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In this chapter, we will consider networks of queues, in which each customer may receive service at several
queues in a row. Each queue is similar to the M/M/1 queue introduced in Chapter 4. The only difference
is that the input process is not Poisson in general, as each queue may receive customers from other queues.
This chapter gives you a glimpse of the topics covered in the course 2MMS40 Stochastic Networks. We will
make a distinction between two types of networks called open and closed.

1 Open Jackson networks

We first focus on open networks of queues, in which customers arrive from the outside and eventually leave
the system.

1.1 Model description

Consider a network of k queues. Queue i has a single server and service times are exponential with mean
1/µi, for each i = 1, . . . , k. Customers enter queue i from outside according to a Poisson process with
rate νi. Taking νi = 0 means that there are no exogenous arrivals at queue i, and for now we only require
that

∑k
i=1 νi > 0. Customers can also move from queue to queue upon service completion. More specifically,

for each i = 1, . . . , k, when a customer completes service at queue i, this customer enters queue j to
receive service with probability qi,j , for each j = 1, . . . , k, or leaves the system with probability qi =

1 −
∑k
j=1 qi,j . This is called Markov routing, as the routing is described by a Markov chain. We assume

that the exogenous arrival rates and routing probabilities satisfy the following technical assumptions, often
called irreducibility assumptions: each queue is visited with a positive probability by some customers, and
each customer eventually leaves the system with probability one. We also assume that the service times of
customers at different queues are independent. This network is called an open Jackson network.

The effective arrival rates λ1, λ2, . . . , λk are defined by the following traffic equations:

λi = νi +

k∑
j=1

λjqj,i, i = 1, . . . , k. (1)

As the name suggests, these effective arrival rates will give the rates at which customers enter the queues
(either from outside or from another queue) when the system is in equilibrium. The traffic equations simply
mean that the arrival process at queue i is the superposition of two processes, the exogenous arrival process
(Poisson with rate νi) and the internal routing process. In matrix form, the traffic equations can be rewritten
as λ = ν + λQ, where λ = (λ1, λ2, . . . , λk) and ν = (ν1, ν2, . . . , νk) are row vectors and Q = (qi,j)i,j=1,...,k

is the internal (sub-stochastic) routing matrix. The irreducibility assumptions guarantee that the matrix
I − Q (where I is the identity matrix of dimension k) is invertible, and that the traffic equations have a
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unique solution given by λ = ν(I − Q)−1. The proof of this statement, which consists of interpreting the
traffic equations as the equilibrium equations of a discrete-time Markov chain, is postponed until Section 3.
Summing the traffic equations also yields

k∑
i=1

νi =

k∑
i=1

λiqi,

meaning that, in equilibrium, the overall arrival and departure rates are equal to each other.

Similarly to the single-queue model of Chapter 4, we require that

ρi =
λi
µi

< 1, i = 1, . . . , k,

since, otherwise, the length of at least one of the queues will grow without bound. We will see later that,
under this condition, the quantity ρi is the fraction of time that the server at queue i is working, that is, the
occupation rate of queue i.

Example 1 (Two M/M/1 queues in series). Consider an open tandem network of k = 2 queues. The external
arrival rates are ν1 > 0 and ν2 = 0. The Markov routing is defined by q1,2 = q2 = 1, so that all customers
visit first queue 1 and then queue 2 before leaving the system. The corresponding network of queues is shown
in Figure 1. The traffic equations (1) simplify as λ1 = ν1 and λ2 = λ1, which yields directly λ1 = λ2 = ν1.
The stability condition is ν1 < µ1 and ν1 < µ2. If the first condition is not satisfied, the length of the first
queue will grow without bound (and so may do the length of the second queue); if the second condition is
not satisfied, the length of the second queue will grow without bound.

µ1 µ2ν1

Figure 1: Two M/M/1 queues in series

If you take the course 2MMS40, you will see that, according to Burke’s theorem, the output process of a
stable M/M/1 queue is a Poisson process with the same rate as the input process. In our example, this
implies that the output process of the first queue is a Poisson process with rate ν1, so that the second queue
is again an M/M/1 queue. The stationary behavior of each queue can therefore be analyzed in the same way
as in Chapter 4. This simple yet insightful example motivated the first analysis of Jackson networks.

Example 2 (Open network of two queues). Again consider an open network of k = 2 queues. The exogenous
rates are ν1 = 1 and ν2 = 2. The Markov routing is given by q1,1 = 1

4 , q1,2 = 1
2 , and q2,1 = q2,2 = 1

3 . We
also let µ1 = µ2 = 8. This network is shown in Figure 2. The traffic equations are

λ1 = 1 +
1

4
λ1 +

1

3
λ2, λ2 = 2 +

1

2
λ1 +

1

3
λ2.

Solving these equations yields λ1 = 4 and λ2 = 6. The system is stable, and the occupation rates of the
queues are ρ1 = 1

2 and ρ2 = 3
4 .

1.2 Equilibrium distribution

The network state is described by the vector n = (n1, n2, . . . , nk), where ni is the number of customers at
queue i, for each i = 1, . . . k. The set of possible values of this vector is S = {0, 1, 2, . . .}k. The memoryless
property of the interarrival and service times guarantees that the evolution of this vector over time defines
a Markov process. For each i = 1, . . . , k, we let ei denote the k-dimensional vector with one in component i
and zero elsewhere, corresponding to a network state with a single customer at queue i.
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Figure 2: An open network of two queues

Let pn denote the equilibrium probability that there are ni customers at queue i, for each i = 1, . . . , k. We
obtain the following set of equilibrium equations for pn: k∑

i=1

νi +

k∑
i=1
ni>0

µi

 pn =

k∑
i=1
ni>0

νipn−ei +

k∑
i=1
ni>0

k∑
j=1

µjqj,ipn−ei+ej +

k∑
j=1

µjqjpn+ej , n ∈ {0, 1, 2, . . .}k, (2)

The first factor on the left-hand side is the rate at which a transition occurs when the network is in state n.
The right-hand side is made up of three sums that correspond to the probability flow into state n due to a
customer who enters the network from the outside, a customer who enters a queue after a service completion,
and a customer who leaves the system after a service completion, respectively.

Using the traffic equations (1), we can verify that the following distribution satisfies the balance equations (2),
and is therefore the equilibrium distribution:

pn =

k∏
i=1

(1− ρi)ρini , n ∈ {0, 1, 2, . . .}k. (3)

This distribution is said to have a product form because it is written as a product of factors. Referring back
to Chapter 4, we recognize in these factors the equilibrium distributions of M/M/1 queues with occupation
rates ρ1, ρ2, . . . , ρk. Therefore, when the system is in equilibrium, the queue states at any point in time
are independent of each other, and their distributions are the same as in M/M/1 queues. This remark also
proves that the distribution is indeed normalized.

Example 3 (Open network of two queues). Going back to Example 2, we obtain that the equilibrium distri-
bution of the network state is given by

pn =

(
1

2

)n1+1

× 1

4

(
3

4

)n2

, n ∈ {0, 1, 2, . . .}2.

Since the marginal stationary distribution of each queue is that of an M/M/1 queue, the mean numbers of
customers at the first and second queues are given by E(L1) = ρ1

1−ρ1 = 1 and E(L2) = ρ2
1−ρ2 = 3. It follows

from Little’s law that the means of the sojourn times S in the network, S1 at queue 1, and S2 at queue 2
are given by

E(S) =
E(L1) + E(L2)

ν1 + ν2
=

4

3
, E(S1) =

E(L1)

λ1
=

1

4
, E(S2) =

E(L2)

λ2
=

1

2
.

These quantities are related by the equation

E(S) =
λ1

ν1 + ν2
E(S1) +

λ2

ν1 + ν2
E(S2) =

4

3
E(S1) + 2E(S2).
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Consistently, one could verify that λi

ν1+ν2
is the expected number of times that a customer visits queue i, for

i ∈ {1, 2}.

Remark. Even though the external arrival processes are Poisson and the service time distributions are
exponential, the queues do not strictly behave as M/M/1 queues in general because of the additional arrivals
coming from other queues. Surprisingly, as we have just seen, the stationary distribution of each queue still
corresponds to that of an M/M/1 queue with the same occupancy rate. This explains why the queues of an
open Jackson networks are (somewhat sloppily) sometimes referred to as M/M/1 queues in the literature.

1.3 Arrival theorem

Several results about the M/M/1 queue, like the distribution of the sojourn time of a customer and the
mean-value analysis, rely on the PASTA property. An analogous property holds in an open Jackson network,
namely, the probability that a customer arriving at a queue (either from outside or from another queue)
sees the system in state n is equal to the equilibrium probability pn. Consequently, the results derived in
Chapter 4 for the M/M/1 queue still hold for each queue of an open Jackson network.

2 Closed Jackson networks

We now consider a modification of the previous network that is said to be closed because customers neither
enter nor leave the system. We will mainly focus on highlighting the differences with the open network.

2.1 Model description

We again consider a network of k single-server queues with exponential service times with rates µ1, µ2, . . . , µk.
There are no exogenous arrivals and the overall number of customers in the system is denoted by `. For each
i = 1, . . . , k, when a customer completes service at queue i, this customer enters queue j with probability qi,j ,

for each j = 1, . . . , k, with
∑k
j=1 qi,j = 1. We assume that this Markov routing is irreducible in the sense

that customers can eventually visit all queues with a positive probability, irrespective of the queue where
they are currently. We also assume that the service times of customers at different queues are independent.
This network is called a closed Jackson network.

The relative arrival rates λ1, λ2, . . . , λk are defined by the traffic equations

λi =

k∑
j=1

λjqj,i, i = 1, . . . , k. (4)

These equations can be seen as a special case of the traffic equations (1), stated for open networks, with
νi = 0 for i = 1, . . . , k. The traffic equations can be rewritten as λ = λQ, where λ = (λ1, λ2, . . . , λk) is a
row vector and Q = (qi,j)i,j=1,...,k is the (stochastic) routing matrix; this equation means that the vector
λ is a left eigenvector of the matrix Q. The irreducibility assumption guarantees that the traffic equations
have a unique solution up to a multiplicative constant. The proof of this statement, which again consists of
interpreting the traffic equations as the equilibrium equations of a discrete-time Markov chain, is postponed
until Section 3. For now, we simply define the relative arrival rates λ1, λ2, . . . , λk as an arbitrary positive
solution of these equations. These relative arrival rates only tell you that a fraction λi

λ1+···+λN
of the arrivals

is an arrival at queue i. The effective arrival rates, which are also solutions to the traffic equations, will be
determined later and depend on the number ` of customers in the system and the service rates µ1, µ2, . . . , µk.

We again let ρi = λi

µi
for each i = 1, . . . , k. The system is always stable because the overall number of

customers in the system is a constant. The ratios ρ1, ρ2, . . . , ρk are equal to the occupation rates only if the
relative arrival rates are equal to the effective arrival rates.
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Example 4. Consider a closed network of k = 2 queues. The Markov routing is given by q1,1 = 1
3 , q1,2 = 2

3 ,
and q2,1 = q2,2 = 1

2 . The service rates are µ1 = µ2 = 8. The traffic equations become

λ1 =
1

3
λ1 +

1

2
λ2, λ2 =

2

3
λ1 +

1

2
λ2.

These equations are linearly dependent and equivalent to 4λ1 = 3λ2. We can choose for instance λ1 = 3 and
λ2 = 4. The effective arrival rates, which will be denoted by Λ1 and Λ2 later in this section, are given by
Λ1 = 3α and Λ2 = 4α for some proportionality constant α > 0. We have in particular Λ1

Λ2
= λ1

λ2
.

2.2 Equilibrium distribution

We again focus on the differences with open networks. The state is still given by n = (n1, n2, . . . , nk), where
ni is the number of customers at queue i, for each i = 1, . . . , k. Since the overall number of customers in the
network is equal to `, the set of possible values of this vector is

S =
{
n ∈ {0, 1, 2, . . .}k : n1 + n2 + . . .+ nk = `

}
.

The equilibrium equations for the closed network follow by injecting νi = qi = 0 in the equilibrium equa-
tions (2) of the open network. Consistently, we can verify that the equilibrium distribution for the closed
network is similar to that of the open network, up to a multiplicative constant:

pn =
1

c

k∏
i=1

ρi
ni , n ∈ S. (5)

In general, and contrary to open networks, multiplying the term corresponding to queue i by 1 − ρi is not
sufficient to normalize the equilibrium distribution because the state space is smaller. The normalization
constant c is instead given by

c =
∑
n∈S

k∏
i=1

ρi
ni . (6)

Since the number n1 + n2 + . . .+ nk = ` of customers in the network is a constant, multiplying all relative
arrival rates by the same (positive) constant a amounts to multiplying (5) and (6) by a`, so that the resulting
equilibrium distribution is unchanged. This explains why the relative arrival rates can be chosen up to a
multiplicative constant.

Brute-force use of (6) to calculate the normalization constant c leads to a time complexity that is exponential
with the number of queues, which is practically unfeasible even for networks of reasonable size. However,
there exist more efficient algorithms, such as Buzen’s convolution algorithm that operates with a complexity
O(k`). Also note that the product form does no longer imply the independence of the queue states because
the overall number of customers is constant; for instance, assuming that there are n1 = ` customers in the
first queue implies that all other queues are empty.

The previous paragraph, and in particular the absence of independence between queues, suggests that the
derivation of the performance metrics will be more involved. In the remainder of this section, we will focus on
deriving three average performance metrics, namely the effective arrival rates, mean numbers of customers,
and mean sojourn times, by applying variants of the PASTA property and mean-value analysis.

2.3 Arrival theorem

A counterpart of the PASTA property holds for closed Jackson networks, but its statement is slightly more
intricate than for open Jackson networks. Specifically, the probability that a customer arriving at a queue
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sees the system in state n is equal to the equilibrium probability that the same network, but with ` − 1
customers instead of `, is in state n. Informally speaking, a customer arriving at a queue sees the equilibrium
distribution of the system as if this customer did not exist.

We now use the arrival theorem to design an algorithm, called the mean-value analysis algorithm, to calculate
the above-mentioned performance metrics. The use of the phrase mean-value analysis in this chapter differs
from previously. Indeed, this phrase referred so far to a method, based on Little’s law and the PASTA
property, to derive formulas for long-term performance metrics in single-server queues with Poisson arrivals;
in this chapter, we similarly use Little’s law and the above-mentioned arrival theorem to calculate long-term
performance metrics, but the calculations are more intricate and lead to a recursive algorithm to calculate
performance metrics in closed network of single-server queues by induction on the number of customers in
the network.

For each ` = 1, 2, . . . and i = 1, . . . , k, we let Li(`) and Si(`) denote (random variables distributed like) the
stationary numbers of customers and the sojourn time at queue i in a network with ` customers. We also let
Λi(`) denote the effective arrival rates at queue i in a network with ` customers. We know from Section 2.1

that Λi(`)
Λj(`) = λi

λj
for each ` = 1, 2, . . . and i, j = 1, . . . , k. We have the following sets of equations:

� Arrival relation at each queue (using the arrival theorem):

E(Si(`)) = E(Li(`− 1))
1

µi
+

1

µi
, i = 1, . . . , k. (MVA-1)

� Little’s formula for each queue:

E(Li(`)) = Λi(`)E(Si(`)), i = 1, . . . , k. (MVA-3)

� Summing these equations over all queues and using the above-mentioned proportionality relation yields

` =

k∑
j=1

E(Lj(`)) =

k∑
j=1

Λj(`)E(Sj(`)) =

k∑
j=1

Λi(`)
λj
λi
E(Sj(`)), i = 1, . . . , k,

so that we obtain

Λi(`) =
`∑k

j=1 λjE(Sj(`))
λi, i = 1, . . . , k. (MVA-2)

The mean-value analysis algorithm consists of applying (MVA-1), (MVA-2), and (MVA-3) (in this order) to
derive the values of E(Si(`)), Λi(`), and E(Li(`)) by recursion over `. More specifically, the recursion is ini-
tialized with the base case E(Li(0)) = 0. Then we obtain E(Si(1)) = 1

µi
from (MVA-1), Λi(1) from (MVA-2),

E(Li(1)) from (MVA-3), E(Si(2)) from (MVA-1), and so on. The time complexity of this algorithm is O(k`).

Example 5. We illustrate the mean-value analysis algorithm on the closed network of k = 2 queues introduced
in Example 4. We would like to calculate the performance metrics with ` = 3 customers. Recall that, for
this network, we have λ1 = 3, λ2 = 4, and µ1 = µ2 = 8. The recursion below is initialized with the base case

E(L1(0)) = E(L2(0)) = 0. We can verify that, as mentioned earlier, we have Λ1(1)
Λ2(1) = Λ1(2)

Λ2(2) = Λ1(3)
Λ2(3) = λ1

λ2
= 3

4 .

Calculations for ` = 1:

(MVA-1): E(S1(1)) =
1

µ1
=

1

8
and E(S2(1)) =

1

µ2
=

1

8

(MVA-2):
Λ1(1)

λ1
=

Λ2(1)

λ2
=

1
3
8 + 4

8

=
8

7
, so that Λ1(1) =

24

7
and Λ2(1) =

32

7
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(MVA-3): E(L1(1)) =
24

7

1

8
=

3

7
and E(L2(1)) =

32

7

1

8
=

4

7

Calculations for ` = 2:

(MVA-1): E(S1(2)) =
3

7

1

8
+

1

8
=

5

28
and E(S2(2)) =

4

7

1

8
+

1

8
=

11

56

(MVA-2):
Λ1(2)

λ1
=

Λ2(2)

λ2
=

2

3 5
28 + 4 11

56

=
56

37
, so that Λ1(2) =

168

37
and Λ2(2) =

224

37

(MVA-3): E(L1(2)) =
168

37

5

28
=

30

37
and E(L2(2)) =

224

37

11

56
=

44

37

Calculations for ` = 3:

(MVA-1): E(S1(3)) =
30

37

1

8
+

1

8
=

67

296
and E(S2(3)) =

44

37

1

8
+

1

8
=

81

296

(MVA-2):
Λ1(3)

λ1
=

Λ2(3)

λ2
=

3

3 67
296 + 4 81

296

=
296

175
, so that Λ1(3) =

888

175
and Λ2(3) =

1184

175

(MVA-3): E(L1(3)) =
888

175

67

296
=

201

175
and E(L2(3)) =

1184

175

81

296
=

324

175

Remark. As observed before, the traffic equations (4) define the effective arrival rates only up to a multi-
plicative constant. The mean-value analysis algorithm circumvents this difficulty by calculating the effective
arrival rates Λi(`) by induction over `. Note that this algorithm does not give the normalization constant of
the equilibrium distribution, so that it does not help calculate other performance metrics.

3 Appendix: Irreducibility assumptions

In this section, we discuss the uniqueness of the solutions of the traffic equations (1) and (4) for open and
closed Jackson networks. In both cases, the proof of uniqueness consists of interpreting the traffic equations as
the equilibrium equations of a (discrete-time) Markov chain. This Markov chain has a natural interpretation
in the network: it describes the sequence of queues visited by a typical customer, while ignoring the amount
of time spent by the customer at each queue. The irreducibility assumptions stated in Sections 1.1 and 2.1
guarantee that this Markov chain is irreducible, so that its equilibrium equations have a unique solution
up to a multiplicative constant; the arrival rates to the queues are one of these solutions. These proofs are
inspired by [1, Chapter 7].

3.1 Open Jackson networks

Consider an open Jackson network as described in Section 1.1. A typical customer enters the network, visits a
random number of queues in a random order, and leaves the network. Correspondingly, we consider a Markov
chain with state space S = {0, 1, 2, . . . , k}, where states 1 to k correspond to the queues in the network and
state 0 corresponds to “outside” the network. When the Markov chain is in state i = 1, 2, . . . , k, it next
jumps to state j = 1, 2, . . . , k with probability qi,j and to state j = 0 with probability qi. When the Markov
chain is in state i = 0, it next jumps to state j = 1, 2, . . . , k with probability νi

ν , where ν = ν1 + ν2 + . . .+ νk
(but it cannot jump back to state 0).

The irreducibility assumptions stated in Section 1.1 guarantee that this Markov chain is irreducible, which in
turn implies that it has a unique equilibrium distribution. Let πi denote the equilibrium probability that the
Markov chain is in state i, for each i = 0, 1, 2, . . . , k. We obtain the following set of equilibrium equations:

π0 =

k∑
i=1

πiqi, πi = π0
νi
ν

+

k∑
j=1

πjqj,i, i = 1, 2, . . . , k.
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The equation for i = 0 is redundant, as it follows from the others by summation. The traffic equations (1) of
the open Jackson network are equivalent to these equilibrium equations upon imposing that π0 = ν (instead
of the normalization equation π0 + π1 + . . . + πk = 1). This observation implies that the traffic equations
have a solution and that this solution is unique.

3.2 Closed Jackson networks

Now consider a closed Jackson network as described in Section 2.1. The number of customers is given and
each customer perpetually visits queues in a random order. The journey of each customer is described by a
Markov chain with state space S = {1, 2, . . . , k}. When the Markov chain is in state i = 1, 2, . . . k, it next
jumps to state j with probability qi,j , for each j = 1, 2, . . . , k.

The irreducibility assumptions stated in Section 2.1 guarantee that this Markov chain is irreducible and
therefore has a unique equilibrium distribution. In other words, the following equilibrium equations have a
unique solution π = (π1, π2, . . . , πk) such that π1 + π2 + . . .+ πk = 1:

πi =

k∑
j=1

πjqj,i, i = 1, 2, . . . , k.

These are precisely the traffic equations (4) of the closed Jackson network. The uniqueness of the equilibrium
distribution is guaranteed by imposing the normalization equation π1 + π2 + . . . + πk = 1. Without this
additional equation, we obtain that the traffic equations have a unique solution up to a positive multiplicative
constant.

4 Exercises

1. Consider the following open Jackson network of three queues. Customer enter the network according
to a Poisson process at rate 10 per hour, and each new customer joins queue 1 with probability 2

3
and queue 2 with probability 1

3 . The service times at all queues are independent and exponentially
distributed, with mean 2 minutes at queue 1, 4 minutes at queue 2, and 3 minutes at queue 3. When
a customer completes service at queue 1, this customer enters back queue 1 with probability 1

5 and
joins queue 3 otherwise. When a customer completes service at queue 2, this customer joins queue 3
(with probability 1). When a customer completes service at queue 3, this customer joints queue 2 with
probability 1

4 and leaves the network otherwise.

(a) Calculate the effective arrival rate at each queue and verify that the network is stable.

(b) Calculate the mean number of customers in the network.

(c) Calculate the mean sojourn time of customers in the network.

2. Consider an open Jackson network like that described in Section 1.1. Let W denote the mean sojourn
time of customers in the network and Wi the mean sojourn time of customers at queue i, for each
i = 1, 2, . . . , k. Verify that

W =

k∑
i=1

λi
ν
Wi,

where λi is the effective arrival rate at queue i, for each i = 1, 2, . . . , k, and ν = ν1 + ν2 + . . . + νk is
the total external arrival rate. How can you interpret the quantity λi

ν for each i = 1, 2, . . . , k?

3. Tasks arrive at the processor of a computer according to a Poisson process with rate λ per time
unit. The service time of each task is an independent random variable exponentially distributed with
mean 1

µ time units. We assume that λ < µ. The processor applies the following preemptive-resume
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scheduling policy. When the processor starts processing a task, it samples a random variable T that is
exponentially distributed with parameter θ. If the task is not completed after T time units, the service
of the task is preempted, the task is moved to the end of the queue, and the processor immediately
starts processing the first task in the queue. (If there is a single task in the queue, the server resumes
the service of this task immediately after interrupting it.) If the service of a task is resumed after a
service interruption, the processor continues to process the task where it left off.

(a) Using the properties of the exponential distribution, explain how this system can be modeled as
a single-server queue with a Markov routing process.

(b) Calculate the equilibrium distribution of the queue state. What do you observe?

(c) Can you think of an advantage of this scheduling policy compared to first-come-first-served?
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