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Introduction

Observations
• The mean degree is surprisingly high compared to the
region where the mass of the distribution seems to be

• The degree distribution is scattered (dispersée) over a
large range of values. By comparison, the Poisson
distribution is concentrated around its mean.

Objectives
• Characterize heavy-tailed degree distributions
• Understand how this distribution emerges
→ the Albert-Barabási generative model
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Power law distribution

A random variable X has a power law distribution if

P(X= k)∼ P
kγ

as k→+∞,

for some real γ>1.
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Interpretation

Typically, X∼measure of popularity of individuals
• Node degree in a graph
• Frequency of occurrence of a word in a text
• Number of file downloads

P(X= k)∼ fraction of the individuals with popularity k

Heavy-tailed property
• Most of the individuals have a very small popularity
• A few individuals have an outstanding popularity

7/30 © 2018 Nokia Public



In practice: Zipf law

• A random variable X has a Zipf law if

P(X= k)=
1
kγ∑N

ℓ=1
1
ℓγ

, ∀k=1, . . . ,N,

γ is a non-negative real and N is a positive integer.

• It is not a problem if the power-law behavior is not
observed for the smallest values. The most important
is the tail of the distribution.

• Unbounded version: Zeta distribution.
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Examples (Newman, 2005)

• Node degree in some real-life graphs
• Town sizes (in number of individuals)
• Word frequency
• Citations of scientific papers
• Web hits
• Number of emails received per user and per day
• Magnitude of earthquakes
• Diameter of moon craters
• Intensity of solar flares
• Wealth of the richest people
• …
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Pareto distribution

A continuous random variable X with values in [xm,+∞[ has a
Pareto distribution if its PDF is

f(x)= γ−1
xm

(xm
x

)γ
∝ 1

xγ
, ∀x≥ xm,

xm >0 is the scale and γ>1 is the exponent
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Pareto distribution

A continuous random variable X with values in [xm,+∞[ has a
Pareto distribution if its PDF is

f(x)= γ−1
xm

(xm
x

)γ
∝ 1

xγ
, ∀x≥ xm,

xm >0 is the scale and γ>1 is the exponent

Its CCDF is given by:

P(X> x)=
∫ +∞

x
f(t)dt= (γ−1)xmγ−1

∫ +∞

x

1
tγ
dt

= (γ−1)xmγ−1
[
t1−γ

1−γ

]+∞

x

=
(xm
x

)γ−1
∝ 1

xγ−1
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Exponent parameter γ
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Scale parameter xm
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Plot in a log-log scale

P(X> x)= ( xm
x

)γ−1 means that

log(P(X> x))= log
(
xmγ−1

)
− (γ−1) log(x)

→ Line of slope −(γ−1) in a log-log scale
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Other quantities

• PDF: f(x)= γ−1
xm

(xm
x

)γ
, ∀x≥ xm

→ Line of slope −γ in a log-log scale

• CCDF: P(X> x)=
(xm
x

)γ−1
, ∀x≥ xm

→ Line of slope −(γ−1) in a log-log scale

• CDF: P(X≤ x)=1−
(xm
x

)γ−1
, ∀x≥ xm

• Mean: E(X)=

(γ−1)xmγ−1

α−2
if γ>2

+∞ otherwise
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Scale-free properties

• Scale-free property

P(θX> x)=P
(
X> x

θ

)
=

(
θxm
x

)γ−1
→ Pareto distribution with scale θxm and exponent γ

• Conditional distribution

P(X> x |X> t)= P(X> x)
P(X> t)

=
( xm
x

)γ−1( xm
t

)γ−1 =
(
t
x

)γ−1
→ Pareto distribution with scale t and exponent γ
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Undirected graph model (1st version)

Generative model
• We start with an arbitrary undirected graph that
contains at least one edge.

• Expansion: We add one new node at each step.
• Preferential attachment: The new node is attached to
an existing node chosen at random with a probability
that is proportional to its degree.

Notations
• Xk(n)= number of degree-k nodes in the n-node graph

• Pk(n)= Xk(n)
n = fraction of the nodes that have degree k
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Remarks

Rich-get-richer phenomenon
• “Because of the preferential attachment, a vertex that
acquires more connections than another will increase its
connectivity at a higher rate”. (Barabási and Albert, 1999)

The obtained graph is a tree. There exist extensions of the
Albert-Barabási model in which it is not the case.
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Asymptotic results

• “Law of large numbers”: For each k≥1, we have

Pk(n)→ Pk almost surely as n→+∞,

where the sequence Pk is defined recursively by{
P1 = 2

3 ,

Pk = k−1
k+2Pk−1, ∀k≥2.

• Heavy-tailed distribution:

Pk ∼
4
k3

as k→+∞.

22/30 © 2018 Nokia Public



Intuition of the proof

• Probability of choosing a given degree-k node ≈ k
2n .

• We first consider k≥2.
• Variation when we add the n+1th node:

Xk(n+1)−Xk(n)≈
k−1
2n

Xk−1(n)−
k
2n

Xk(n).

Since Xk(n)= nPk(n), we obtain

(n+1)Pk(n+1)−nPk(n)≈
k−1
2

Pk−1(n)−
k
2
Pk(n).
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Intuition of the proof

• Variation when we add the n+1th node:

n(Pk(n+1)−Pk(n))≈
(k−1)

2
Pk−1(n)−

k
2
Pk(n)−Pk(n).

• Assuming that Pk(n) has a limit Pk as n→+∞,

0≈ (k−1)
2

Pk−1−
k
2
Pk−Pk,

that is, (
k
2
+1

)
Pk ≈

k−1
2

Pk−1,

that is,

Pk ≈
k−1
k+2

Pk−1.
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Intuition of the proof

• We now focus on k=1.
• Variation when we add the (n+1)th node:

X1(n+1)−X1(n)≈1− 1
2n

X1(n).

Since X1(n)= nP1(n), we obtain

(n+1)P1(n+1)−nP1(n)≈1− 1
2
P1(n),

that is,

n(P1(n+1)−P1(n))≈1− 1
2
P1(n)−P1(n).
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Intuition of the proof

• Variation when we add the (n+1)th node:

n(P1(n+1)−P1(n))≈1− 1
2
P1(n)−P1(n).

• Assuming that P1(n) has a limit P1 as n→+∞,

0≈1− 3
2
P1,

that is,

P1 ≈
2
3

.
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Intuition of the proof

• We have shown that{
P1 = 2

3 ,

Pk =
(
1− 3

k+2
)
Pk−1, ∀k≥2.

• By expanding the recursion, we obtain, for each k≥2,

Pk =
2
3

k∏
ℓ=2

ℓ−1
ℓ+2

= 2
3

∏k
ℓ=2(ℓ−1)∏k
ℓ=2(ℓ+2)

,

= 2
3

∏k−1
ℓ=1ℓ∏k+2
ℓ=4ℓ

= 2
3

1×2×3
k× (k+1)× (k+2)

,

∼ 4
k3

as k→+∞.
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Undirected graph model (2nd version)

Generative model
• We start with an arbitrary undirected graph that
contains at least one edge.

• Expansion: We add one new node at each step.
• The connecting node is chosen as follows:

− With probability α, uniform attachment:
All nodes are chosen with the same probability

− With probability 1−α, preferential attachment:
A node is chosen with a probability that is
proportional to its degree

The 1st version of the model: α=0
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Asymptotic results

• “Law of large numbers”: For each k≥1, we have

Pk(n)→ Pk almost surely as n→+∞,

where the sequence Pk is defined recursively byP1 = 2
3+α ,

Pk = α+ 1−α
2 (k−1)

1+α+ 1−α
2 k

Pk−1, ∀k≥2.

• Heavy-tailed distribution:
Pk ∼ P

kγ as k→+∞, where P>0 is a constant and

γ= 3−α

1−α
=1+ 2

1−α
>1.
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