Power Laws in the Wild

Céline Comte and Fabien Mathieu

Nロ|<IA Bell Labs

TELECOM
ParisTech

ACN - Propagation in Graphs
November 12, 2018

Introduction

Introduction

Introduction

Introduction

Observations

- The mean degree is surprisingly high compared to the region where the mass of the distribution seems to be
- The degree distribution is scattered (dispersée) over a large range of values. By comparison, the Poisson distribution is concentrated around its mean.

Objectives

- Characterize heavy-tailed degree distributions
- Understand how this distribution emerges \rightarrow the Albert-Barabási generative model

Outline

Discrete power laws

Continuous power laws

Albert-Barabási generative graph model

Outline

Discrete power laws

Continuous power laws

Albert-Barabási generative graph model

Power law distribution

A random variable X has a power law distribution if

$$
\mathbb{P}(X=k) \sim \frac{P}{k \gamma} \text { as } k \rightarrow+\infty,
$$

for some real $\gamma>1$.

Power law distribution

A random variable X has a power law distribution if

$$
\mathbb{P}(X=k) \sim \frac{P}{k \gamma} \text { as } k \rightarrow+\infty,
$$

for some real $\gamma>1$.

Power law distribution

A random variable X has a power law distribution if

$$
\mathbb{P}(X=k) \sim \frac{P}{k \gamma} \text { as } k \rightarrow+\infty,
$$

for some real $\gamma>1$.

Interpretation

Typically, X ~ measure of popularity of individuals

- Node degree in a graph
- Frequency of occurrence of a word in a text
- Number of file downloads
$\mathbb{P}(X=k) \sim$ fraction of the individuals with popularity k

Heavy-tailed property

- Most of the individuals have a very small popularity
- A few individuals have an outstanding popularity

In practice: Zipf law

- A random variable X has a Zipf law if

$$
\mathbb{P}(X=k)=\frac{\frac{1}{k^{r}}}{\sum_{\ell=1}^{N} \frac{1}{\ell^{r}}}, \quad \forall \mathrm{k}=1, \ldots, \mathrm{~N},
$$

γ is a non-negative real and N is a positive integer.

- It is not a problem if the power-law behavior is not observed for the smallest values. The most important is the tail of the distribution.
- Unbounded version: Zeta distribution.

Examples (Newman, 2005)

- Node degree in some real-life graphs
- Town sizes (in number of individuals)
- Word frequency
- Citations of scientific papers
- Web hits
- Number of emails received per user and per day
- Magnitude of earthquakes
- Diameter of moon craters
- Intensity of solar flares
- Wealth of the richest people
- ...

Outline

Discrete power laws

Continuous power laws

Albert-Barabási generative graph model

Pareto distribution

A continuous random variable X with values in $\left[x_{m},+\infty[\right.$ has a Pareto distribution if its PDF is

$$
f(x)=\frac{\gamma-1}{x_{m}}\left(\frac{x_{m}}{x}\right)^{\gamma} \propto \frac{1}{x^{\gamma}}, \quad \forall x \geq x_{m},
$$

$\mathrm{X}_{\mathrm{m}}>0$ is the scale and $\gamma>1$ is the exponent

Pareto distribution

A continuous random variable X with values in $\left[x_{m},+\infty[\right.$ has a Pareto distribution if its PDF is

$$
f(x)=\frac{\gamma-1}{x_{m}}\left(\frac{x_{m}}{x}\right)^{\gamma} \propto \frac{1}{x^{\gamma}}, \quad \forall x \geq x_{m}
$$

$\mathrm{X}_{\mathrm{m}}>0$ is the scale and $\gamma>1$ is the exponent

Its CCDF is given by:

$$
\begin{aligned}
\mathbb{P}(X>x) & =\int_{x}^{+\infty} f(t) d t=(\gamma-1) x_{m}^{\gamma-1} \int_{x}^{+\infty} \frac{1}{t \gamma} d t \\
& =(\gamma-1) x_{m}^{\gamma-1}\left[\frac{t^{1-\gamma}}{1-\gamma}\right]_{x}^{+\infty} \\
& =\left(\frac{x_{m}}{x}\right)^{\gamma-1} \propto \frac{1}{x^{\gamma-1}}
\end{aligned}
$$

Exponent parameter γ

Scale parameter x_{m}

Plot in a log-log scale

 $\mathbb{P}(X>x)=\left(\frac{x_{m}}{x}\right)^{\gamma-1}$ means that$$
\log (\mathbb{P}(X>x))=\log \left(x_{m}^{\gamma-1}\right)-(\gamma-1) \log (x)
$$

\rightarrow Line of slope $-(\gamma-1)$ in a log-log scale

Plot in a log-log scale

 $\mathbb{P}(X>x)=\left(\frac{x_{m}}{x}\right)^{\gamma-1}$ means that$$
\log (\mathbb{P}(X>x))=\log \left(x_{m}{ }^{\gamma-1}\right)-(\gamma-1) \log (x)
$$

\rightarrow Line of slope $-(\gamma-1)$ in a log-log scale

Other quantities

- PDF: $f(x)=\frac{\gamma-1}{x_{m}}\left(\frac{x_{m}}{x}\right)^{\gamma}, \quad \forall x \geq x_{m}$
\rightarrow Line of slope $-\gamma$ in a log-log scale
- CCDF: $\mathbb{P}(X>x)=\left(\frac{x_{m}}{x}\right)^{\gamma-1}, \quad \forall x \geq x_{m}$
\rightarrow Line of slope $-(\gamma-1)$ in a log-log scale
- CDF: $\mathbb{P}(X \leq x)=1-\left(\frac{x_{m}}{x}\right)^{\gamma-1}, \quad \forall x \geq x_{m}$
- Mean: $\mathbb{E}(X)= \begin{cases}\frac{(\gamma-1) \mathrm{x}_{\mathrm{m}}{ }^{\gamma-1}}{\alpha-2} & \text { if } \gamma>2 \\ +\infty & \text { otherwise }\end{cases}$

Scale-free properties

- Scale-free property

$$
\mathbb{P}(\theta X>x)=\mathbb{P}\left(X>\frac{X}{\theta}\right)=\left(\frac{\theta x_{m}}{X}\right)^{\gamma-1}
$$

\rightarrow Pareto distribution with scale $\theta \times \mathrm{m}$ and exponent γ

- Conditional distribution

$$
\mathbb{P}(X>x \mid X>t)=\frac{\mathbb{P}(X>x)}{\mathbb{P}(X>t)}=\frac{\left(\frac{x_{m}}{x}\right)^{\gamma-1}}{\left(\frac{x_{m}}{t}\right)^{\gamma-1}}=\left(\frac{t}{x}\right)^{\gamma-1}
$$

\rightarrow Pareto distribution with scale t and exponent γ

Outline

Discrete power laws

Continuous power laws

Albert-Barabási generative graph model

Undirected graph model ($1^{\text {st }}$ version)

Generative model

- We start with an arbitrary undirected graph that contains at least one edge.
- Expansion: We add one new node at each step.
- Preferential attachment: The new node is attached to an existing node chosen at random with a probability that is proportional to its degree.

Notations

- $X_{k}(n)=$ number of degree- k nodes in the n-node graph
- $P_{k}(n)=\frac{X_{k}(n)}{n}=$ fraction of the nodes that have degree k

An example

We have $\mathrm{n}=5$ nodes
...

$$
\begin{aligned}
& X_{1}(5)=3, X_{2}(5)=1, X_{3}(5)=1 \\
& P_{1}(5)=\frac{3}{5}, P_{2}(5)=\frac{1}{5}, P_{3}(5)=\frac{1}{5}
\end{aligned}
$$

Remarks

Rich-get-richer phenomenon

- "Because of the preferential attachment, a vertex that acquires more connections than another will increase its connectivity at a higher rate". (Barabási and Albert, 1999)

The obtained graph is a tree. There exist extensions of the Albert-Barabási model in which it is not the case.

Asymptotic results

- "Law of large numbers": For each $k \geq 1$, we have

$$
P_{k}(n) \rightarrow P_{k} \text { almost surely as } n \rightarrow+\infty,
$$

where the sequence P_{k} is defined recursively by

$$
\left\{\begin{array}{l}
P_{1}=\frac{2}{3} \\
P_{k}=\frac{k-1}{k+2} P_{k-1}, \quad \forall k \geq 2
\end{array}\right.
$$

- Heavy-tailed distribution:

$$
P_{k} \sim \frac{4}{k^{3}} \text { as } k \rightarrow+\infty .
$$

Intuition of the proof

- Probability of choosing a given degree-k node $\approx \frac{k}{2 n}$.
- We first consider $k \geq 2$.
- Variation when we add the $n+1^{\text {th }}$ node:

$$
x_{k}(n+1)-x_{k}(n) \approx \frac{k-1}{2 n} x_{k-1}(n)-\frac{k}{2 n} x_{k}(n)
$$

Since $X_{k}(n)=n P_{k}(n)$, we obtain

$$
(n+1) P_{k}(n+1)-n P_{k}(n) \approx \frac{k-1}{2} P_{k-1}(n)-\frac{k}{2} P_{k}(n)
$$

Intuition of the proof

- Variation when we add the $n+1^{\text {th }}$ node:

$$
n\left(P_{k}(n+1)-P_{k}(n)\right) \approx \frac{(k-1)}{2} P_{k-1}(n)-\frac{k}{2} P_{k}(n)-P_{k}(n)
$$

- Assuming that $\mathrm{P}_{\mathrm{k}}(\mathrm{n})$ has a limit P_{k} as $\mathrm{n} \rightarrow+\infty$,

$$
0 \approx \frac{(\mathrm{k}-1)}{2} P_{k-1}-\frac{k}{2} P_{k}-P_{k}
$$

that is,

$$
\left(\frac{k}{2}+1\right) P_{k} \approx \frac{k-1}{2} P_{k-1},
$$

that is,

$$
P_{k} \approx \frac{k-1}{k+2} P_{k-1}
$$

Intuition of the proof

- We now focus on $k=1$.
- Variation when we add the $(n+1)^{\text {th }}$ node:

$$
X_{1}(n+1)-X_{1}(n) \approx 1-\frac{1}{2 n} X_{1}(n)
$$

Since $X_{1}(n)=n P_{1}(n)$, we obtain

$$
(n+1) P_{1}(n+1)-n P_{1}(n) \approx 1-\frac{1}{2} P_{1}(n),
$$

that is,

$$
n\left(P_{1}(n+1)-P_{1}(n)\right) \approx 1-\frac{1}{2} P_{1}(n)-P_{1}(n)
$$

Intuition of the proof

- Variation when we add the $(n+1)^{\text {th }}$ node:

$$
n\left(P_{1}(n+1)-P_{1}(n)\right) \approx 1-\frac{1}{2} P_{1}(n)-P_{1}(n)
$$

- Assuming that $P_{1}(n)$ has a limit P_{1} as $n \rightarrow+\infty$,

$$
0 \approx 1-\frac{3}{2} P_{1},
$$

that is,

$$
P_{1} \approx \frac{2}{3}
$$

Intuition of the proof

- We have shown that

$$
\left\{\begin{array}{l}
P_{1}=\frac{2}{3} \\
P_{k}=\left(1-\frac{3}{k+2}\right) P_{k-1}, \quad \forall k \geq 2
\end{array}\right.
$$

- By expanding the recursion, we obtain, for each $k \geq 2$,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{k}} & =\frac{2}{3} \prod_{\ell=2}^{\mathrm{k}} \frac{\ell-1}{\ell+2}=\frac{2}{3} \frac{\prod_{\ell=2}^{\mathrm{k}}(\ell-1)}{\prod_{\ell=2}^{\mathrm{k}}(\ell+2)}, \\
& =\frac{2}{3} \frac{\prod_{\ell=1}^{\mathrm{k}-1} \ell}{\prod_{\ell=4}^{\mathrm{k}+2} \ell}=\frac{2}{3} \frac{1 \times 2 \times 3}{\mathrm{k} \times(\mathrm{k}+1) \times(\mathrm{k}+2)}, \\
& \sim \frac{4}{\mathrm{k}^{3}} \text { as } \mathrm{k} \rightarrow+\infty . \quad \square
\end{aligned}
$$

Undirected graph model (2 $2^{\text {nd }}$ version)

Generative model

- We start with an arbitrary undirected graph that contains at least one edge.
- Expansion: We add one new node at each step.
- The connecting node is chosen as follows:
- With probability α, uniform attachment: All nodes are chosen with the same probability
- With probability $1-\alpha$, preferential attachment:

A node is chosen with a probability that is proportional to its degree

The $1^{\text {st }}$ version of the model: $\alpha=0$

Asymptotic results

- "Law of large numbers": For each $k \geq 1$, we have

$$
P_{k}(n) \rightarrow P_{k} \text { almost surely as } n \rightarrow+\infty,
$$

where the sequence P_{k} is defined recursively by

$$
\left\{\begin{array}{l}
\mathrm{P}_{1}=\frac{2}{3+\alpha} \\
\mathrm{P}_{\mathrm{k}}=\frac{\alpha+\frac{1-\alpha}{2}(\mathrm{k}-1)}{1+\alpha+\frac{1-\alpha}{2} \mathrm{k}} \mathrm{P}_{\mathrm{k}-1}, \quad \forall \mathrm{k} \geq 2
\end{array}\right.
$$

- Heavy-tailed distribution:
$P_{k} \sim \frac{P}{k r}$ as $k \rightarrow+\infty$, where $P>0$ is a constant and

$$
\gamma=\frac{3-\alpha}{1-\alpha}=1+\frac{2}{1-\alpha}>1 .
$$

References

- M. E. J. Newman (2005). "Power laws, Pareto distributions and Zipf's law". In: Contemporary Physics \rightarrow An excellent overview
- Albert-László Barabási and Réka Albert (1999). "Emergence of Scaling in Random Networks". In: Science \rightarrow Albert-Barabási model
- Moez Draief and Laurent Massoulié (2009). Epidemics and Rumours in Complex Networks. Cambridge University Press
\rightarrow Chapter 7 "Power Laws via preferential attachment"

