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Markov Chain

(Xk)k∈N sequence of random variables with values in {1, . . . ,n}.
Typically, Xk ∼ state of a system at time k.

(Xk)k∈N is a Markov chain if the future is conditionally
independent of the past given the present, that is

P(Xk+1 = xk+1 |X0 = x0, . . . ,Xk−1 = xk−1,Xk = xk)
=P(Xk+1 = xk+1 |Xk = xk),

for all k ∈N and x0,x1, . . . ,xk,xk+1 ∈
{
1, . . . ,n

}
.

1, . . . ,n are called the states of the Markov chain.
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Transition graph

(Time) Homogeneity: We assume that the probability of the
next transition is independent of the time k when it occurs.

Transition graph: A directed graph with
• Nodes ∼ the states 1, . . . ,n of the Markov chain
• Arrows ∼ the transitions, weighted by their probability

Useful representation for reasoning about the Markov chain.

The weights of the outgoing edges from each node sum to 1.
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Example: Weather (Wikipedia)

Xk ∈
{
sunny,rainy

}
is the weather on day k

• If it’s sunny today, it’ll also be sunny tomorrow with
probability 0.9, otherwise it’ll be rainy;

• If it’s rainy today, it’ll also be rainy tomorrow with
probability 0.5, otherwise it’ll be sunny.

Sunny Rainy0.9

0.1

0.5

0.5

Question: On average, is it more often sunny or rainy?
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Example: Simple game

Xk ∈ {1, . . . ,6} is the position
of the player at time k.

At each turn, the player
flips an unbiased coin,

• If it’s heads, the player
moves down;

• It it’s tails, the player
moves up.
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Question: How does the position evolve after a long time?
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Transition matrix

Adjacency matrix A= (ai,j)i,j=1,...,n of the transition graph

ai,j =weight of the arrow from state i to state j,
=probability P(Xk+1 = j |Xk = i) that the
Markov chain moves from state i to state j,

The matrix A is right-stochatic, because

ai,j ≥0, ∀i, j=1, . . . ,n,

and
n∑
j=1

ai,j =1, ∀i=1, . . . ,n.

Useful representation for doing calculations.
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Example: Weather (Wikipedia)

Xk ∈
{
sunny,rainy

}
is the weather on day k

Sunny Rainy

0.1

0.9

0.5

0.5

A=
[
0.9 0.1
0.5 0.5

]
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Example: Simple game

Xk ∈ {1, . . . ,6} is the position of the player at time k.

A=
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2 0 0 0 1
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Distribution at time k

• Distribution of the state of the Markov chain at time k:

Pk =
[
P(Xk =1) . . . P(Xk = n−1) P(Xk = n)

]
.

• Recursive formula between times k and k+1:

P(Xk+1 = j)=
n∑
i=1

P(Xk = i)P(Xk+1 = j |Xk = i)
(
law of total
probabilities

)
,

=
n∑
i=1

P(Xk = i)ai,j.

In other words: Pk+1 = PkA, ∀k ∈N.
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Example: Weather (Wikipedia)

Xk ∈
{
sunny,rainy

}
is the weather on day k.

Sunny Rainy

0.1

0.9

0.5

0.5 A=
[
0.9 0.1
0.5 0.5

]

Assume that, on the initial day, it’s sunny with probability 0.6
and rainy with probability 0.4: P0 = [0.6 0.4].

On the next day, it’s sunny with probability 0.74 and rainy
with probability 0.26:

P1 = P0A= [
0.6 0.4

][
0.9 0.1
0.5 0.5

]
= [

0.74 0.26
]

.
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Stationary distribution

• If the distribution has a limit P, then:

P= lim
k→+∞

Pk+1 = lim
k→+∞

PkA= PA.

Therefore, the limit P is a “fixed-point” of the matrix A
(that is, a left eigenvector for the eigenvalue 1):

P= PA.

• P is called a stationary distribution of the Markov chain:

If P0 = P, then we have: P1 = P0A= PA= P,
If P0 = P, then we have: P2 = P1A= PA= P,
If P0 = P, then we have: and so on . . .
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Irreducible Markov chain

The Markov chain (Xk)k∈N is irreducible if one of the two
following equivalent conditions is satisfied:

• Its transition graph is strongly connected, that is, there
exists a directed path between any two nodes.

• Whichever the current state of the Markov chain, it can
reach any other state with a non-zero probability.

Remark: This condition only depends on the existence of the
arrows, but not on their weight.

A Markov chain that is not irreducible is said reducible.
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Examples

1 2

Irreducible
(path 1→2→1)

1 2

34

Reducible
(no path from 2 to 1)

1 2 3 4 5

Irreducible
(path 1→2→3→4→5→4→3→2→1)
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Perron-Frobenius theorem (Part 1)

Theorem: Consider an irreducible Markov chain (Xk)k∈N.
• (Xk)k∈N has a unique stationary distribution P.
• P is the unique normalized solution of P= PA.
(In other words, P is the unique normalized, left
eigenvector of A for the eigenvalue 1.)

• All components of P are positive.

Remark: This theorem proves the existence and the unicity
of the stationary distribution P but not necessarily the
convergence of Pk to P as k→+∞.

You will see in the practical what happens if the Markov chain
is reducible.

17/28 © 2018 Nokia Public



Ergodic theorem

Theorem: Let (Xk)k∈N be an irreducible Markov chain and
P its stationary distribution. Then, for each state i=1, . . . ,n,

1
K

K∑
k=1

1{Xk=i} → P(i) almost surely as K→+∞.

In other words, the ith component P(i) of P is the fraction of
time the Markov chain spends in state i during one realization.

Remark: In the rest of the course, we will systematically work
with irreducible Markov chains.
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Period

The period of a node is the greatest common divisor (GCD)
of the lengths of its cycles.

1 2

Both nodes have period 1
(there is a loop)

1 2

34

All nodes have period 2

1 2 3 4 5

All nodes have period 1 (again, there is a loop)
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Period

The period of a node is the greatest common divisor (GCD)
of the lengths of its cycles.

Remarks:
• Again, this definition only depends on the existence of
the arrows and not on their weights.

• In an irreducible Markov chain, all states have the same
period. Therefore, we can define the period of the
Markov chain as the shared period of its states.

• The Markov chain is said aperiodic it it has period 1.
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Example: Period 4

1 2

34

1

1

1

1

A=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



The Markov chain is initially in state 1
P0 =

[
1 0 0 0

]
• Time 1: State 2
P1 =

[
0 1 0 0

]
• Time 2: State 3
P2 =

[
0 0 1 0

]
• Time 3: State 4
P3 =

[
0 0 0 1

]
• Time 4: State 1
P4 =

[
1 0 0 0

]
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Example: Period 2

1 2

34

1

1
2 1

2

1

1

A=


0 1 0 0
1
2 0 1

2 0
0 0 0 1
1 0 0 0



The Markov chain is initially in state 1
P0 =

[
1 0 0 0

]
• Time 1: State 2
P1 =

[
0 1 0 0

]
• Time 2: State 1 or 3
P2 =

[1
2 0 1

2 0
]

• Time 3: State 2 or 4
P3 =

[
0 3

4 0 1
4
]

• Time 4: State 1 or 3
P4 =

[5
8 0 3

8 0
]

→ The Markov chain keeps alter-
nating between {1,3} and {2,4}.
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Example: Period 1

1 2

34

1

1
2 1

2

1

1

A=


0 1 0 0
0 0 1

2
1
2

0 0 0 1
1 0 0 0



The Markov chain is initially in state 1

• Time 1: State 2
• Time 2: State 3 or 4
• Time 3: State 1 or 4
• Time 4: State 1 or 2
• Time 5: State 2, 3, or 4
• Time 6: State 1, 3, or 4
• Time 7: State 1, 2, or 4
• Time 8: State 1, 2, 3, or 4

→ If we wait long enough, theMarkov
chain can be in any state at each
instant
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Perron-Frobenius theorem (Part 2)

Theorem: Consider an irreducible Markov chain (Xk)k∈N.
• (Xk)k∈N has a unique stationary distribution P.
• P is the unique normalized solution of P= PA.
(In other words, P is the unique normalized, left
eigenvector of A for the eigenvalue 1.)

• All components of P are positive.

If (Xk)k∈N is also aperiodic, then Pk → P as k→+∞.
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Introduction

• Proposed by Larry Page and Sergey Brin in 1996.

• Idea: Associate to each web page a rank that is
proportional to its popularity.

• PageRank algorithm: Compute the rank of each page.
Imagine a random surfer who wanders through the web
graph, following edges at random. The rank of a page is
the proportion of time the surfer spends on this page.

• Web graph: Directed graph
− Nodes ∼ Web pages
− Edges ∼ Hyperlinks
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Markov chain formulation (1st version)

At each step, the surfer chooses an outgoing edge uniformly
at random and jumps to the page pointed by this edge.

Xk ∈
{
1, . . . ,n

}
is the position of the random surfer at time k.

If this Markov chain is irreducible and aperiodic, then we can
apply Perron-Frobenius theorem:

• The (Page)rank is defined as its stationary distribution P.
• We can approximate P by starting from an arbitrary
distribution P0 and iterating over Pk+1 = PkA.

Otherwise, see the second exercice of the practical …
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