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Reinforcement learning

Markov decision process (MDP)

with

State-action-reward sequence S0, A0, R1, S1, A1, R2, S2, A2, . . .

Policy π(a|s, θ) = P[At = a |St = s] parameterized by θ

Environment P (r, s′|s, a) = P
[
Rt+1=r
St+1=s′

∣∣∣ St=s
At=a

]
Goal: Find a θ that maximizes the average reward rate

J(θ) = lim
T→+∞

1

T

T∑
t=1

E[Rt]

=
∑
s

p(s|θ)
∑
a

π(a|s, θ)
∑
s′,r

rP (r, s′|s, a)

Source: Wikipedia (modified)

We estimate the policy gradient ∇J(θ) and apply stochastic gradient ascent
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Stationary distribution of
(St, t ≥ 0) under π(a|s, θ)
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Policy-gradient algorithms

Typical policy-gradient algorithm:

1: Initialize S0 and Θ0

2: for t = 0, 1, 2, . . . do
3: Sample At ∼ π(·|St,Θt)
4: Take action At and observe Rt+1, St+1

5: Estimate ∇J(Θt) using the history S0,Θ0, A0, R1, . . . , St,Θt, At, Rt+1, St+1

6: Update Θt+1 ← Θt + α∇J(Θt)
7: end for

Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

∇J(θ) ∝ E
[(
R− J(θ) + v(S′|θ)− v(S|θ)

)
∇ log π(A|S, θ)

]
,

with (S,A,R, S′) ∼ stat(θ): P[S = s,A = a,R = r, S′ = s′] = p(s|θ)π(a|s, θ)P (r, s′|s, a).
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Our approach

Consider MDPs and policies π(a|s, θ) such that the Markov chain (St, t ≥ 0) has
a product-form stationary distribution p(s|θ)

Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems,
multi-server queues with redundancy scheduling, online matching queues . . .

Exploit the product-form to introduce a new policy-gradient estimator

Prove that the corresponding policy-gradient algorithm has nice convergence properties

Outline of the rest of the presentation:
1 Product-form distributions as exponential families
2 Score-aware gradient estimator (SAGE)
3 SAGE-based policy-gradient algorithm
4 Nonconvex convergence result
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1 Product-form distributions as exponential families

Take the log

Take the log

Product-form distribution

Exponential family of distributions

p(s|θ) = 1

Z(θ)

n∏
i=1

ρi(θ)
xi(s)

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

Partition function Z

Log-partition function

Z(θ) =
∑
s

n∏
i=1

ρi(θ)
xi(s)

logZ(θ) = log

(∑
s

elog ρ(θ)
⊺x(s)

)

Load function ρ = (ρ1, ρ2, . . . , ρn) and feature function x = (x1, x2, . . . , xn)
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Example: M/M/1 queue with admission control

Arrival rate λ > 0, service rate µ > 0

State: queue length s ∈ {0, 1, 2, . . .}
Actions: accept or reject

Admission reward α per job

Holding cost rate η per job per time unit

µ

s

AgentAgentλ

Policy π(admit|s, θ) = 1

1 + e−θs
with parameter θ = (θ0, θ1, θ2, . . .)

Average reward rate J(θ) = α×
(

+∞∑
s=0

p(s|θ)π(admit|s, θ)
)
− η ×

(
+∞∑
s=0

p(s|θ)s
)
× 1

λ

Stationary distribution p(s|θ) ∝
k−1∏
i=0

(
λ

µ
π(admit|i, θ)

)1{s≥i}
(
λ

µ
π(admit|k, θ)

)max(s−k,0)
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Céline Comte February 16, 2024 – IMT Atlantique 5 / 20



Example: M/M/1 queue with admission control

Arrival rate λ > 0, service rate µ > 0

State: queue length s ∈ {0, 1, 2, . . .}
Actions: accept or reject

Admission reward α per job

Holding cost rate η per job per time unit

µ

s

AgentAgentλ

Policy π(admit|s, θ) = 1

1 + e−θmin(s,k)
with parameter θ = (θ0, θ1, θ2, . . . , θk)

Average reward rate J(θ) = α×
(

+∞∑
s=0

p(s|θ)π(admit|s, θ)
)
− η ×

(
+∞∑
s=0

p(s|θ)s
)
× 1

λ

Stationary distribution p(s|θ) ∝
k−1∏
i=0

(
λ

µ
π(admit|i, θ)

)1{s≥i}
(
λ

µ
π(admit|k, θ)

)max(s−k,0)
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2 Score-aware gradient estimator (SAGE)

The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|θ) → “Score” = ∇ log p(s|θ).

Theorem

If p(s|θ) has a product-form in the sense that log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ), then

∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)]),
∇J(θ) = D log ρ(θ)⊺Cov[R, x(S)] + E[R∇ log π(A|S, θ)],

with (S,A,R, S′) ∼ stat(θ) : P[S = s,A = a,R = r, S′ = s′] = p(s|θ)π(a|s, θ)P (r, s′|s, a).

Main take-away: If we can compute D log ρ(θ), we have an estimator for ∇J(θ).
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Céline Comte February 16, 2024 – IMT Atlantique 6 / 20



3 SAGE-based policy-gradient algorithm

How?

Typical policy-gradient algorithm:

1: Initialize S0 and Θ0

2: for t = 0, 1, 2, . . . do
3: Sample At ∼ π(·|St,Θt)
4: Take action At and observe Rt+1, St+1

5: Estimate ∇J(Θt) using the history S0,Θ0, A0, R1, . . . , St,Θt, At, Rt+1, St+1

6: Update Θt+1 ← Θt + α∇J(Θt)
7: end for

Instead of applying actor-critic, we estimate J(Θt) with a SAGE:

∇J(θ) = D log ρ(θ)⊺Cov[R, x(S)] + E[R∇ log π(A|S, θ)],

with (S,A,R, S′) ∼ stat(θ): P[S = s,A = a,R = r, S′ = s′] = p(s|θ)π(a|s, θ)P (r, s′|s, a).

Céline Comte February 16, 2024 – IMT Atlantique 7 / 20



3 SAGE-based policy-gradient algorithm

How?

Typical policy-gradient algorithm:

1: Initialize S0 and Θ0

2: for t = 0, 1, 2, . . . do
3: Sample At ∼ π(·|St,Θt)
4: Take action At and observe Rt+1, St+1

5: Estimate ∇J(Θt) using the history S0,Θ0, A0, R1, . . . , St,Θt, At, Rt+1, St+1

6: Update Θt+1 ← Θt + α∇J(Θt)
7: end for

Instead of applying actor-critic, we estimate J(Θt) with a SAGE:

∇J(θ) = D log ρ(θ)⊺Cov[R, x(S)] + E[R∇ log π(A|S, θ)],

with (S,A,R, S′) ∼ stat(θ): P[S = s,A = a,R = r, S′ = s′] = p(s|θ)π(a|s, θ)P (r, s′|s, a).
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Example: M/M/1 queue with admission control

Stable/Possibly-unstable case

Arrival rate λ = 0.7/1.4, service rate µ = 1

Admission reward α = 5, holding cost rate η = 1

Initial policy: admit with probability 1
2

µ

s

AgentAgentλ

Optimal policy: admit in states 0, 1, and 2, reject in states ≥ 3
admit in states 0 and 1, reject in states ≥ 2

Algorithms

SAGE-based policy-gradient

Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)

Gradient update at every step, with step size α = 10−3
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Example: M/M/1 queue with admission control

Stable case – Convergence time
(Time T such that J(Θt) > J∗ − ϵ for each t ∈ {T, T + 1, . . . , 106})

104 105
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SAGE – 10%
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SAGE – 50%

Convergence time T

105 106
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SAGE – 5%

Convergence time T
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Example: M/M/1 queue with admission control
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4 Local convergence result

(Sketch of) Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

What are these “additional assumptions”?

The step sizes are decreasing and the batch sizes are increasing.

There exists a neighborhood of the global maximizer where:

The Markov chain of state-action pairs is geometrically ergodic.
The objective function behaves approximately in a convex manner in directions that are
perpendicular to the set of global maximizers.
The function D log ρ is bounded and the functions x, r, and r∇ log π grow slowly enough.
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Conclusion

Main contributions
1 Product-form distributions as exponential families
2 Score-aware gradient estimator (SAGE)
3 SAGE-based policy-gradient algorithm
4 Nonconvex convergence result

Future research directions

(Ongoing) Run extensive numerical results on larger and more challenging examples.
Find better estimators for covariance and expectation, such as robust estimators.
Apply to MDPs where the stationary distribution is known only up to a multiplicative constant.

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)
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Céline Comte February 16, 2024 – IMT Atlantique 15 / 20



Conclusion

Main contributions
1 Product-form distributions as exponential families
2 Score-aware gradient estimator (SAGE)
3 SAGE-based policy-gradient algorithm
4 Nonconvex convergence result

Future research directions
(Ongoing) Run extensive numerical results on larger and more challenging examples.
Find better estimators for covariance and expectation, such as robust estimators.

Apply to MDPs where the stationary distribution is known only up to a multiplicative constant.

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)
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SOLACE Semester

June–December 2024 in Toulouse

5 international workshops

Atelier en Évaluation des Performances

Invited researchers: Vivek Borkar, Itai Gurvich, Sean Meyn,
and Adam Wierman

Call for abstract for the RL workshop until February 29!

More information on the webpage
https://indico.math.cnrs.fr/category/683/
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Example: Static load balancing

Jobs arrive as a Poisson process with rate λ

M/M/1 queues with service rates µ1, µ2, ..., µn

Maximum c jobs in the system

State vector s = (s1, s2, . . . , sn) of queue sizes

Actions are to assign to some server i

Admission reward 1 per job

Policy π(server i|·, θ) = eθi∑n
j=1 e

θj
with θ = (θ1, θ2, . . . , θn)

Stationary distribution p(s|θ) ∝
n∏

i=1

(
λ

µ
π(server i|·, θ)

)si

µ1

µ2

µn

...

s1

s2

sn

AgentAgentλ

Depends on θ

Depends on s
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Example: Static load balancing

Simulation setup

Number n = 4 of servers

Arrival rate λ = 0.7

Service rates µ1 = 0.4, µ2 = 0.3, µ3 = 0.2, and µ4 = 0.1

Total capacity c = 10

106 simulation steps

Algorithms

SAGE-based policy-gradient

Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)

Gradient update at every step with step size α = 10−3
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Example: Static load balancing

Convergence times

103 104 105 106
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Time t
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Example: Static load balancing
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