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Reinforcement learning

e Markov decision process (MDP)

Source: Wikipedia (modified)
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Reinforcement learning

e Markov decision process (MDP) with

o State-action-reward sequence Sy, Ag, R1,S1, A1, Ra, So, Aa, . ..
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, R1, 51, A1, Ro, S, A, ... v
o Policy m(als,8) = P[A; = a| S = s] parameterized by 6

Rt+1 =T St =S
Ai=a

e Environment P(r,s'|s,a) = P[St+1:s'

Source: Wikipedia (modified)

Céline Comte February 16, 2024 — IMT Atlantique


https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg

Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, R1, 51, A1, Ro, S, A, ... v
o Policy m(als,8) = P[A; = a| S = s] parameterized by 6

Si=s
Ai=a

@ Goal: Find a 6 that maximizes the average reward rate

Rip1=r

e Environment P(r,s'|s,a) = P[St+1:s'

T—+o0

1 T
J(0) = lim TZE[R,:]
t=1

Source: Wikipedia (modified)
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, R1, 51, A1, Ro, S, A, ... v
e Policy w(als,0) = P[A; = a|S; = s| parameterized by 6

Si=s
Ai=a

@ Goal: Find a 6 that maximizes the average reward rate

Rip1=r

e Environment P(r,s'|s,a) = P[St+1:s'

T—+o0

_ Zp(s|0) Z 7r(a|87 9) Z TP(/r, 8/|8’ a) Source: Wikipedia (modified)
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J(0) = lim TZE[R,:]
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, R1, 51, A1, Ro, S, A, ... v
e Policy w(als,0) = P[A; = a|S; = s| parameterized by 6

Si=s
Ai=a

@ Goal: Find a 6 that maximizes the average reward rate

Rip1=r

e Environment P(r,s'|s,a) = P[St+1:s'

0= 1 3ein

Source: Wikipedia (modified)
—gmg a|39§rPrs|sa

Statlonary dlstrlbutlon of
(St,t > 0) under 7(als, 0)
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, R1, 51, A1, Ro, S, A, ... v

e Policy w(als,0) = P[A; = a|S; = s| parameterized by 6
St:s:|
Ai=a

@ Goal: Find a 6 that maximizes the average reward rate

o Environment P(r,s'|s,a) = IP[?“_:T,
t+1=S

0= 1 3ein

_ Zp S|0 Z - a|87 9) Z TP(/r, 8/|8’ a) Source: Wikipedia (modified)
B a s'r

@ We estimate the policy gradient V.J(0) and apply stochastic gradient ascent
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Policy-gradient algorithms

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
Sample A; ~ 7 (:|St, ©y)
4 Take action A; and observe Ryi1, Si41
5: Estimate V.J(©,) using the history Sy, ©¢, Ao, R1,...,St, O, A, Rit1, St+1
6
7

w

Update ©441 < Oy + aVJ(0;)
. end for
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7
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Policy-gradient algorithms

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
3 Sample A; ~ 7(-| S, ©y)
4 Take action A; and observe Ryi1, Si41
5. Estimate V.J(O;) using the history Sg, ©g, Ag, Ry, ..., S, O, Ag, Rii1, Spq | How?
6
7:

Update ©441 < Oy + aVJ(0;)
end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
VJ(9) xE[(R— J(0) +v(5'|0) — v(5]0))V1og w(AlS, 6)],

with (S, A, R, S") ~ sTaT(0): P[S=s,A=a,R=r,5 =] =p(s|0)n(als,0)P(r,s|s,a).
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Our approach

e Consider MDPs and policies m(als, #) such that the Markov chain (S;,t > 0) has
a product-form stationary distribution p(s|0)
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Our approach

e Consider MDPs and policies m(als, #) such that the Markov chain (S;,t > 0) has
a product-form stationary distribution p(s|0)
Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems,
multi-server queues with redundancy scheduling, online matching queues ...

@ Exploit the product-form to introduce a new policy-gradient estimator

@ Prove that the corresponding policy-gradient algorithm has nice convergence properties

@ Outline of the rest of the presentation:

@ Product-form distributions as exponential families
@ Score-aware gradient estimator (SAGE)

© SAGE-based policy-gradient algorithm

© Nonconvex convergence result
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(D Product-form distributions as exponential families

@ Product-form distribution

p(s10) = o [ ()=
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(D Product-form distributions as exponential families

@ Product-form distribution
o Depends on s

n

p(10) = 5 [ 1@

=1
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(D Product-form distributions as exponential families

@ Product-form distribution
p(s10) = o [ ()=
A 5

@ Partition function Z

n

20)=>_ IO
1

s 1=
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(D Product-form distributions as exponential families

@ Product-form distribution

p(s16) = o [ i6) )

@ Partition function Z

2(0)=>_ [ m(6)""

s =1

e Load function p = (p1,p2, ...

Céline Comte
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(D Product-form distributions as exponential families

@ Product-form distribution Exponential family of distributions
1 - (s
p(slf) = 700) [T o6 log p(s]f) = log p(0)Tx(s) — log Z(0)
i=1

@ Partition function Z

2(0) =3 TL (o)
s =1
e Load function p = (p1,p2,...,pn) and feature function x = (z1,x2,...,x,)
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(D Product-form distributions as exponential families

@ Product-form distribution Exponential family of distributions
P10 = 5 LT o) lozp(s10) = log p(0)Ta(s) — o Z(0)
o Partition function Z Log-partition function
2(0)=3Y" T o0y log Z(6) = log (Z elogpwws))
s =1 s
e Load function p = (p1,p2,...,pn) and feature function x = (z1,x9,...,x,)
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...}

@ Actions: accept or reject A— —
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit

1
Policy m(admit|s, 0) = T with parameter 6 = (0, 01,02,...)
e S
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)
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Example: M/M/1 queue with admission control

Admission reward « per job !

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
°

°

Holding cost rate n per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)

+00 +oo
Average reward rate J(f) = a x (Zp(s\@)w(admit\s,&)) —n X (Zp(s\@)s) X !
s=0 5=0

>
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Example: M/M/1 queue with admission control

Admission reward « per job !

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
°

°

Holding cost rate n per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)

+o0 +o0
Average reward rate J(f) = a x (Zp(s\@)w(admit\s,&)) —n X (Zp(s\@)s) X
5=0 s=0
—

Mean queue size

1

>
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0
State: queue length s € {0,1,2,...} —

Actions: accept or reject A— — @ —

o
o
@ Admission reward « per job !
o

Holding cost rate n per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)

+o0 +o0
Average reward rate J(f) = a x (Zp(s\@)w(admit\s,&)) —n X (Zp(s\@)s) X %
5=0 s=0

k—1 A 1is>i} 2 max(s—k,0)
Stationary distribution p(s|6) o H <7r(admit|i,0)> (W(&dmiﬂk,@))

L\ 1t

1=0
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0
State: queue length s € {0,1,2,...} —

Actions: accept or reject A— — @ —

o
o
@ Admission reward « per job !
o

Holding cost rate n per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)

+o0 +o0
Average reward rate J(f) = a x (Zp(s\@)w(admit\s,&)) —n X (Zp(s\@)s) X %
5=0 s=0

k—1 by 1is>i} \ max(s—k,0)
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L\ 1
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0
State: queue length s € {0,1,2,...} —

Actions: accept or reject A— — @ —

o
o
@ Admission reward « per job !
o

Holding cost rate n per job per time unit

Policy m(admit|s, 0) = with parameter 6 = (6p, 601,02, ...,0k)

1 + efemin(s,k)

+o0 +o0
Average reward rate J(f) = a x (Zp(s\@)w(admit\s,&)) —n X (Zp(s\@)s) X %
5=0 5=0

«— = Depends on s
) ()\

max(s—k,0)
—7(admit |k, (9))
m

k—1

Stationary distribution p(s|6) o H <>\7r(admit|i,0)
L\
1=0
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vlogp(s|6).
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vlogp(s|6).

If p(s|0) has a product-form in the sense that logp(s|0) = log p(0)Tx(s) — log Z(0), then

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(95))),
VJ(0) = Dlog p(0)TCov[R, x(S)] + E[R V1ogm(A|S, §)],

with (S, A, R,S") ~ sTAT(0) : P[S=s,A=a,R=1r,5 =] =p(s|0)n(als,0)P(r,s|s, a).

v
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vlogp(s|6).

If p(s|0) has a product-form in the sense that logp(s|0) = log p(0)Tx(s) — log Z(0), then

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(95))),
VJ(0) = Dlog p(0)TCov[R, x(S)] + E[R V1ogm(A|S, §)],

with (S, A, R,S") ~ sTAT(0) : P[S=s,A=a,R=1r,5 =] =p(s|0)n(als,0)P(r,s|s, a).

v

e Main take-away: If we can compute Dlog p(6), we have an estimator for V.J(0).
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(3) SAGE-based policy-gradient algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
Sample A; ~ 7 (:|St, ©y)
4 Take action A; and observe Ryi1, Si41
5. Estimate V.J(O;) using the history Sg, ©g, Ag, Ry, ..., S, O, Ag, Rii1, Spq | How?
6
7

Update ©441 < O + aVJ(0;)
. end for
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(3) SAGE-based policy-gradient algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
3 Sample A; ~ 7(-| S, ©y)
4 Take action A; and observe Ryi1, Si41
5. Estimate V.J(O;) using the history Sg, ©g, Ag, Ry, ..., S, O, Ag, Rii1, Spq | How?
6
7:

Update ©441 < O + aVJ(0;)
end for

o Instead of applying actor-critic, we estimate J(©;) with a SAGE:
VJ(0) = Dlog p(0)TCov[R, x(S)] + E[R V1og(A|S, )],

with (S, A, R, S") ~ sTaT(0): P[S=s,A=a,R=r,5 =] =p(s|0)n(als,0)P(r,s|s,a).
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Example: M/M/1 queue with admission control

/Possibly-unstable case

@ Arrival rate A\ = /1.4, service rate p =1

— | Agent |—
@ Admission reward oo = 5, holding cost rate n =1 A

o Initial policy: admit with probability 3

Céline Comte
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Example: M/M/1 queue with admission control

/Possibly-unstable case

—
@ Arrival rate A\ = /1.4, service rate p =1
— | Agent | — —
@ Admission reward a = 5, holding cost rate n =1 A @
o Initial policy: admit with probability 3 l

@ Optimal policy:
admit in states 0 and 1, reject in states > 2
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Example: M/M/1 queue with admission control

/Possibly-unstable case S
Arrival rate A /1.4, service rate p =1
o Arriva = A4, =
— | Agent |— —
@ Admission reward oo = 5, holding cost rate n =1 A @
o Initial policy: admit with probability 3 l
@ Optimal policy:
admit in states 0 and 1, reject in states > 2
Algorithms

@ SAGE-based policy-gradient
@ Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)

o Gradient update at every step, with step size o = 1073
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Example: M/M/1 queue with admission control

(Time T such that J(©;) > J* — ¢ for each t € {T, T +1,...,10°})

Stable case — Convergence time

SAGE - 50% |- l.
SAGE - 20% |-
SAGE - 10% |-
ac-50% | f
AC - 20% |-

AC - 10% |-

Céline Comte
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Example:

M/M/1 queue with admission control

SAGE - 50%
SAGE - 20%
SAGE — 10%
AC - 50%
AC - 20%

AC - 10%

Stable case — Convergence time
(Time T such that J(©;) > J* — ¢ for each t € {T, T +1,...,10°})

Céline Comte

10*

Convergence time T'

SAGE - 5%
SAGE - 2%
SAGE - 1%
AC - 5%
AC - 2%

AC - 1%

February 16, 2024 — IMT Atlantique
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Example: M/M/1 queue with admission control

Policy 7(admit|s, ©;)

0.8

0.6

0.4

0.2

Stable case — SAGE

0
102 103 10* 10° 10°
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February 16, 2024 — IMT Atlantique



Example:

M/M/1 queue with admission control

Policy 7(admit|s, ©;)

0.8

0.6

0.4

0.2

1

Céline Comte

Stable case — Actor-critic

0
02 103 10* 10° 10°

Time t
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Example: M/M/1 queue with admission control

Possibly-unstable case — SAGE

1 T T T 1717 T T TT] T T T 11

0.6 -

0.4

Policy 7(admit|s, ©;)

0 L] L] L] \r;—i —
10 10° 10* 10° 10°
Time t
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Example: M/M/1 queue with admission control

Possibly-unstable case — Actor-critic

s=20

0.4 i

Policy m(admit|s, ©;)
VA
I
O

0 [
102 103 10% 10° 106
Time t
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@ Local convergence result

(Sketch of ) Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.
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@ Local convergence result

(Sketch of ) Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.
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@ Local convergence result

(Sketch of ) Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

What are these “additional assumptions”?

@ The step sizes are decreasing and the batch sizes are increasing.
@ There exists a neighborhood of the global maximizer where:

e The Markov chain of state-action pairs is geometrically ergodic.

o The objective function behaves approximately in a convex manner in directions that are
perpendicular to the set of global maximizers.

e The function Dlog p is bounded and the functions x, r, and r V log 7 grow slowly enough.
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Conclusion

@ Main contributions Product-form stationary distribution
@ Product-form distributions as exponential families log p(s]0) = log p(0)Tx(s) —log Z(6)
@ Score-aware gradient estimator (SAGE) 1

© SAGE-based policy-gradient algorithm

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(S)])
© Nonconvex convergence result

Score-aware gradient estimator (SAGE)
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@ Future research directions

o (Ongoing) Run extensive numerical results on larger and more challenging examples.
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@ Score-aware gradient estimator (SAGE) 1
© SAGE-based policy-gradient algorithm V log p(s|0) = Dlog p(0)T(z(s) — E[z(S))])
© Nonconvex convergence result Score-aware gradient estimator (SAGE)

@ Future research directions

o (Ongoing) Run extensive numerical results on larger and more challenging examples.
o Find better estimators for covariance and expectation, such as robust estimators.
o Apply to MDPs where the stationary distribution is known only up to a multiplicative constant.
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SOLACE Semester

June—December 2024 in Toulouse
@ 5 international workshops
@ Atelier en Evaluation des Performances

@ Invited researchers: Vivek Borkar, Itai Gurvich, Sean Meyn,
and Adam Wierman

Call for abstract for the RL workshop until February 29!

More information on the webpage
https://indico.math.cnrs.fr/category/683/
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Example: Static load balancing

Jobs arrive as a Poisson process with rate A

M/M/1 queues with service rates i, f2, ..., fin

Maximum c jobs in the system
State vector s = (s1, S92, . ..

Actions are to assign to some server %

Admission reward 1 per job

Policy m(server i|-,

6) =

0;

e
Zg 16

, Sn) of queue sizes

[

W|th6’_(91,02,...,9 )

Depends on s

(5] ¢
Stationary distribution p(s|6) o H( m(server |-, ))
,u

=1

S1
—

52

Sn
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Example: Static load balancing

Simulation setup

@ Number n = 4 of servers

@ Arrival rate A = 0.7

@ Service rates u1 = 0.4, puo = 0.3, u3 = 0.2, and pg = 0.1
o Total capacity ¢ = 10
°

10% simulation steps

Algorithms
@ SAGE-based policy-gradient
@ Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)

o Gradient update at every step with step size a = 1073
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Example: Static load balancing

Convergence times

SAGE - 50% |- m . SAGE - 5%
SAGE - 20% |- }'I—{ N SAGE - 2%
SAGE - 10% |- }I—{ N SAGE - 1%
AC - 50% |- H] N AC - 5%
AC - 20% |- }H]—)o - AC - 2%
AC - 10% |- H:I:H AC-1%
Ll Lol Lol L
10° 10* 10° 10° 3-
Time t
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Example: Static load balancing
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Example: Static load balancing

Actor-critic

05 T T T 1717

Policy 7(i|s, ©¢)
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