. Sine x is not bound in

~

P , ourrenes of bound variables in

~

P are not

31

a�eted by the substitution fx Ng. The requirement on o�sets is trivially

preserved and �nally, as fx Ng� is ayli, � is so.

We show that U(

~

P ; fx Ng�) � U(

~

P fx Ng; �) by indution over the stru-

tures of proesses and primes taking into aount that x in not a bound variable

in

~

P . �

Proposition A.9 Let N be a apability of the form inn, out n or openn. Then

for all normal losures h

~

Q;�i, there exists Q suh that U(M(o):

~

Q; �) � N:Q i�

fst(M; o; �) = N .

Proof Let us assume that M = N

1

: : : : N

l

and that N = ap n where ap

ranges over in; out ; open . The proof goes by indution over the o�set o.

Case where o = 0: we have fst(M; 0; �) = ap n. We follow by indution

over the length of the sequential substitution �.

- ase where the length of � is 0: � = � and fst(M; 0; �) = apn. By de�nition of

fst , this is equivalent to fst(N

1

; 0; �) = apn and toN

1

= apn. Furthermore, as

U(M(0):

~

Q; �) = N

1

: : : : :N

l

:U(

~

Q), this is equivalent to U(M(0):

~

Q; �) � ap n:Q

for some Q.

- ase where � is of the form fx M

0

g�

0

and the proposition holds for �

0

: by

de�nition of fst , fst(M; 0; �) = fst(N

1

; 0; �) = ap n. Now, aording to the

value of N

1

:

� N

1

is of the form ap L: so, nam(L; �) = n whih is equivalent due to

Proposition A.6, to L� = n. As U(M(0):

~

Q; �) = N

1

�: : : : :N

l

�:U(

~

Q; �),

U(M(0):

~

Q; �) = ap n:N

2

� : : : :N

l

�:U(

~

Q; �). Therefore, this is equivalent

to that U(M(0):

~

Q; �) � ap n:Q for some Q.

� N

1

is a name m: for eah of the two ases in the de�nition of fst .

Case where m = x: we have fst(N

1

; 0; �) = fst(m; 0; fx M

0

g�

0

) =

fst(M

0

; 0; �

0

) = apn. By indution hypothesis, it is equivalent to that for

any

~

Q, U(M

0

(0):

~

Q; �

0

) � ap n:Q for some Q. In partiular for some P ,

ap n:P � U(M

0

(0):N

2

fx M

0

g: : : : :N

l

fx M

0

g(0):

~

Pfx N

0

g; �

0

), that

is ap n:P �M

0

�

0

:N

2

fx M

0

g�

0

: : : : :N

l

fx M

0

g�

0

:U(

~

Pfx N

0

g; �

0

). So

ap n:P � mfx M

0

g�

0

:N

2

�: : : : :N

l

�:U(

~

P ; fx N

0

g�

0

) by Lemma A.8.

And thus, by de�nition of U , this is equivalent to that for some P ,

ap n:P � U(M(0):

~

P ; �).

Case where m 6= x: in this ase, fst(M; 0; �) = fst(m; 0; �

0

) = ap n. By

indution hypothesis, this is equivalent to that for any

~

Q, U(m(0):

~

Q; �

0

) �

ap n:Q for some Q. The rest of the proof is similar to the previous ase,

using the fat that m�

0

= mfx M

0

g�

0

sine m 6= x.

Case where the proposition holds for any o

0

< o: we have fst(M; o; �) = apn.

By indution over the length of the sequential substitution �.

- ase where the length of � is 0: � = � and fst(M; o; �) = ap n. Sine

len(N

1

: : : : :N

o

; �) = o, ap n = fst(N

o+1

: : : : :N

l

; 0; �). Using the base ase,

32

this latter is equivalent to that for any

~

P , U(N

o+1

: : : : :N

l

(0):

~

P ; �) � ap n:P

for some P . Now, this is equivalent to ap n:P � N

o+1

: : : : :N

l

:U(

~

P ; �) by de�-

nition of U . Finally, as M� = N

1

: : : : :N

l

, by de�nition of U , it is equivalent to

that ap n:P � U(M(o):

~

P ; �) for some P .

- ase where � is of the form fx M

0

g�

0

and the proposition holds for �

0

:

sine fst(M; o; �) is de�ned, o < len(M;�). Let i be the unique integer

suh that len(N

1

: : : : :N

i�1

; �) � o and len(N

1

: : : : :N

i

; �) > o and p be o �

len(N

1

: : : : :N

i�1

; �). Then we have ap n = fst(M; o; �) = fst(N

i

: : : : :N

l

; p; �).

Now, aording to the value of N

i

:

� N

i

is of the form ap L: so, nam(L; �) = n whih is equivalent due

to Proposition A.6, to L� = n. Furthermore, sine len(N

i

; �) = 1,

we have o = len(N

1

: : : : :N

i�1

; �) and thus, p = 0. Hene, ap n =

fst(N

i

: : : : :N

l

; 0; �). Aording to the base ase, this is equivalent to that

for any

~

P , U(N

i

: : : : :N

l

(0):

~

P ; �) � ap n:P for some P . Let M� be

N

0

1

: : : : :N

0

k

. So by de�nition of U , U(M(o):

~

P ; �) = N

0

o+1

: : : : :N

0

k

:U(

~

P ; �).

Now, as o = len(N

1

: : : : :N

i�1

; �), N

i

�: : : : :N

l

� = N

0

o+1

: : : : :N

0

k

. Hene,

U(M(o):

~

P ; �) = N

i

�: : : : :N

l

�:U(

~

P ; �). Equivalently, U(M(o):

~

P ; �) =

U(N

i

: : : : :N

l

(0):

~

P ; �) and so, U(M(o):

~

P ; �) � ap n:P for some P .

� N

i

is a name m: in this ase, we have len(N

i

; �) > p. Hene, by de�nition

of fst , ap n = fst(M; o; �) = fst(N

i

; p; fx M

0

g�

0

). For eah of the two

ases in the de�nition of fst :

Case where m = x: we have ap n = fst(M

0

; p; �

0

). By indution hy-

pothesis, this is equivalent to that for any

~

Q, U(M

0

(p):

~

Q; �

0

) � ap n:Q

for some Q. As a partiular ase, this latter holds for Q = P and for

~

Q = N

i+1

fx M

0

g: : : : :N

l

fx M

0

g(0):

~

Pfx M

0

g. Now, from the de�-

nition of U and using that M

0

= N

i

fx M

0

g, this is equivalent to that

U(N

i

fx M

0

g: : : : :N

l

fx M

0

g(p):

~

Pfx M

0

g; �

0

) = ap n:P for some P .

Let N

0

1

: : : : :N

0

k

be N

i

�. Then, still by de�nition of U , it is equivalent

to that N

0

p+1

: : : : :N

0

k

:N

i+1

�: : : : :N

l

�:U(Pfx M

0

g; �

0

) = ap n:P . By

Lemma A.8, it is equivalent to N

0

p+1

: : : : :N

0

k

:N

i+1

�: : : : :N

l

�:U(P; �) =

ap n:P . One again, by de�nition of U , we have U(N

i

: : : : :N

l

(p):

~

P ; �) =

ap n:P . Let p

0

be len(N

1

: : : : :N

i�1

; �). By de�nition of U , we have

U(N

1

: : : : N

i�1

(p

0

):N

i

: : : : :N

l

(p):

~

P ; �) = ap n:P . By de�nition of U ,

U(N

1

: : : : N

i�1

:N

i

: : : : :N

l

(p+ p

0

):

~

P ; �) = ap n:P . Finally, as p+ p

0

= o,

this latter is equivalent to that U(M(o):

~

P ; �) = ap n:P for some P .

Case where m 6= x: by de�nition of fst , ap n = fst(m; p; fx M

0

g�

0

)=

fst(m; p; �

0

). By indution hypothesis, this is equivalent to that for all

~

Q,

there exists

~

Q suh that U(m(p):

~

Q; �) � ap n:

~

Q. The rest of the proof

is similar to the previous ase, using the fat that m�

0

= mfx M

0

g�

0

sine m 6= x. �

Fourth, we prove that split is orret in the following sense.

33

Proposition A.10 Let h

Q

i2I

�

i

;�i be a normal losure, and let L be of the

form in n, out n or open n. Then U(

Q

i2I

�

i

; �) � L:P i� 9L

0

; o;

~

P ;

~

P

0

: I is a

singleton fig, �

i

= L

0

(o):

~

P

0

, split(�

i

; �) = (L;

~

P) and U(

~

P ; �) � P .

Proof From right to left: we have U(

Q

i2I

�

i

; �) = U(�

i

; �), �

i

= L

0

(o):

~

P

0

,

split(�

i

; �) = (L;

~

P). By Proposition A.9, U(�

i

; �) � L:P for some P . Moreover,

for L

0

� being of the form L

0

1

: : : : :L

0

l

, U(�

i

; �) = L

0

o+1

: : : : :L

0

l

:U(

~

P ; �) and L

0

o+1

=

L. Note that U(�

i

; �) being de�ned, we have o < len(L

0

; �) = l. Now, by the

de�nition of split , aording to the values of o and len(L

0

; �):

- len(L

0

; �) > o + 1: in this ase,

~

P = fL

0

(o+ 1):

~

P

0

g. So, by de�nition of

U , U(fL

0

(o+ 1):

~

P

0

g; �) = L

0

o+2

: : : : :L

0

l

:U(

~

P

0

; �) and thus, U(

Q

i2I

�

i

; �) �

L

0

o+1

:U(fL

0

(o+ 1):

~

P

0

g; �) � L:P for P � U(fL

0

(o+ 1):

~

P

0

g; �) � U(

~

P ; �).

- len(L

0

; �) = o + 1: in this ase,

~

P =

~

P

0

. Therefore, U(fL

0

(o+ 1):

~

P

0

g; �) =

L

0

l

:U(

~

P

0

; �) = L

0

o+1

:U(

~

P

0

; �) = L:U(

~

P

0

; �). Thus, U(

Q

i2I

�

i

; �) � L:P for

P � U(

~

P

0

; �) � U(

~

P ; �).

From left to right: let us assume that U(

Q

i2I

�

i

; �) � L:P . Using Proposi-

tion A.4, the set I has to be a singleton and �

i

has to be of the form L

0

(o):

~

P

0

.

Now, by Proposition A.9, we know that fst(L

0

; o; �) = L. Thus, it is suÆient to

prove that P � U(

~

P ; �) for split(�

i

; �) = (L;

~

P). From the de�nitions of U and

split and from Proposition A.4, it is straightforward to see that P 6� U(

~

P ; �)

implies U(

Q

i2I

�

i

; �) 6� L:P . �

A.3 Proof of Proposition 3.2

Using Lemma A.11 below, we show Proposition 3.2(1), that #

�

, the reexive and

transitive losure of the subloation relation #, preserves normality of losures.

Lemma A.11 If h

~

P ;�i is normal, then for any h

~

P

0

;�i suh that h

~

P ;�i #

h

~

P

0

;�i, the losure h

~

P

0

;�i is normal.

Proof From the de�nition of #, we have

~

P =

~

Q ++ fM [

~

P

0

℄g for some

~

Q, M .

Thus, by the �rst point of Proposition A.1, the losure hfM [

~

P

0

℄g;�i is normal.

Now, the names fromM our freely in fM [

~

P

0

℄g. So, hfM [

~

P

0

℄g;�i being normal,

none of the names from M is in bn(fM [

~

P

0

℄g) and thus, in bn(

~

P

0

). Therefore,

by the seond point of Proposition A.1, h

~

P

0

;�i is normal. �

Restatement of Proposition 3.2(1) If h

~

P ;�i is normal and h

~

P ;�i #

�

h

~

P

0

;�i then h

~

P

0

;�i is normal.

Proof A simple indution using Lemma A.11. �

Using Lemmas A.12 and A.13 below, we show Proposition 3.2(2), that !

�

,

the reexive and transitive losure of the redution relation !, preserves nor-

mality of losures.

34

Lemma A.12 If hf�g;�i is normal and split(�; �) = (N;

~

S) then h

~

S;�i is

normal.

Proof Sine split(�; �) = (N;

~

S), � = M(o):

~

S

0

for some expression M and

some annotated proess

~

S

0

. Furthermore, U(f�g; �) being de�ned, U(

~

S

0

; �) is

de�ned. Now, aording to the value of

~

S: if

~

S = M(o + 1):

~

S

0

then, from the

de�nition of split , o + 1 < len(M;�). So, from the de�nition of U , U(

~

S

0

; �)

being de�ned, U(M(o+ 1):

~

S

0

; �)= U(

~

S; �) is de�ned. If

~

S =

~

S

0

then U(

~

S; �) is

de�ned.

Let us �rst notie that bn(f�g) = bn(fM(o+ 1):

~

S

0

g) = bn(

~

S

0

) and that

fn(f�g) = fn(fM(o+ 1):

~

S

0

g) � fn(

~

S

0

). Therefore, sine by normality bn(f�g)\

(fn(f�g) [names(�)) = ?, we have bn(

~

S) \ (fn(

~

S) [names(�) = ?.

The last three statements are obvious to hek. �

Lemma A.13 If h

~

P ;�i is normal, then for any h

~

P

0

;�i suh that h

~

P ;�i !

h

~

P

0

;�i, the losure h

~

P

0

;�i is normal, and moreover

� either �

0

= �, bn(

~

P) = bn(

~

P

0

) and fn(

~

P

0

) � fn(

~

P),

� or for some x;M , �

0

= fx Mg�, bn(

~

P) = bn(

~

P

0

) [fxg and fn(

~

P

0

) �

fn(

~

P) [fxg.

Proof The proof goes by indution over the struture of the ontext under

whih the redution takes plae.

If the ontext is empty, then the applied redution orresponds to one of

the rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (Trans

In), (Trans Out) and (Trans Open) respetively, hfN [

~

Q ++ f�g℄;M [

~

R℄g;�i,

hfM [fN [

~

Q ++ �℄g ++

~

R℄g;�i and hfM [

~

P ℄; �g;�i are normal by assumption.

Conerning the seond laim of the lemma: obviously, �

0

= �, bn(

~

P) =

bn(

~

P

0

). For the rules (Trans In) and (Trans Out), fn(

~

P) = fn(

~

P

0

) and for

(Trans Open) fn(

~

P

0

) � fn(

~

P) (the exeution of open may let an ambient name

disappeared).

Now for the �rst laim, by using Proposition A.1, h�;�i is normal. Then,

from Lemma A.12 together with the transition rules on losures, h

~

P ;�i is normal

(where split(�; �) = (N;

~

P) and N being respetively inm, out m and open m).

Finally, using the fat that bn(f�g) = bn(

~

P) and that fn(f�g) � fn(

~

P) and by

applying one more Proposition A.1, the losures hfM [fN [

~

Q ++ �℄g ++

~

R℄g;�i,

hfN [

~

Q ++ f�g℄;M [

~

R℄g;�i and h

~

P ++

~

Q;�i are normal.

For (Trans I/O), hfhMi; (x):

~

Pg;�i is normal by assumption. Let us start

with the seond laim of the lemma. We have �

0

= fx Mg�. Due to the

assumption of normality, x ours at most one within an input in

~

P and

bound and free names are disjoint in

~

P . So, bn(fhMi; (x):

~

P g) = bn(

~

P) [fxg

and fn(

~

P) � fn(fhMi; (x):

~

P g) [fxg. Now, for the �rst laim, let us �rst

prove that U(norm(

~

P ; fx Mg�); fx Mg�) is de�ned by indution over the

struture of

~

P : this is obvious for

~

P being the empty multiset or the single-

ton fhM

0

ig. For the indution step, this is also straightforward for

~

P be-

ing a multiset of primes or a singleton f(x

0

):

~

Qg or fM

0

[

~

Q℄g. Now, for

~

P =

35

fM

0

(o):

~

Qg. By hypothesis, U(M

0

(o):

~

Q; �) is de�ned. So, o < len(M

0

; �). If

len(M

0

; fx Mg�) = 0, then norm(

~

P ; fx Mg�) = norm(

~

Q; fx Mg�) and so

U(norm(

~

P ; fx Mg�); fx Mg�) is de�ned by indution hypothesis. Other-

wise, len(M

0

; �) � len(M

0

; fx Mg�). So U(norm(

~

P ; fx Mg�); fx Mg�)=

U(M

0

(o):norm(

~

Q; fx Mg�); fx Mg�) is de�ned. Sine every variable ours

at most one within an input in the annotated proess of a normal losure,

bn(

~

P) = bn(f(x):

~

P ; hMig) r fxg; Moreover, sine fn(

~

P) � fn(fhMi; (x):

~

Pg) [

fxg, bn(fhMi; (x):

~

P g) \ fn(fhMi; (x):

~

P g) = ?. Let us show that names from

bn(

~

P) do not our in �

0

= fx Mg�. As bn(

~

P) � bn(fhMi; (x):

~

Pg), beause

of the hypothesis of normality, names from bn(

~

P) do not our in �. Moreover,

we know that x 62 bn(

~

P) and names ourring inM are free in fhMi; (x):

~

Pg and

so, in

~

P . It is straightforward that the property of the uniqueness of variable

within an input and the fat that o�sets are equal to 0 in the sope of an input

are preserved. Finally, sine hfhMi; (x):

~

P g;�i is normal, � is ayli and as x

is bound, x does not our in �; so the last point holds for h

~

P ; fx Mg�i.

Now, we investigate the ase where the ontext of redution is non-empty,

that is the rule used for redution is either (Trans Par) or (Trans Amb). We show

in this ase that the seond laim of the lemma holds and then that normality

is preserved.

For (Trans Amb): we assume the losure hM [

~

P ℄;�i to be normal. For any

~

S,

we have bn(M [

~

S℄) = bn(

~

S), fn(M [

~

S℄) = fn(

~

S)[fn(M [0℄). Let us �rst onsider

the ase where � = �

0

: by indution hypothesis bn(

~

P) = bn(

~

P

0

), fn(

~

P

0

) �

fn(

~

P). So, bn(M [

~

P ℄) = bn(M [

~

P

0

℄) and fn(M [

~

P

0

℄) � fn(M [

~

P ℄). Now, for the

ase where �

0

= fx Mg�: By indution hypothesis, bn(

~

P) = bn(

~

P

0

) [fxg,

fn(

~

P

0

) = fn(

~

P) [fxg. So, bn(M [

~

P ℄) = bn(M [

~

P

0

℄) [fxg and fn(M [

~

P

0

℄) =

fn(M [

~

P ℄) [fxg.

Let us show now that hM [

~

P

0

℄;�

0

i is normal: sine hM [

~

P ℄;�i is normal, by

Proposition A.1, h

~

P ;�i is normal. Then, sine h

~

P ;�i ! h

~

P

0

;�

0

i, by indution

hypothesis, h

~

P

0

;�

0

i is normal. So, as bn(

~

P

0

) � bn(

~

P), by Proposition A.1,

hM [

~

P

0

℄;�

0

i is normal.

For (Trans Par): we assume the losure h

~

P ++

~

Q;�i to be normal. For

any

~

S;

~

S

0

, we have bn(

~

S ++

~

S

0

) = bn(

~

S) [bn(

~

S

0

) and fn(

~

S ++

~

S

0

) = fn(

~

S) [

fn(

~

S

0

). Let us �rst onsider the ase where � = �

0

: as by indution hypothesis

bn(

~

P) = bn(

~

P

0

) and fn(

~

P

0

) � fn(

~

P), we have bn(

~

P ++

~

Q) = bn(

~

P

0

++

~

Q) and

fn(

~

P

0

++

~

Q) � fn(

~

P ++

~

Q). Now, for the ase where �

0

= fx Mg�: as by

indution hypothesis bn(

~

P) = bn(

~

P

0

) [fxg and fn(

~

P

0

) � fn(

~

P) [fxg, we have

bn(

~

P ++

~

Q) = bn(

~

P

0

++

~

Q) [fxg and fn(

~

P

0

++

~

Q) � fn(

~

P ++

~

Q) [fxg.

Let us show now that h

~

P ++

~

Q;�

0

i is normal: h

~

P ++

~

Q;�

0

i being normal,

by Proposition A.1, both h

~

P ;�i and h

~

Q;�i are normal. Now, sine h

~

P ;�i !

h

~

P

0

;�

0

i, by indution hypothesis, h

~

P

0

;�

0

i is normal. Let us now prove that

h

~

Q;�

0

i is normal: we know that x 2 bn(

~

P); so, by normality of h

~

P ++

~

Q;�i, x

does not our in

~

Q, so U(

~

Q; �

0

) � U(

~

Q; �) and thus, U(

~

Q; �

0

) is de�ned. The

other points are obviously implied by the normality of h

~

Q;�i and h

~

P

0

;�

0

i. Fi-

nally, the fat that h

~

P ++

~

Q;�i and h

~

Q;�

0

i are normal together with Proposition

A.1 implies that h

~

P

0

++

~

Q;�

0

i is normal. �

36

Restatement of Proposition 3.2(2) If h

~

P ;�i is normal and h

~

P ;�i !

�

h

~

P

0

;�

0

i then h

~

P

0

;�

0

i is normal.

Proof An indution with appeal to Lemma A.13. �

A.4 Proof of Proposition 3.3

We prove now that the subloation relation de�ned on losures simulates the

subloation relation de�ned on proesses.

Restatement of Proposition 3.3 Assume h

~

P ;�i is a normal losure. If

h

~

P ;�i # h

~

Q;�i then U(

~

P ; �) # U(

~

Q; �). If U(

~

P ; �) # Q then there exists

~

Q suh

that h

~

P ;�i # h

~

Q;�i and U(

~

Q; �) � Q.

Proof For the �rst point, by de�nition for # on losures, we have

~

P =

~

Q ++

fM [

~

P

0

℄g for some

~

Q, M , n suh that nam(M;�) = n. Therefore, by de�nition

of U , U(

~

P ; �) = U(

~

Q; �) j M�[U(

~

P

0

; �)℄. Note that h

~

P ;�i being normal, both

h

~

Q;�i, h

~

P

0

;�i are de�ned and thus, proesses. Now, for the two proesses

U(

~

P ; �), U(

~

P

0

; �), there exists a proess Q (namely U(

~

Q; �)) and a name n (n =

M� by Proposition A.6) suh that U(

~

P ; �) � Q j n[U(

~

P

0

; �)℄. So, U(

~

P ; �) #

U(

~

P

0

; �).

For the seond point, by de�nition of # on proesses, U(

~

P ; �) # P

0

i� there

exists Q;n suh that U(

~

P ; �) � Q j n[P

0

℄. The annotated proess

~

P being of

the form

Q

k2K

�

k

, by Proposition 3.1, there exists I; J suh that I[J = K, I\

J = ? and U(

Q

i2I

�

i

; �) � Q, U(

Q

j2J

�

j

; �) � n[P

0

℄. From U(

Q

j2J

�

j

; �) �

n[P

0

℄, by Proposition 3.1, there exists M

0

;

~

P

0

suh that J is a singleton fjg,

�

j

= M

0

[

~

P

0

℄, M

0

� = n and U(

~

P

0

; �) � P

0

. Sine M

0

� = n, by Proposition

A.6, nam(M

0

; �) = n. Furthermore,

~

P is equal to

Q

i2I

�

i

++ fM

0

[

~

P

0

℄g. So,

h

~

P ;�i # h

~

P

0

;�i and U(

~

P

0

; �) � P

0

. �

A.5 Proof of Proposition 3.4

Given Lemmas A.14, A.15, and A.16 below, we prove Proposition 3.4, that the

redution relation de�ned on losures simulates the redution relation de�ned

on proesses.

Lemma A.14 Let h

~

P ;�fx Mgi be a normal losure suh that all the o�sets

o ourring in

~

P are set to 0. Then U(

~

P ; �fx Mg) � U(

~

P ; �)fx Mg.

Proof The proof goes by indution over the strutures of proesses and

primes. Most of the ases simply uses the de�nition of U and the appliation of

a substitution. We detail here the only two ases that are not straightforward.

For primes �:

- ase where � = (y):

~

P

0

:

37

U((y):

~

P

0

; �)fx Mg � ((y):U(

~

P

0

; �))fx Mg

� ((y)fx Mg):(U(

~

P

0

; �)fx Mg)

� (y):(U(

~

P

0

; �)fx Mg)

� (y):(U(

~

P

0

; �fx Mg))

� U((y):

~

P

0

; �fx Mg)

The �rst and the last equivalenes follow from the de�nition of U ; the seond

one orresponds simply to the appliation of the substitution fx Mg. For

the third one, the losure h

~

P ;�fx Mgi being normal, by Proposition A.1,

the losure hf�g;�fx Mgi is normal too. Therefore, as y is a bound variable

and bn(

~

P) \ dom(�fx Mg) = ?, x and y are di�erent. So, yfx Mg = y.

The fourth equivalene appeals to the indution hypothesis.

- ase where � =M

0

(o):

~

P

0

:

U(M

0

(o):

~

P

0

; �)fx Mg � (M

0

�:U(

~

P

0

; �))fx Mg

� M

0

�fx Mg:U(

~

P

0

; �)fx Mg

� M

0

�fx Mg:U(

~

P

0

; �fx Mg)

� U(M

0

(o):

~

P

0

; �fx Mg)

The �rst equivalene uses the de�nition of U and the fat that by hypothesis,

o is equal to 0; the seond one is simply the appliation of the substitution

fx Mg. The third equivalene is due to the indution hypothesis. Finally,

the last equivalene is a diret onsequene of the de�nition of U and of o = 0.

�

Lemma A.15 Let h

~

P ; fx Mg�i be a normal losure suh that all the o�sets

o ourring in

~

P are set to 0. Then U(

~

P ; fx Mg�) � U(

~

P ; �)fx M�g.

Proof The proof goes by indution on the length of the sequential substitu-

tion �.

For � being the empty substitution �: U(

~

P ; fx Mg�) � U(

~

P ; �fx Mg)

sine � orresponds to the identity. So, by Lemma A.14, U(

~

P ; fx Mg�) �

U(

~

P ; �)fx Mg.

For � being of the form �

0

fy M

0

g:

U(

~

P ; fx Mg�

0

fy M

0

g) � U(

~

P ; fx Mg�

0

)fy M

0

g

� (U(

~

P ; �

0

)fx M�

0

g)fy M

0

g

The �rst equivalene follows from Lemma A.14 and the seond one from the

indution hypothesis.

Now, the fat that h

~

P ; fx Mg�

0

fy M

0

gi is normal implies that x 6= y and

that x does not our inM

0

. Let us onsider now the proess U(

~

P ; �

0

)fx M�

0

g.

As x 6= y, the ourrenes of y in U(

~

P ; �

0

) are preserved in U(

~

P ; �

0

)fx M�

0

g

and some new ourrenes of y may appear in this latter, due to the possible

ourrenes of y inM�

0

. As x does not our inM

0

, we an �rst replae U(

~

P ; �

0

)

the ourrenes of y with M

0

and then, replae the ourrenes of x with an

38

expression L; this expression L is the expression M� in whih the ourrenes

of y are replaed by M

0

. Hene,

(U(

~

P ; �

0

)fx M�

0

g)fy M

0

g � (U(

~

P ; �

0

)fy M

0

g)fx M�

0

fy M

0

gg

By Lemma A.14, this latter is equivalent to U(

~

P ; �

0

fy M

0

g)fx M�

0

fy M

0

gg

and so, to U(

~

P ; �)fx M�g. �

Lemma A.16 Suppose h

~

P ;�i is a normal losure suh that all the o�sets o

ourring in

~

P are set to 0 and x ours neither in � nor in bn(

~

P). Then

U(norm(

~

P ; fx Mg�); fx Mg�) � U(

~

P ; �)fx M�g.

Proof First, observe that normality of h

~

P ;�i and the assumption about x im-

ply normality of hnorm(

~

P ; fx Mg�); fx Mg�i. Therefore, by Lemma A.15,

U(norm(

~

P ; fx Mg�); fx Mg�) � U(norm(

~

P ; fx Mg�); �)fx M�g. So,

it is enough to prove that

U(norm(

~

P ; fx Mg�); �)fx M�g � U(

~

P ; �)fx M�g:

Let us onsider two ases: len(M;�) 6= 0 and len(M;�) = 0. In the �rst ase,

norm(

~

P ; fx Mg�) =

~

P and there is nothing to prove. In the seond ase, nor-

mality of h

~

P ;�i implies that norm(

~

P ; fx Mg�) di�ers from

~

P only by some

ourrenes of x(0). The equivalene U(norm(

~

P ; fx Mg�); �)fx M�g �

U(

~

P ; �)fx M�g follows then by indution on the struture of M� using the

ongruene rule (Strut �). �

Restatement of Proposition 3.4 Assume h

~

P ;�i is a normal losure. If

h

~

P ;�i ! h

~

P

0

;�

0

i then U(

~

P ; �) ! U(

~

P

0

; �

0

). If U(

~

P ; �) ! P

0

then there exists

h

~

P

0

;�

0

i suh that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

.

Proof The proof goes by indution over the struture of the ontext under

whih the redution takes plae.

If the ontext is empty, then for the �rst point, the redution applied or-

responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (Trans

I/O).

For the �rst point and the rule (Trans In):

U(fN [

~

Q ++ f�g℄;M [

~

R℄g; �) � N�[U(

~

Q; �) j U(f�g; �)℄ jM�[U(

~

R; �)℄

� n[U(

~

Q; �) j U(f�g; �)℄ j m[U(

~

R; �)℄

� n[U(

~

Q; �) j in m:U(

~

P ; �)℄ j m[U(

~

R; �)℄

The �rst equivalene follows from the de�nition of U . The seond one is

a onsequene of the onditions of the rule (Trans In) and of Proposition A.6.

The third equivalene follows from the onditions of the rule (Trans In) and

from Proposition A.10.

On the other hand,

39

U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �) � M�[N�[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

� m[n[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

The �rst equivalene follows from the de�nition of U and the seond one

from the onditions of the rule (Trans In) and from Proposition A.6. Therefore,

U(N [

~

Q ++ f�g℄ ++M [

~

R℄; �)! U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �).

The proof is similar for the rules (Trans Out) and (Trans Open). Now,

for the �rst point and the rule (Trans I/O): by the de�nition of U , we have

U(fhMi; (x):

~

P g; �) � hM�i j (x):U(

~

P ; �): Let

~

P

0

be norm(

~

P ; fx Mg�). By

Lemma A.15, the losure hfhMi; (x):

~

P g;�i being normal, U(

~

P

0

; fx Mg�) �

U(

~

P

0

; �)fx M�g. Therefore, U(fhMi; (x):

~

P g; �)! U(

~

P

0

; fx Mg�).

Let us onsider now the seond point with the assumption that the ontext

is empty, that is the redution is made by (Red In), (Red Out), (Red Open) or

(Red I/O).

For the seond point and the rule (Red In): let us assume that U(

~

S; �)! S

0

by the rule (Red In). Therefore, S

0

� m[n[Q j P ℄ j R℄ for some m;n; P;Q;R and

U(

~

S; �) � n[Q j in m:P ℄ j m[R℄. So, by Proposition 3.1 and Proposition A.10,

there exists N;M;L

0

,

~

P ;

~

P

0

;

~

Q;

~

R suh that

~

S = fN [

~

Q ++ fL

0

(o):

~

P

0

g℄;M [

~

R℄g,

N� = n, M� = m, U(

~

Q; �) � Q, U(

~

R; �) � R, split(L

0

(o):

~

P

0

) = (in m;

~

P)

and U(

~

P ; �) � P . Using Proposition A.6, we have nam(M;�) = m and

nam(N; �) = n. So, by de�nition for (Red In),

h

~

S;�i ! hfM [fN [

~

P ++

~

Q℄g ++

~

R℄g;�i

and furthermore,

U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �) � m[n[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

� m[n[Q j P ℄ j R℄ � S

0

The proof is similar for the rules (Red Out) and (Red Open). Now, for

the seond point and the rule (Red I/O): let us assume that U(

~

S; �) ! S

0

by the rule (Red I/O). Therefore, S

0

� Pfx Mg and U(

~

S; �) � (x):P j

hMi. So, by Proposition 3.1, there exists M

0

;

~

P suh that

~

S = fhM

0

i; (x):

~

P g,

M

0

� = M and U(

~

P ; �) � P . Therefore, h

~

S;�i ! h

~

P

0

; fx M

0

g�i where

~

P

0

= norm(

~

P ; fx Mg�). Furthermore, hfhM

0

i; (x):

~

P g;�i being normal, by

Lemma A.16

U(

~

P

0

; fx M

0

g�) � U(

~

P ; �)fx M

0

�g

� Pfx Mg:

Now, we investigate the ase where the ontext of redution is non-empty:

for the �rst point, the rule used for redution is either (Trans Par) or (Trans

Amb).

For the rule (Trans Amb): if h

~

P ;�i ! h

~

P

0

;�

0

i then hM [

~

P ℄;�i ! hM [

~

P

0

℄;�

0

i.

In this ase, U(M [

~

P ℄; �) =M�[U(

~

P ; �)℄ and U(M [

~

P

0

℄; �

0

) =M�

0

[U(

~

P

0

; �

0

)℄. By

40

A.13, either �

0

= � or �

0

= fx Lg�. In this last ase, x is bound in

~

P and thus,

by normality, x does not our in M . So in both ases, M�

0

=M�. Moreover,

by the rule (Red Amb), M�[U(

~

P ; �)℄ ! M�[U(

~

P

0

; �

0

)℄. So, U(M [

~

P ℄; �) !

U(M [

~

P

0

℄; �

0

)

For the rule (Trans Par): if h

~

P ;�i ! h

~

P

0

;�

0

i then h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i. In this ase, U(

~

P ++

~

Q; �) � U(

~

P ; �) j U(

~

Q; �) and U(

~

P

0

++

~

Q; �

0

) �

U(

~

P

0

; �

0

) j U(

~

Q; �

0

). By A.13, either �

0

= � or �

0

= fx Mg�. In this last

ase, x is bound in

~

P and thus, by normality does not our in

~

Q. So, in

both ases, we have U(

~

Q; �

0

) � U(

~

Q; �). Moreover, by the rule (Red Par),

U(

~

P ; �) j U(

~

Q; �)! U(

~

P

0

; �

0

) j U(

~

Q; �). So, U(

~

P ++

~

Q; �)! U(

~

P

0

++

~

Q; �).

For the seond point, the rule used for redution is either (Red Par) or (Red

Amb).

For (Red Amb): let us assume that U(

~

S; �) ! S

0

by (Red Amb). We

have S

0

= n[P

0

℄ and U(

~

S; �) � n[P ℄. So, by Proposition 3.1, there exists

N; � suh that

~

S is a singleton f�g, � = N [

~

P ℄, N� = n and U(

~

P ; �) � P .

By hypothesis P ! P

0

, so U(

~

P ; �) ! P

0

. By indution hypothesis, there

exists

~

P

0

; �

0

suh that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

. Then by the

rule (Trans Amb), hfN [

~

P ℄g;�i ! hfN [

~

P

0

℄g;�

0

i; so, h

~

S;�i ! hfN [

~

P

0

℄g;�

0

i.

Finally, U(fN [

~

P

0

℄g; �

0

) � N�

0

[U(

~

P

0

; �

0

)℄. By Lemma A.13, either � = �

0

or

�

0

= fx Mg� with x a bound variable in

~

P . By normality x does not belong

toN , soN�

0

= N� = n. Therefore,N�

0

[U(

~

P

0

; �

0

)℄ � n[U(

~

P

0

; �

0

)℄ � n[P

0

℄ � S

0

.

For (Red Par): let us assume that U(

~

S; �) ! S

0

by (Red Par). We have

S

0

= P

0

j Q and U(

~

S; �) � P j Q. So, by Proposition 3.1, there exists

~

P;

~

Q

suh that

~

S =

~

P ++

~

Q, U(

~

P ; �) � P and U(

~

Q; �) � Q. By hypothesis,

P ! P

0

, so U(

~

P ; �) ! P

0

. By indution hypothesis, there exists

~

P

0

; �

0

suh

that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

. Then by the rule (Trans Par),

h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i; so, h

~

S;�i ! h

~

P

0

++

~

Q;�

0

i. Finally, U(

~

P

0

++

~

Q; �

0

) � U(

~

P

0

; �

0

) j U(

~

Q; �

0

). Now, by Lemma A.13, either � = �

0

or �

0

=

fx Mg� with x a bound variable in

~

P . By normality x does not our in

~

Q;

so, U(

~

Q; �

0

) � U(

~

Q; �). Therefore, U(

~

P

0

++

~

Q; �

0

) � P

0

j Q � S

0

. �

A.6 Proof of Proposition 3.9

Restatement of Proposition 3.9 The model heking algorithm desribed

in Setion 3.3 preserves the normality of Chek (

~

P ; �;A).

Proof By ase inspetion of the algorithm, we show that if Chek (

~

P ; �;A)

is normal in the left-hand side of equality then any expression Chek (

~

P

0

; �

0

;A

0

)

ourring in the right-hand side is also normal.

- for the Boolean onnetives :;_: sine in any ase,

~

P

0

=

~

P and � = �

0

and

A

0

is a losed formula suh that and fn(A

0

) � fn(A), this is straightforward.

- for the ambient math A = n[A

0

℄: in this ase,

~

P = fn[

~

Q℄g and � = �

0

.

By Proposition A.1 the losure h

~

Q;�i is normal. The remaining onditions

are ful�lled sine bn(P

0

) = bn(P), �

0

= � and for the losed formula A

0

fn(A

0

) � fn(A).

41

- for the omposition math A = A

0

j A

00

: this proof is similar to the previous

ase.

- for the existential quanti�ation 9x:A: in this ase,

~

P

0

=

~

P and � = �

0

and the

fat that Afx m

i

g is losed is straightforward. So, it is suÆient to show that

whatever the ambient name m

i

is, fn(Afx m

i

g)\ (bn(

~

P)[dom(�)) = ?. By

notiing that fn(Afx m

i

g) is either equal to fn(9x:A) or to fn(9x:A)[fm

i

g

and using the normality for Chek (

~

P ; �; 9x:A), this amounts to prove that

m

i

=2 bn(

~

P) [dom(�). Aording to the value of m

i

:

� for mi = m

0

: straightforward.

� m

i

2 fn(

~

P ; �) [fn(A): let us assume that m

i

2 fn(A). Then, m

i

2

fn(9x:A). So, by normality of Chek (

~

P ; �; 9x:A), m

i

=2 bn(

~

P) [dom(�).

Let us assume now that m

i

2 fn(

~

P ; �): by de�nition, m

i

=2 dom(�). Now,

by normality of h

~

P ;�i, sine m

i

2 fn(

~

P) or m

i

2 names(�), m

i

=2 bn(

~

P).

- for the sometime modality �A:

� ase where Chek (

~

P

0

; �

0

;A

0

) = Chek (

~

P ; �;A): obvious sine fn(�A) =

fn(A).

� ase where Chek (

~

P

0

; �

0

;A

0

) = Chek (

~

P

0

; �

0

;�A) with h

~

P ;�i ! h

~

P

0

;�

0

i:

by Proposition 3.2(2), h

~

P

0

;�

0

i is normal. Now, aording to Lemma A.13:

{ � = �

0

, bn(

~

P) = bn(

~

P

0

) and fn(�A) = fn(A): in this ase, the

requirement is trivially satis�ed.

{ �

0

= fx Mg�, bn(

~

P) = bn(

~

P

0

) [fxg: by hypothesis, fn(�A) \

(bn(

~

P) [dom(�)) = ?. So, fn(�A) \ (bn(

~

P

0

) [dom(�

0

)) = ?.

- for the somewhere modality ✧A:

� ase where Chek (

~

P

0

; �

0

;A

0

) = Chek (

~

P ; �;A): obvious sine fn(�A) =

fn(A).

� ase where Chek (

~

P

0

; �

0

;A

0

) = Chek (

~

P

0

; �

0

;�A) with h

~

P ;�i # h

~

P

0

;�

0

i:

by Proposition 3.2, h

~

P

0

;�

0

i is normal. The last ondition holds sine

�

0

= � and fn(

~

P

0

) � fn(

~

P).

- for the loation adjunt modality A�n: from the hypothesis of normality for

Chek (

~

P ; �;A�n), sine n 2 fn(A), n =2 bn(

~

P). Therefore, by Proposition A.1,

hn[P ℄;�i is normal. Moreover, A is a losed formula. Finally, by hypothesis,

fn(A�n) \ (bn(

~

P) [dom(�)) = ?, and bn(

~

P) = bn(n[

~

P ℄), fn(A) � fn(A�n).

So, fn(A) \ (bn(n[

~

P ℄) [dom(�)) = ?. �

A.7 Proof of Proposition 3.10

The orretness of our algorithm, Proposition 3.10, is a orollary of Lemma A.18

below, whih itself depends on the following fat.

42

Lemma A.17 (Cardelli and Gordon (2000b)) For any ambient proess P

and any ambient formula A, let fm

1

; : : : ;m

k

g = fn(P) [fn(A) and suppose

m

0

62 fm

1

; : : : ;m

k

g. Then P j= 9x:A i� P j= Afx m

i

g for some i in 0 : : : k.

Lemma A.18 For any normal losure h

~

P ;�i, U(

~

P ; �) j= A if and only if

Chek (

~

P ; �;A) = T.

Proof The proof goes by indution on the struture of the ambient formula

A:

- the base ase A = T is trivial. The other base ase A = 0 is a onsequene

of Proposition 3.1.

- for Boolean onnetives :;^, this is obvious from the indution hypothesis

and the algorithm.

- for the ambient math A = n[A

0

℄: aording to the algorithm, we have

Chek (

Q

i21:::k

�

i

; �; n[A

0

℄) = T i� there exists

~

Q andM suh that k = 1, �

1

=

M [

~

Q℄, nam(M;�) = n and Chek (

~

Q; �;A

0

) = T. Then, by Proposition 3.1,

U(

Q

i21:::k

�

i

; �) � n[U(

~

Q; �)℄. By indution hypothesis, Chek (

~

Q; �;A

0

) = T

is equivalent to U(

~

Q; �) j= A

0

. So, it is equivalent to U(

Q

i21:::k

�

i

; �) j= n[A

0

℄.

- for the omposition math A = A

0

j A

00

: aording to the algorithm, we

have Chek (

Q

i21:::k

�

i

; �;A

0

j A

00

) = T i� there exists I; J suh that I [J =

1 : : : k, I \ J = ?, Chek (

Q

i2I

�

i

; �;A

0

) = T and Chek (

Q

j2J

�

j

; �;A

00

) =

T. Now, using the indution hypothesis, Chek (

Q

i2I

�

i

; �;A

0

) = T and

Chek (

Q

j2J

�

j

; �;A

00

) = T are equivalent respetively to U(

Q

i2I

�

i

; �) j= A

0

and to U(

Q

j2J

�

j

; �) j= A

00

. Finally, by Proposition 3.1, it is equivalent to

U(

Q

i21:::k

�

i

; �) j= A

0

j A

00

.

- for the existential quanti�ation 9x:A: let us assume Chek (

~

P ; �; 9x:A) = T.

Let fm

1

; : : : ;m

k

g = fn(

~

P ; �) [fn(A) and m

0

, an ambient name suh that

m

0

=2 fm

1

; : : : ;m

k

g [bn(

~

P) [dom(�). From the algorithm, this implies that

there exists i suh that Chek (

~

P ; �;Afx m

i

g) = T. So, by the indution

hypothesis, U(

~

P ; �) j= Afx m

i

g. Now, aording to the value of m

i

:

� m

i

2 fm

1

; : : : ;m

k

g \ (fn(A) [fn(U(

~

P ; �))): by Lemma A.17, we have

U(

~

P ; �) j= 9x:A.

� m

i

2 fm

1

; : : : ;m

k

g and m

i

=2 (fn(A)[fn(U(

~

P ; �))): by Lemma A.17, we

have U(

~

P ; �) j= 9x:A.

� m

i

=2 fm

1

; : : : ;m

k

g: it is obvious then that m

i

=2 fn(A) [fn(U(

~

P ; �)).

So, by Lemma A.17, we have U(

~

P ; �) j= 9x:A.

Conversely, let us assume that U(

~

P ; �) j= 9x:A. From Lemma A.17, this

is equivalent to that for fm

1

; : : : ;m

k

g = fn(U(

~

P ; �)) [fn(A) and for any

arbitrary m

0

suh that m

0

=2 fm

1

; : : : ;m

k

g, there exists i suh that U(

~

P ; �) j=

Afx m

i

g. This latter is equivalent to that Chek (

~

P ; �;Afx m

i

g) = T by

indution hypothesis. Now aording to the value of m

i

:

43

� m

i

2 fn(U(

~

P ; �)) [fn(A): in this ase m

i

2 fn(

~

P ; �) [fn(A). So, by the

algorithm, Chek (

~

P ; �; 9x:A) = T.

� m

i

=2 fn(U(

~

P ; �)) [fn(A) and m

i

2 fn(

~

P ; �) [fn(A): one again, by the

algorithm, Chek (

~

P ; �; 9x:A) = T.

� m

i

=2 fn(

~

P ; �) [fn(A): so, m

i

= m

0

. Sine m

0

an be hosen arbitrar-

ily, one an assume moreover that m

i

=2 bn(

~

P) [dom(�). So, by the

algorithm, Chek (

~

P ; �; 9x:A) = T.

- for the Sometime modality �A: U(

~

P ; �) j= �A is by de�nition equivalent

to the fat that there exists P

0

; n suh that U(

~

P ; �) !

n

P

0

and P

0

j= A. By

Proposition 3.4, this latter implies that there exists

~

P

0

; �

0

suh that U(

~

P ; �)!

n

U(

~

P

0

; �

0

) and U(

~

P

0

; �

0

) � P

0

and thus, U(

~

P

0

; �

0

) j= A. Therefore, by in-

dution hypothesis, this implies Chek (

~

P

0

; �

0

;A) = T. Now, let us show

by indution over n that U(

~

P ; �) !

n

U(

~

P

0

; �

0

) and U(

~

P

0

; �

0

) j= A implies

Chek (

~

P ; �;�A) = T.

For n = 0: h

~

P ;�i = h

~

P

0

;�

0

i and Chek (

~

P ; �;�A) = Chek (

~

P ; �;A) = T.

For 0 < n: in this ase, by Proposition 3.4, there exists

~

P

00

; �

00

suh that

h

~

P ;�i ! h

~

P

00

;�

00

i !

n�1

h

~

P

0

;�

0

i. So, by indution hypothesis using that

Chek (

~

P

0

; �

0

;A) = T, Chek (

~

P

00

; �

00

;�A) = T. Sine h

~

P ;�i ! h

~

P

00

;�

00

i, by

the algorithm we have Chek (

~

P ; �;�A) = T.

Conversely, let us assume that Chek (

~

P ; �;�A) = T and let us show that

there exists P

0

; n suh that U(

~

P ; �) !

n

P

0

and P

0

j= A. The proof goes by

indution on m the number of reursive alls of Chek (

~

P

0

; �

0

;�A) = T.

Form = 0: in this ase, Chek (

~

P ; �;�A) = T sine Chek (

~

P ; �;A) = T. Then

by indution hypothesis on the struture of the formula, U(

~

P ; �) j= A. So, we

an hoose P

0

= U(

~

P ; �) and n = 0.

For m > 0: in this ase, Chek (

~

P ; �;�A) = T due to the fat that for some

h

~

P

0

;�

0

i suh that h

~

P ;�i ! h

~

P

0

;�

0

i, Chek (

~

P

0

; �

0

;A) = T. By the indu-

tion hypothesis, on the number of reursive alls, we have that there exists

P

0

; n suh that U(

~

P

0

; �

0

) !

n

P

0

and P

0

j= A. By Proposition 3.4, we have

U(

~

P ; �)! U(

~

P

0

; �

0

). So, U(

~

P ; �)!

n+1

P

0

and P

0

j= A.

- for the Somewhere modality ✧A: the proof is similar to the previous ase

using Proposition 3.3 instead of Proposition 3.4.

- for the loation adjunt modality A�n: by de�nition, U(

~

P ; �) j= A�n i�

n[U(

~

P ; �)℄ j= A. By assumption n does not belong to dom(�). So, from the

de�nition for U , n[U(

~

P ; �)℄ = U(n[

~

P ℄; �). So, n[U(

~

P ; �)℄ j= A is equivalent to

that U(n[

~

P ℄; �) j= A. Using the indution hypothesis, this latter is equivalent

to Chek (n[

~

P ℄; �;A) = T, and thus by the algorithm to Chek (

~

P ; �;A�n) =

T. �

Restatement of Proposition 3.10 For all proesses P and losed formulas

A, we have P j= A if and only if Chek (F(P); �;A) = T.

Proof As the losure hF(P); �i is normal, this follows from Lemma A.18. �

44

B Hardness Proofs

This appendix ontains proofs of results stated in Setion 4.

B.1 Proof of Lemma 4.1

Lemma 4.1 is the rux of orretness for the enoding from Setion 4.1 of QBF

satisfation in the full alulus and logi.

Restatement of Lemma 4.1 Consider a losed quanti�ed boolean formula

' and its enoding [['℄℄ in the ambient logi. The formula ' is valid if and only

if the model heking problem 0 j= [['℄℄ holds.

Proof Let us denote C

1

^ : : : ^C

k

by . We onsider a losed QBF formula

Q

1

v

1

: : : Q

n

v

n

 . We are going to show that for any 0 � m � n, denoting '

0

the

formula Q

m+1

v

m+1

: : : Q

n

v

n

 ,

v

1

7! t

1

; : : : ; v

m

7! t

m

j= '

0

i� 0 j= [['

0

℄℄fv

1

 t

1

; : : : ; v

m

 t

m

g

Note that this statement obviously implies Lemma 4.1.

The proof of this statement goes by indution on the number l of variables

that are quanti�ed in '

0

.

For the base ase l = 0: v

1

7! t

1

; : : : ; v

n

7! t

n

j= i� for eah C

i

, there

exists `

j

in C

i

suh that t

j

= tt i� l

j

= v

j

and t

j

= � i� `

j

= v

j

. This

is equivalent to saying that for eah C

i

, there exists `

j

in C

i

suh that 0 j=

[[l

j

℄℄fv

1

 t

1

; : : : ; v

n

 t

n

g, whih is equivalent to 0 j= fv

1

 t

1

; : : : ; v

n

 t

n

g.

For the indution step 0 < l � n: let us denoteM the interpretation v

1

7!

t

1

; : : : ; v

n�l

7! t

n�l

, � the orresponding substitution fv

1

 t

1

; : : : ; v

n�l

 t

n�l

g

and '

0

the formula Q

n�l+2

v

n�l+2

: : : Q

n

v

n

 . Assuming that the statement

holds for l � 1, let us onsiderM j= Q

n�l+1

v

n�l+1

'

0

.

By ase distintion over Q

n�l+1

:

Case where Q

n�l+1

= 9: in this ase, either M; v

n�l+1

7! tt j= '

0

or

M; v

n�l+1

7! � j= '

0

. By indution hypothesis, this is equivalent to that either

0 j= [['

0

℄℄�fv

n�l+1

 ttg or 0 j= [['

0

℄℄�fv

n�l+1

 � g. This latter is equivalent to

0 j= 9v

n�l+1

2 ftt ;� g:[['

0

℄℄� whih is equivalent by de�nition of the enoding

to 0 j= [[Q

n�l+1

v

n�l+1

'

0

℄℄�.

Case where Q

n�l+1

= 8: this ase is similar to the previous one. �

B.2 Proof of Lemma 4.3

Lemma 4.3 is the rux of orretness for the enoding from Setion 4.2 of QBF

satisfation in the alulus of mobile ambients without I/O.

To prove Lemma 4.3, let us �rst �x some notations and prove some auxiliary

lemmas.

45

For a given losed QBF formula ' = Q

1

v

1

: : :Q

n

v

n

 in prenex and onjun-

tive normal form, we denote by C

1

^ : : : ^ C

k

and de�ne for all 0 � i � n

V

i

�

= v

i

[pos [℄℄ j v

i

[neg [℄℄

V

tt

i

�

= v

i

[pos [℄ j v

0

i

[℄℄ j v

i

[neg [℄℄

V

�

i

�

= v

i

[pos [℄℄ j v

i

[neg [℄ j v

0

i

[℄℄

For all 0 � m � n,M being equal to v

1

7! t

1

; : : : ; v

m

7! t

m

,

'

m

�

= Q

m+1

v

m+1

: : : Q

n

v

n

P

M

�

= V

t

1

1

j : : : j V

t

m

m

j V

m+1

j : : : j V

n

j P

'

m

assuming that [['

m

℄℄ = (P

'

m

;A

'

m

).

It should be notied that due to the de�nition of [[℄℄, for all 0 � m < n,

P

'

m

j= v

0

m+1

[T℄ and P

'

n

j= end [T℄.

Lemma B.1 For all 0 � m < n,

P

M

!

3

P

M;v

m+1

7!tt

P

M

!

3

P

M;v

m+1

7!�

and there does not exist P

0

suh that P

0

6� P

M;v

m+1

7!tt

, P

0

6� P

M;v

m+1

7!�

and

P

M

!

3

P

0

.

Proof For m < n � 1, we onsiderM to be v

1

7! t

1

; : : : ; v

m

7! t

m

and we

have '

m

= Q

m+1

v

m+1

: : : Q

n

v

n

 . Whatever Q

m+1

is, by de�nition of en,

P

'

m

= v

0

m+1

[in v

m+1

:v

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄

for P

'

m+1

= v

0

m+1

[R

'

m+1

℄. Now from the proess P

M

equal to

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j v

m+1

[neg [℄℄ j

v

0

m+1

[in v

m+1

:v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄

only two redution steps are possible leading either to

P

pos

M

�

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄℄

or to

P

neg

M

�

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄℄

Now, we have from eah of P

pos

M

and P

neg

M

two deterministi redution steps:

P

pos

M

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[℄ j v

0

m+2

[out v

m+1

:R

'

m+1

℄℄

46

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[℄℄ j v

0

m+2

[R

'

m+1

℄

� P

M;v

m+1

7!tt

and

P

neg

M

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[℄ j v

0

m+2

[out v

m+1

:R

'

m+1

℄℄

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[℄℄ j v

0

m+2

[R

'

m+1

℄

� P

M;v

m+1

7!�

The proof goes in a similar way for the ase where m = n� 1. �

Lemma B.2 For all m in f0; : : : ; n � 1g, M being the interpretation v

1

7!

t

1

; : : : ; v

m

7! t

m

, we have

� for 0 � m < n � 1, P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique

proesses reahable from P

M

that satisfy the ambient formula v

0

m+2

[T℄ j T.

� for m = n� 1, P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique proesses

reahable from P

M

that satisfy the ambient formula end [T℄ j T.

Proof For 0 � m < n� 1, we know from the proof of Lemma B.1 that both

P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

satisfy the ambient formula v

0

m+2

[T℄ j T and do

not satisfy formulas v

0

[T℄ j T where v

0

is a primed ambient name di�erent from

v

0

m+2

. Now, still from the proof of Lemma B.1, we know that any reahable

proess from P

M

is either P

M

0

for some extensionM

0

ofM or an \intermediate"

proess reahable from P

M

0

in one or two steps. It is easy to see that none of

these \intermediate" proesses satis�es an ambient formula v

0

[T℄ j T whatever

the primed name v

0

is. Finally, asM

0

is di�erent from M, P

M

0

will satisfy a

formula v

0

[T℄ j T for some v

0

6= v

0

m+2

, but not the formula v

0

m+2

[T℄ j T.

The proof goes in a similar way for the ase where m = n� 1. �

Restatement of Lemma 4.3 Assume ' is a losed quanti�ed Boolean for-

mula, and that (P;A) = en('). Then P j= A if and only if ' is valid.

Proof We are going to show for any 0 � m � n that for the interpretation

M equal to v

1

7! t

1

; : : : ; v

m

7! t

m

M j= '

m

i� P

M

j= A

'

m

Note that for m = 0,M is the empty interpretation, '

m

= ', P

M

= P and

A

'

m

= A, so this statement obviously implies Lemma 4.3. The proof of this

statement goes by indution on the number l = n�m of quanti�ers in '

m

.

For the base ase l = 0: '

m

= C

1

^ : : : ^ C

k

is an unquanti�ed formula and

M = v

1

7! t

1

; : : : v

n

7! t

n

. The interpretation M is a model for the formula

'

m

if and only ifM renders true at least one literal `

i

in eah of the lauses C

i

.

Now, depending on whether `

i

ours positively or negatively in C

i

, we have

two ases:

47

� `

i

= v

i

: by the enoding and the de�nition of P

M

, this is equivalent to

that [[`

i

℄℄ = v

i

[pos [0℄ j v

0

i

[0℄℄ j T and P

M

= v

i

[pos [0℄ j v

0

i

[0℄℄ j P

0

for

some ambient proess P

0

whih does not ontain the ambient name v

0

i

.

Therefore, it is equivalent to that P

M

j= [[`

i

℄℄.

� `

i

= v

i

: this ase is dual to the previous one.

Now, in both ases we have P

M

j= [[`

i

℄℄, whih means that P

M

is a model

for at least one literal in eah of the [[C

i

℄℄'s, and thus it is equivalent to that

P

M

j= A

'

m

.

For the indution step 1 < l � n (the partiular base ase where l = 1 di�ers

only in the use of the ambient name end instead of v

0

n+1

and an be proved in

the same way) we assume that the statement holds for l�1 (that is, it holds for

m+1). The formula '

m

has the form Q

m+1

v

m+1

'

m+1

, so we have to onsider

two ases depending on whether Q

m+1

is 9 or 8.

In the ase of 9, we have that M j= '

m

is equivalent to the disjuntion

M; v

m+1

7! tt j= '

m+1

or M; v

m+1

7! � j= '

m+1

. By indution hypothesis,

this is equivalent to that either P

M;v

m+1

7!tt

j= A

'

m+1

or P

M;v

m+1

7!�

j= A

'

m+1

.

By Lemma B.2, we know that P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique

proesses reahable from P

M

satisfying the ambient formula v

0

m+2

[T℄ j T.

Therefore, the last statement is equivalent to that

P

M

j= �(v

0

m+2

[T℄ j T) ^ A

'

m+1

:

The ase where Q

n�l+1

= 8 is dual to the previous one and leads to the

equivalene with

P

M

j= �(v

m+2

[T℄ j T)) A

'

m+1

:

In both ases, by de�nition of en, we have the equivalene with P

M

j= A

'

m

.

�

B.3 Proof of Lemma 4.5

Lemma 4.5 is the rux of orretness for the enoding from Setion 4.3 of QBF

satisfation in the alulus of immobile ambients with I/O. To prove it, let us

�rst �x some notations and then prove some auxiliary lemmas.

We use notations similar to the previous setion. For a given losed QBF

formula ' = Q

1

v

1

: : : Q

n

v

n

 in prenex and onjuntive normal form, we denote

 by C

1

^ : : : ^ C

k

. Let M be an interpretation v

1

7! t

1

; : : : ; v

m

7! t

m

. We

denote �

M

the substitution fv

1

 t

1

; v

1

 t

1

; : : : ; v

m

 t

m

; v

m

 t

m

g where t

i

is

the negated value of t

i

. IfM is the empty interpretation, we let �

M

to be the

identity.

For 0 � m � n, let '

m

be the formula Q

m+1

v

m+1

: : :Q

n

v

n

 and en('

m

) =

(P

'

m

;A

'

m

). For M = v

1

7! t

1

; : : : ; v

m

7! t

m

, let us denote P

M

the proess

Q

'

m

�

M

suh that P

'

m

� v

0

m+1

[Q

'

m

℄. Note that in this notation P

'

m

�

M

=

v

0

m+1

[P

M

℄. By M

+

and M

�

we denote respetively M; v

m+1

 tt ; v

m+1

 �

andM; v

m+1

 � ; v

m+1

 tt .

48

Lemma B.3 For all 0 � m < n,

P

M

! (h� i j v

00

m+1

[℄ j (v

m+1

):P

'

m+1

)�

M;v

m+1

 tt

and

P

M

! (htti j v

00

m+1

[℄ j (v

m+1

):P

'

m+1

)�

M;v

m+1

 �

and there is no other P

0

suh that P ! P

0

.

Proof Straightforward from the enoding. �

Lemma B.4 For all 0 � m < n, P

M

!

2

(v

00

m+1

[℄ j P

'

m+1

)�

M

+
and P

M

!

2

(v

00

m+1

[℄ j P

'

m+1

)�

M

�
and there is no other P

0

suh that P !

2

P

0

.

Proof Straightforward from the enoding, Lemma B.3 and the de�nition of

P

M

. �

Restatement of Lemma 4.5 Assume ' is a losed quanti�ed Boolean for-

mula, and that (P;A) = en('). Then P j= A if and only if ' is valid.

Proof Let V

0

= 0 and for all 1 � m � n let V

m

= v

00

m

[℄. We are going to show

for any 0 � m � n that for the interpretationM equal to v

1

7! t

1

; : : : ; v

m

7! t

m

,

M j= '

m

i� V

m

j P

'

m

�

M

j= A

'

m

:

The partiular ase of this statement withm = 0 is equivalent to Lemma 4.5.

Its proof goes by indution over the number l = n �m of quanti�ed variables

in '

m

.

Case where l = 0: the formula '

m

is equal to C

1

^ : : :^C

k

,M has the form

v

1

7! t

1

; : : : ; v

n

7! t

n

andM j= C

1

^ : : :^C

k

. As C

1

^ : : :^C

k

is in onjuntive

normal form, for at least one literal `

i

in eah C

i

,M(`

i

) = tt . This is equivalent

to that for eah C

i

, there exists at least one literal `

i

in C

i

suh that

� v

j

 tt ; v

j

 � belongs to �

M

if `

i

= v

j

and

� v

j

 � ; v

j

 tt belongs to �

M

if `

i

= v

j

.

By the de�nition of en(C

1

^ : : : ^C

k

), this is equivalent to that the interior of

eah C ambient (eah marked by a D ambient) in the proess P

'

m

�

M

ontains

a tt sub-ambient. This again is equivalent to P

'

m

�

M

j= ❏((D[0℄ j T)) (tt [0℄ j

T)) that is, to P

'

m

�

M

j= A

'

m

. Sine V

m

does not ontain any subambient

D[0℄, the statement follows.

Case where l = 1 (that is, m = n� 1): the formula '

m

is equal to Q

n

v

n

 ,

M is a the form v

1

7! t

1

; : : : ; v

n�1

7! t

n�1

. We follow aording to the value of

Q

n

:

� ase where Q

n

= 9: M j= '

m

is equivalent to either M; v

n

 tt j= or

M; v

n

 � j= . Using the ase where l = 0, this is equivalent to that

either P

'

n

�

M

+
j= A

'

n

or P

'

n

�

M

�
j= A

'

n

.

49

By Lemma B.4, the proesses v

00

n

[℄ j P

'

n

�

M

+
and v

00

n

[℄ j P

'

n

�

M

�
are

the two unique ones reahable from P

M

in two steps. Moreover, as P

'

n

an not be redued, there is no proess reahable from P

M

in stritly

more than two steps. It should be notied that P

'

n

�

M

+
and P

'

n

�

M

�

both satisfy the formula Inst(end)^:Inst

+

(end) whereas by Lemma B.3

the two unique suessors of P

M

as well as P

M

itself do not satisfy the

formula Inst(end). Therefore, P

'

n

�

M

+
j= A

'

n

or P

'

n

�

M

�
j= A

'

n

holds

i� P

M

j= �((Inst(end)^:Inst

+

(end))^A

'

n

). And thus, this is equivalent

to v

00

n�1

[℄ j v

n

[P

M

℄ j= T j v

n

[�((Inst(end) ^ :Inst

+

(end)) ^ A

'

n

)℄, that is

v

00

n�1

[℄ j P

'

n�1

j= A

'

n�1

.

� ase where Q

n

= 8: this ase is dual to the previous one.

Case where 1 < l � n: the formula '

m

is equal to Q

m+1

v

m+1

'

m+1

,M has

the form v

1

7! t

1

; : : : ; v

m

7! t

m

and we assume that the statement holds for

l � 1 (that is, it holds for m+ 1). We follow aording to the value of Q

m+1

:

� ase where Q

m+1

= 9: M j= '

m

is equivalent to either M; v

m+1

 tt j=

'

m+1

orM; v

m+1

 � j= '

m+1

. By indution hypothesis, this is equiva-

lent to that either v

00

m+1

[℄ j P

'

m+1

�

M

+
j= A

'

m+1

or v

00

m+1

[℄ j P

'

m+1

�

M

�
j=

A

'

m+1

.

Let us have a look now at proesses reahable from P

M

: of ourse,

P

M

itself is reahable, but by onstrution it does not satisfy the for-

mula Inst(v

0

m+2

). By Lemma B.3, two proesses are reahable in one

step from P

M

, but they do not satisfy the formula Inst(v

0

m+2

). By

Lemma B.4, two proesses are reahable from P

M

in two steps, namely

(v

00

m+1

[℄ j P

'

m+1

)�

M

+
and (v

00

m+1

[℄ j P

'

m+1

)�

M

�
and they both satisfy

the formulas Inst(v

0

m+2

) and :Inst

+

(v

0

m+2

) (by onstrution). Now, by

using one again Lemma B.3 for the internal of v

0

m+2

in P

'

m+1

�

M

+
and

P

'

m+1

�

M

�
, all the proesses reahable from one of those latter satisfy

Inst

+

(v

0

m+2

).

Therefore, the last statement is equivalent to that P

M

j= �(Inst(v

0

m+2

) ^

:Inst

+

(v

0

m+2

)) ^A

'

m+1

. Thus, it is equivalent to V

m

[℄ j v

0

m+1

[P

M

℄ j= T j

v

0

m+1

[�(Inst(v

0

m+2

)^:Inst

+

(v

0

m+2

))^A

'

m+1

℄, that is V

m

[℄ j P

'

m

j= A

'

m

.

� the ase where Q

m+1

= 8 is dual to the previous one. �

50

