
Real-time Extensions for the
Fiacre modeling language∗

Nouha Abid Silvano Dal Zilio
CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; F-31062 Toulouse, France
name@laas.fr

Abstract
We present our ongoing research on the extension of the Fiacre language with real-time con-

structs and real-time verification patterns. Fiacre is a formal language with support for expressing
concurrency and timing constraints; its goal is to act as an intermediate format for the formal verifica-
tion of high-level modeling language, such as Architecture Description Languages or UML profiles
for system modeling. Essentially, Fiacre is designed both as the target of model transformation en-
gines from various languages, as well as the source language of compilers into verification toolboxes,
namely Tina and CADP [1]. Our motivations for extending Fiacre are to reduce the semantic gap
between Fiacre and high-level description languages and to streamline our verification process.

1 Introduction

The Fiacre language has been designed in the context of the TOPCASED project [2] to serve as an inter-
mediate format between high level description languages and verification toolboxes. The use of a formal
intermediate modeling language has two benefits. First, it helps reduce the semantic gap between high-
level models – expressed, for example, using Architecture Description Languages (ADL) like AADL or
UML profiles for system modeling – and the input format of verification tools – that often relies on low
level formalisms, such as Petri Nets or process algebra. Second, the use of a formal language makes
it possible to define precisely the semantics of the input language “only once” and to share this work
among different verification toolchains. This is particularly helpful when we try to address emergent
system modeling language, whose semantic is still maturing.

We present ongoing research on the extension of the Fiacre language with real-time constructs and
real-time verification patterns. Our motivations for extending Fiacre are to reduce the semantic gap
between Fiacre and high-level description languages and to streamline our verification process. These
extensions, based on users feedbacks, aim at integrating in the language many aspects supported by a
large number of design languages and that are not yet supported by Fiacre.

In Section 2, we present the context of my research and briefly define the Fiacre language using an
illustrative example. In Section 3 we details some proposed extensions and some preliminary result.

2 Context of the Research

Formal verification is advocated as one of the solutions to the consistent increase in design complexity
of real-time embedded software. While verification activities should be performed at all stages of the
∗This work is partly supported by the FNRAE project Quarteft and by region Midi-Pyrénées.

2 N. Abid, S. Dal Zilio

development process to ensure the quality and reliability of systems, there are strong incentives for
systems designers to carry out as much verification as possible during the early phases, especially during
the functional and architectural design phases. To support this trend, a number of high level system
modeling languages have been proposed. To support model verification, a specific verification toolchain
should be developed for each of these modeling languages – even when they share strong commonalities.
The Fiacre language offers a solution to simplify the development of these verification toolchains.

Fiacre is a (French) acronym for an Intermediate Format for Embedded Distributed Components
Architectures (Format Intermédiaire pour les Architectures de Composants Répartis Embarqués). It is a
formal specification languages to represent both the behavioral and timing aspects of real-time systems.
We give an example of Fiacre syntax in Listing 1 and 2 of this paper.

The Fiacre language is stratified in two syntactical categories and embeds the notions of:

Processes – that describes the behavior of sequential components. A process is defined by a set of con-
trol states, each associated with an expression that specifies state transitions. Expressions are built
from deterministic constructs available in classical programming languages (assignments, condi-
tionals, sequential composition, ...); non-deterministic constructs (choice and non-deterministic
assignments); communication events on ports; and jump to next state.

Components – that describes the composition of processes, possibly in a hierarchical manner. A com-
ponent is defined as a parallel composition of components and processes communicating through
ports and shared variables. The notion of component allows to restrict the access mode and vis-
ibility of shared variables and ports, to associate timing constraints with communications and to
define priority between communication events.

Fiacre supports two of the most common communication paradigms: communication through shared
variable and synchronization through (synchronous) communication ports. In the latter case, it is possible
to associate time and priority constraints to communication over ports. The ability to directly express
timing constraints in a program is one of the distinguishing features of the Fiacre language.

The use of timing constraints is illustrated in the example bellow which models the operation of a
simple manufacturing plant. A factory assembles products from two command lines, L1 and L2. There
are four kind of machines available M1, M2, M3 and M4. L1 uses machines M1, M2 and M3 in this order
while L2 uses machines M2, M3 and M4. Two workers and one technician operate the lines: worker
W1 is on line L1; worker W2 on line L2; and technician T1 maintains the machines on both lines. The
factory is subject to operational and legal requirements: (1) workers should operate on work cycles of
less than 35 minutes, separated by 5 minutes pauses; (2) the duration of a machine task is between 5 and
10 minutes; (3) machines should be maintained after 15 task cycles.

The Fiacre language is strongly typed. We start the specification with the declaration of the types
used in our model of the plant. We use union types to model enumerations but more complex structured
types are also supported. The types used in the model of the plant are :

type machinename is union M1|M2|M3|M4 end

type linename is union line1|line2 end

type vector is array 3 of machinename

type tab is array 2 of linename

Processes and components declarations follow. Each process declaration states the name of the
process; the list of its communication ports (between brackets); the list of its parameters (between paren-
theses); and its list of states, after the states keyword. A process declaration describes the possible

Real-time extensions for Fiacre 3

transitions from each of its state, introduced by the keyword from. We present in Listing 2 part of the
manufacturing plant : the machine and the worker process.

Listing 1: A factory example in Fiacre : processes
p r o c e s s Machine [S t a r t M a c h i n e : machinename , EndMachine : machinename ,

S ta r tMach ineMnt : machinename , EndMachineMnt : machinename]
(name : machinename) i s

s t a t e s I d l e , Work , Mnt

v a r x : l inename , y : machinename , c y c l e : n a t :=0

from I d l e
S t a r t M a c h i n e ?name ;
t o Work

from Work
i f c y c l e <= 15 t h e n
EndMachine ! name ; c y c l e := c y c l e +1; t o I d l e
e l s e
S ta r tMach ineMnt ! name ; t o Mnt
end

from Mnt
EndMachineMnt ? y where y= name ; c y c l e : = 0 ;
t o I d l e

p r o c e s s Worker [S t a r t l i n e : l inename , E n d l i n e : l i n e n a m e] (l i n e : l i n e n a m e) i s

s t a t e s I d l e , Work , Pause

v a r y : l i n e n a m e

from I d l e
S t a r t l i n e ? y where y= l i n e ;
t o Work

from Work
E n d l i n e ? y where y= l i n e ;
t o Pause

from Pause
w a i t [5 , 5] ;
t o I d l e

A component declaration describes how process instances interact as presented in Listing 3. For
instance, communications on ports can be synchronized or interleaved.

Listing 2: A factory example in Fiacre : components
component Work [S t a r t l i n e : l inename , E n d l i n e : l inename , S t a r t M a c h i n e :

machinename , EndMachine : machinename] (l i n e : l i n e n a m e) i s

p a r ∗ i n
Worker [S t a r t l i n e , E n d l i n e] (l i n e)

| | L1 [S t a r t l i n e , S t a r t M a c h i n e , EndMachine , E n d l i n e]
end

component Main i s

p o r t S t a r t l i n e : l i n e n a m e i n [0 , 0] ,

4 N. Abid, S. Dal Zilio

E n d l i n e : l i n e n a m e i n [0 , 0] ,
S t a r t M a c h i n e : machinename i n [0 , 0] ,
EndMachine : machinename i n [5 , 1 0] ,
o b s e r v e r : none i n [3 5 , 3 5] ,
S t a r tMach ineMnt : machinename ,
EndMachineMnt : machinename i n [0 , 5]

p a r ∗ i n
P1 [S t a r t l i n e , E n d l i n e]
| | p a r

Work [S t a r t l i n e , End l ine , S t a r t M a c h i n e , EndMachine] (l i n e 1)
| | Work [S t a r t l i n e , End l ine , S t a r t M a c h i n e , EndMachine] (l i n e 2)
end

| | p a r ∗ i n
T e c h n i c i a n [S ta r tMachineMnt , EndMachineMnt]
| |
p a r M1 [S t a r t M a c h i n e , EndMachine , S ta r tMachineMnt , EndMachineMnt]
| | M2 [S t a r t M a c h i n e , EndMachine , S ta r tMachineMnt , EndMachineMnt]
| | M3 [S t a r t M a c h i n e , EndMachine , S ta r tMachineMnt , EndMachineMnt]
| | M4 [S t a r t M a c h i n e , EndMachine , S ta r tMachineMnt , EndMachineMnt]

end
end

end

The “ meaning” of a Fiacre program can be expressed as a Timed Transition System, defined from
the states of the system processes and from timed transitions between these states. The frac compiler
can be used to build a Time Transition System (TTS) from a Fiacre program. The Tina verification
toolbox [3] (http://homepages.laas.fr/bernard/tina) offers several tools to work with TTS
files1. For instance, for verification purposes, TTS specifications can be used by selt – a model-checker
for a State-Event version of LTL – and by muse – a model-checker for the µ-calculus. A verification
toolchain from Fiacre to CADP is also available.

We can express (a very weak form of) the real-time requirements of the factory using LTL formulas.
For instance:

Property 1 If Worker 1 is in a work cycle (in the state Work of instance 1 of the Worker process) then he
will eventually rests (he will reach the state Pause): Worker_1_sWork => <>Worker_1_sPause

Property 2 Machine 1 should always be eventually maintained:
[](<>(Machine_1_sWork => Machine_1_sMnt))

A strong limitation of an approach based on LTL model-checking is that it is not possible to express
timing constraints like, for example, that some deadline between significant events are met. In the fol-
lowing section, we show some extensions to the Fiacre language that makes it easier to express timed
properties on systems (instead of simple temporal properties).

3 Real-Time Extensions to Fiacre: the RT-Fiacre language

In this section, we discuss possible extensions to Fiacre in order to consider real time aspects. We
consider two kinds of extensions: (1) behavioral extensions, with the aim to increase the expressivity or
enhance the “ease of description” of the language; and (2) properties extensions, that aim at extending
the set of properties that can be checked on a model. The language with his extensions should be called
RT-Fiacre. We give one example for each kind of extensions.

1Tina is primarily a toolbox for the edition and analysis of Petri Nets and Time Petri Nets.

http://homepages.laas.fr/bernard/tina

Real-time extensions for Fiacre 5

3.1 Behavioral Extensions

We collected feedbacks from users that applied Fiacre to translate high-level specification languages. A
common limitation expressed by users was the lack of constructs found in real-time languages, and most
particularly the absence of the notion of “scheduled task”. Actually, Fiacre does not impose a specific
scheduling policy for managing processes – or a high-level mean to express such policy – which means
that users “should write their scheduler”. To this end, among the proposed behavioral extensions, we can
point out the addition of support for declaring sporadic and periodic tasks. For example, future versions
of RT-Fiacre will include a specific declaration for real-time processes with a syntax of the form:

periodic(period=p, deadline=d) process P [c1,...,cn] ...

for (preemptible) processes that should be scheduled every p units of time and:
sporadic(period=p, deadline=d, priority=p, protocol=proto) ...

for sporadic processes that can appear every p units of time.

3.2 Properties Extensions

We have given a brief idea of how Fiacre can be used for the model verification of high-level description
languages. Models are first interpreted in Fiacre using a dedicated translation tool (one compiler per high-
level language) and then compiled and checked using a model checker. We already gave some examples
of LTL formulas that can be checked by Tina on the specification given in Listing 1. When working with
industrial partners, it is often not desirable to expose this level of details. Instead, we propose a set of
high-level verification patterns that are rich enough to express (the most common) user requirements.
Hence, RT-Fiacre will integrate a “property declaration” language with high-level requirement pattern
such as, for example, the property Event1 leadsto Event2 within I, where I is a time interval, meaning
that: whenever Event1 occurs, then eventually Event2 must occur in a delay bounded by I. Events that
are observable at the Fiacre level are: a process entering or leaving a state; a variable changing value; a
communication through a port. We can exemplify the use of the leadsto pattern on the factory example.
For instance, the requirement that each Worker must pause after at most 35 minutes of work could be
“integrated” in a RT-Fiacre program by including a property declaration of the form:

Worker_1_sWork leadsto Worker_1_sPause within [0, 35]

We have already implemented an extension to the frac compiler that accepts the declaration of veri-
fication pattern. Currently, timed patterns, such as the “leadsto property”, are compiled into an oberver
that is automatically composed with the system at the level of the Timed Transition System. In the case
where the pattern is not valid, we obtain a counter-example, that is a sequence of events (with time
information) that leads to a problematic state.

4 Conclusion and Perspectives

We have briefly sketched the context of the work that should be tackled during my PhD thesis entitled
”Real-time extensions for the Fiacre language”. While, until now, the work has mainly focused on the
definition and verification of timed verification patterns for real-time systems, we are currently investi-
gating behavioral extensions to the language (see Section 3.1 for an example). Together with the addition
of support for scheduled task, we are also interested by adding support for the the notion of modes, that
is often found in real-time system. We plan to base our proposal on the “mode mechanism” found in
Architecture Description Languages, such as AADL for example.

6 N. Abid, S. Dal Zilio

References
[1] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang and F. Vernadat. Fiacre:

an intermediate language for model verification in the TOPCASED environment. 4th European Congress
Embedded Real Time Software , 2008

[2] P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crgut, M. Pantel. The TOPCASED
project: a Toolkit in OPen source for Critical Aeronautic SystEms Design. 3th European Congress Embedded
Real Time Software, 2006.

[3] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – Construction of Abstract State Spaces for Petri
Nets and Time Petri Nets. International Journal of Production Research, 42(14), 2004.

	Introduction
	Context of the Research
	Real-Time Extensions to Fiacre: the RT-Fiacre language
	Behavioral Extensions
	Properties Extensions

	Conclusion and Perspectives

