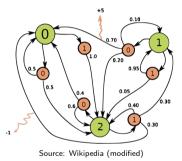
Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions

Céline Comte¹, Matthieu Jonckheere¹, Jaron Sanders², and Albert Senen-Cerda^{1,2}

¹CNRS, LAAS, and IRIT, Toulouse, France ²Eindhoven University of Technology, Eindhoven, The Netherlands

February 16, 2024 - IMT Atlantique

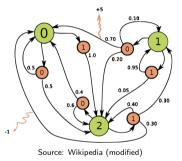
• Markov decision process (MDP)



▶ ∢ ⊒

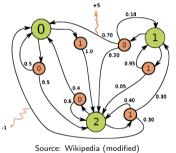
Э

- Markov decision process (MDP) with
 - State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$



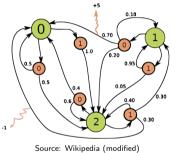
• Markov decision process (MDP) with

- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ



• Markov decision process (MDP) with

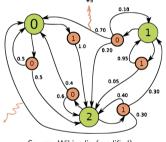
- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ
- Environment $P(r, s'|s, a) = \mathbb{P} \begin{bmatrix} R_{t+1}=r \\ S_{t+1}=s' \\ A_t=a \end{bmatrix}$



• Markov decision process (MDP) with

- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ
- Environment $P(r, s'|s, a) = \mathbb{P} \begin{bmatrix} R_{t+1}=r \\ S_{t+1}=s' \end{bmatrix} \begin{bmatrix} R_{t}=s \\ A_{t}=a \end{bmatrix}$
- Goal: Find a θ that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$$

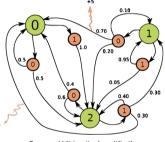


Source: Wikipedia (modified)

• Markov decision process (MDP) with

- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ
- Environment $P(r, s'|s, a) = \mathbb{P} \begin{bmatrix} R_{t+1}=r \\ S_{t+1}=s' \end{bmatrix} \begin{bmatrix} R_{t}=s \\ A_{t}=a \end{bmatrix}$
- Goal: Find a θ that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$$
$$= \sum_{s} p(s|\theta) \sum_{a} \pi(a|s,\theta) \sum_{s',r} rP(r,s'|s,a)$$



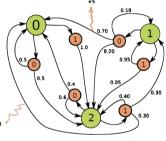
Source: Wikipedia (modified)

• Markov decision process (MDP) with

- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ
- Environment $P(r, s'|s, a) = \mathbb{P} \begin{bmatrix} R_{t+1}=r \\ S_{t+1}=s' \end{bmatrix} \begin{bmatrix} R_{t}=s \\ A_{t}=a \end{bmatrix}$
- Goal: Find a θ that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$$

= $\sum_{s} p(s|\theta) \sum_{a} \pi(a|s,\theta) \sum_{s',r} rP(r,s'|s,a)$
Stationary distribution of
 $(S_t, t \ge 0)$ under $\pi(a|s,\theta)$

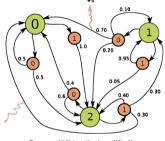


Source: Wikipedia (modified)

• Markov decision process (MDP) with

- State-action-reward sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \ldots$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$ parameterized by θ
- Environment $P(r, s'|s, a) = \mathbb{P} \begin{bmatrix} R_{t+1}=r \\ S_{t+1}=s' \end{bmatrix} \begin{bmatrix} R_{t}=s \\ A_{t}=a \end{bmatrix}$
- Goal: Find a θ that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$$
$$= \sum_{s} p(s|\theta) \sum_{a} \pi(a|s,\theta) \sum_{s',r} rP(r,s'|s,a)$$



Source: Wikipedia (modified)

• We estimate the policy gradient $\nabla J(\theta)$ and apply stochastic gradient ascent

Policy-gradient algorithms

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and Θ_0
 - 2: for $t = 0, 1, 2, \dots$ do
 - 3: Sample $A_t \sim \pi(\cdot | S_t, \Theta_t)$
 - 4: Take action A_t and observe R_{t+1}, S_{t+1}
 - 5: Estimate $\nabla J(\Theta_t)$ using the history $S_0, \Theta_0, A_0, R_1, \dots, S_t, \Theta_t, A_t, R_{t+1}, S_{t+1}$
 - 6: Update $\Theta_{t+1} \leftarrow \Theta_t + \alpha \nabla J(\Theta_t)$
 - 7: end for

Policy-gradient algorithms

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and Θ_0
 - 2: for t = 0, 1, 2, ... do
 - 3: Sample $A_t \sim \pi(\cdot | S_t, \Theta_t)$
 - 4: Take action A_t and observe R_{t+1}, S_{t+1}
 - 5: Estimate $\nabla J(\Theta_t)$ using the history $S_0, \Theta_0, A_0, R_1, \dots, S_t, \Theta_t, A_t, R_{t+1}, S_{t+1}$ How?
 - 6: Update $\Theta_{t+1} \leftarrow \Theta_t + \alpha \nabla J(\Theta_t)$
 - 7: end for

Policy-gradient algorithms

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and Θ_0
 - 2: for t = 0, 1, 2, ... do
 - 3: Sample $A_t \sim \pi(\cdot | S_t, \Theta_t)$
 - 4: Take action A_t and observe R_{t+1}, S_{t+1}
 - 5: Estimate $\nabla J(\Theta_t)$ using the history $S_0, \Theta_0, A_0, R_1, \dots, S_t, \Theta_t, A_t, R_{t+1}, S_{t+1}$ How?

6: Update
$$\Theta_{t+1} \leftarrow \Theta_t + \alpha \nabla J(\Theta_t)$$

7: end for

• Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

$$\nabla J(\theta) \propto \mathbb{E}\big[\big(R - J(\theta) + v(S'|\theta) - v(S|\theta)\big)\nabla \log \pi(A|S,\theta)\big],\$$

with $(S, A, R, S') \sim \operatorname{STAT}(\theta)$: $\mathbb{P}[S = s, A = a, R = r, S' = s'] = p(s|\theta)\pi(a|s, \theta)P(r, s'|s, a)$.

• Consider MDPs and policies $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t\geq 0)$ has a product-form stationary distribution $p(s|\theta)$

э

(4 回 ト 4 ヨ ト 4 ヨ ト

• Consider MDPs and policies $\pi(a|s,\theta)$ such that the Markov chain $(S_t, t \ge 0)$ has a **product-form stationary distribution** $p(s|\theta)$ Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems, multi-server queues with redundancy scheduling, online matching queues ...

- Consider MDPs and policies $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t \ge 0)$ has a **product-form stationary distribution** $p(s|\theta)$ Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems, multi-server queues with redundancy scheduling, online matching queues ...
- Exploit the product-form to introduce a new policy-gradient estimator

- Consider MDPs and policies $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t \ge 0)$ has a **product-form stationary distribution** $p(s|\theta)$ Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems, multi-server queues with redundancy scheduling, online matching queues ...
- Exploit the product-form to introduce a new policy-gradient estimator
- Prove that the corresponding policy-gradient algorithm has nice convergence properties

- Consider MDPs and policies $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t \ge 0)$ has a **product-form stationary distribution** $p(s|\theta)$ Examples: M/M/1 queue, Jackson network, Ising model, load-balancing systems, multi-server queues with redundancy scheduling, online matching queues ...
- Exploit the product-form to introduce a new policy-gradient estimator
- Prove that the corresponding policy-gradient algorithm has nice convergence properties
- Outline of the rest of the presentation:
 - Product-form distributions as exponential families
 - Score-aware gradient estimator (SAGE)
 - SAGE-based policy-gradient algorithm
 - Onconvex convergence result

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \underbrace{\rho_i(\theta)}_{i=1}^{x_i(s)}$$
Depends on θ

- 一一

▶ ∢ ⊒

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \underbrace{p_i(\theta)}_{x_i(s)}^{x_i(s)}$$

Depends on θ

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ and feature function $x = (x_1, x_2, \dots, x_n)$

• Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)} \xrightarrow{\text{Take the log}}$$

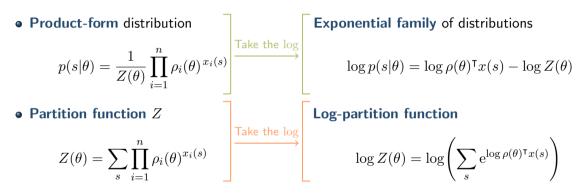
Exponential family of distributions

$$\log p(s|\theta) = \log \rho(\theta)^{\mathsf{T}} x(s) - \log Z(\theta)$$

• Partition function Z

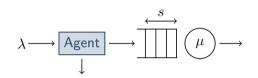
$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ and feature function $x = (x_1, x_2, \dots, x_n)$



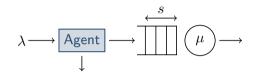
• Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ and feature function $x = (x_1, x_2, \dots, x_n)$

- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit



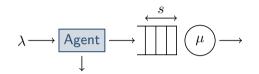
- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit

• Policy
$$\pi(\operatorname{admit}|s, \theta) = \frac{1}{1 + e^{-\theta_s}}$$
 with parameter $\theta = (\theta_0, \theta_1, \theta_2, \ldots)$



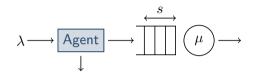
- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit

• Policy
$$\pi(\operatorname{admit}|s, \theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$$
 with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$

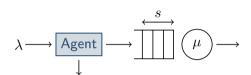


- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit

• Policy
$$\pi(\operatorname{admit}|s,\theta) = \frac{1}{1+e^{-\theta_{\min(s,k)}}}$$
 with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$
• Average reward rate $J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta)\pi(\operatorname{admit}|s,\theta)\right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{\lambda}$



- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit
- Policy $\pi(\operatorname{admit}|s,\theta) = \frac{1}{1+e^{-\theta_{\min}(s,k)}}$ with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$
- Average reward rate $J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta)\pi(\operatorname{admit}|s,\theta)\right) \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{\lambda}$ Probability of accepting a job



- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit

• Policy
$$\pi(\operatorname{admit}|s,\theta) = \frac{1}{1+e^{-\theta_{\min}(s,k)}}$$
 with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$
• Average reward rate $J(\theta) = \alpha \times \left(\sum_{k=0}^{+\infty} p(s|\theta)\pi(\operatorname{admit}|s,\theta)\right) - n \times \left(\sum_{k=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{2}$

Average reward rate
$$J(\theta) = \alpha \times \left(\sum_{s=0}^{s=0} p(s|\theta)\pi(\operatorname{admit}|s,\theta)\right) - \eta \times \left(\sum_{s=0}^{s=0} p(s|\theta)s\right) \times \left(\sum_{s=0}^{s=0} p(s|\theta)\pi(s)\right)$$

Probability of accepting a job

Agent

Mean queue size

λ

- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit
- Policy $\pi(\operatorname{admit}|s, \theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$ with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$

 $\lambda \longrightarrow Agent \longrightarrow$

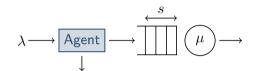
• Average reward rate $J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{admit}|s, \theta)\right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{\lambda}$

• Stationary distribution
$$p(s|\theta) \propto \prod_{i=0}^{k-1} \left(\frac{\lambda}{\mu} \pi(\operatorname{admit}|i,\theta)\right)^{1_{\{s \ge i\}}} \left(\frac{\lambda}{\mu} \pi(\operatorname{admit}|k,\theta)\right)^{\max(s-k,0)}$$

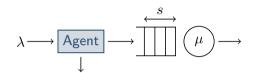
- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- $\bullet\,$ Holding cost rate η per job per time unit
- Policy $\pi(\operatorname{admit}|s, \theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$ with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$
- Average reward rate $J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{admit}|s, \theta)\right) \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{\lambda}$

• Stationary distribution
$$p(s|\theta) \propto \prod_{i=0}^{k-1} \left(\frac{\lambda}{\mu} \pi(\operatorname{admit}|i,\theta)\right)^{1_{\{s \ge i\}}} \left(\frac{\lambda}{\mu} \pi(\operatorname{admit}|k,\theta)\right)^{\max(s-k,0)}$$

• Depends on θ



- Arrival rate $\lambda > 0$, service rate $\mu > 0$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- Admission reward α per job
- Holding cost rate η per job per time unit
- Policy $\pi(\operatorname{admit}|s, \theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$ with parameter $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_k)$
- Average reward rate $J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta)\pi(\operatorname{admit}|s,\theta)\right) \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta)s\right) \times \frac{1}{\lambda}$ • Stationary distribution $p(s|\theta) \propto \prod_{i=0}^{k-1} \left(\frac{\lambda}{\mu}\pi(\operatorname{admit}|i,\theta)\right)^{\frac{1_{\{s\geq i\}}}{\mu}} \left(\frac{\lambda}{\mu}\pi(\operatorname{admit}|k,\theta)\right)^{\frac{1_{\{s\geq i\}$



② Score-aware gradient estimator (SAGE)

• The score is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" = $p(s|\theta) \rightarrow$ "Score" = $\nabla \log p(s|\theta)$.

② Score-aware gradient estimator (SAGE)

• The score is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" = $p(s|\theta) \rightarrow$ "Score" = $\nabla \log p(s|\theta)$.

Theorem

If $p(s|\theta)$ has a product-form in the sense that $\log p(s|\theta) = \log \rho(\theta)^{\intercal} x(s) - \log Z(\theta)$, then

$$\nabla \log p(s|\theta) = \mathcal{D} \log \rho(\theta)^{\mathsf{T}}(x(s) - \mathbb{E}[x(S)]),$$

$$\nabla J(\theta) = \mathcal{D} \log \rho(\theta)^{\mathsf{T}} \mathrm{Cov}[R, x(S)] + \mathbb{E}[R \nabla \log \pi(A|S, \theta)],$$

with $(S, A, R, S') \sim \operatorname{STAT}(\theta) : \mathbb{P}[S = s, A = a, R = r, S' = s'] = p(s|\theta)\pi(a|s, \theta)P(r, s'|s, a).$

② Score-aware gradient estimator (SAGE)

• The score is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" = $p(s|\theta) \rightarrow$ "Score" = $\nabla \log p(s|\theta)$.

Theorem

If $p(s|\theta)$ has a product-form in the sense that $\log p(s|\theta) = \log \rho(\theta)^{\intercal} x(s) - \log Z(\theta)$, then

$$\nabla \log p(s|\theta) = \mathcal{D} \log \rho(\theta)^{\mathsf{T}}(x(s) - \mathbb{E}[x(S)]),$$

$$\nabla J(\theta) = \mathcal{D} \log \rho(\theta)^{\mathsf{T}} \mathrm{Cov}[R, x(S)] + \mathbb{E}[R \nabla \log \pi(A|S, \theta)],$$

with $(S, A, R, S') \sim \operatorname{STAT}(\theta) : \mathbb{P}[S = s, A = a, R = r, S' = s'] = p(s|\theta)\pi(a|s, \theta)P(r, s'|s, a).$

• Main take-away: If we can compute $D \log \rho(\theta)$, we have an estimator for $\nabla J(\theta)$.

③ SAGE-based policy-gradient algorithm

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and Θ_0
 - 2: for $t = 0, 1, 2, \dots$ do
 - 3: Sample $A_t \sim \pi(\cdot | S_t, \Theta_t)$
 - 4: Take action A_t and observe R_{t+1}, S_{t+1}
 - 5: Estimate $\nabla J(\Theta_t)$ using the history $S_0, \Theta_0, A_0, R_1, \dots, S_t, \Theta_t, A_t, R_{t+1}, S_{t+1}$ How?
 - 6: Update $\Theta_{t+1} \leftarrow \Theta_t + \alpha \nabla J(\Theta_t)$
 - 7: end for

③ SAGE-based policy-gradient algorithm

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and Θ_0
 - 2: for t = 0, 1, 2, ... do
 - 3: Sample $A_t \sim \pi(\cdot | S_t, \Theta_t)$
 - 4: Take action A_t and observe R_{t+1}, S_{t+1}
 - 5: Estimate $\nabla J(\Theta_t)$ using the history $S_0, \Theta_0, A_0, R_1, \dots, S_t, \Theta_t, A_t, R_{t+1}, S_{t+1}$ How?

6: Update
$$\Theta_{t+1} \leftarrow \Theta_t + \alpha \nabla J(\Theta_t)$$

7: end for

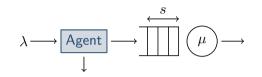
• Instead of applying actor-critic, we estimate $J(\Theta_t)$ with a SAGE:

 $\nabla J(\theta) = \mathrm{D}\log\rho(\theta)^{\intercal}\mathrm{Cov}[R, x(S)] + \mathbb{E}[R\,\nabla\log\pi(A|S, \theta)],$

with $(S, A, R, S') \sim \operatorname{STAT}(\theta)$: $\mathbb{P}[S = s, A = a, R = r, S' = s'] = p(s|\theta)\pi(a|s, \theta)P(r, s'|s, a)$.

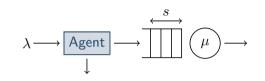
Stable/Possibly-unstable case

- Arrival rate $\lambda = 0.7/1.4$, service rate $\mu = 1$
- Admission reward $\alpha = 5$, holding cost rate $\eta = 1$
- Initial policy: admit with probability $\frac{1}{2}$



Stable/Possibly-unstable case

- Arrival rate $\lambda = 0.7/1.4$, service rate $\mu = 1$
- Admission reward $\alpha = 5$, holding cost rate $\eta = 1$
- Initial policy: admit with probability $\frac{1}{2}$
- Optimal policy: admit in states 0, 1, and 2, reject in states ≥ 3 admit in states 0 and 1, reject in states ≥ 2

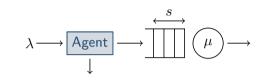


Stable/Possibly-unstable case

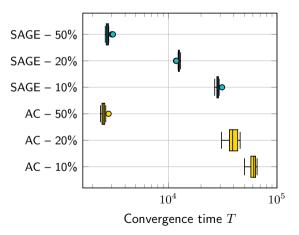
- Arrival rate $\lambda = 0.7/1.4$, service rate $\mu = 1$
- Admission reward $\alpha = 5$, holding cost rate $\eta = 1$
- Initial policy: admit with probability $\frac{1}{2}$
- Optimal policy: admit in states 0, 1, and 2, reject in states ≥ 3 admit in states 0 and 1, reject in states ≥ 2

Algorithms

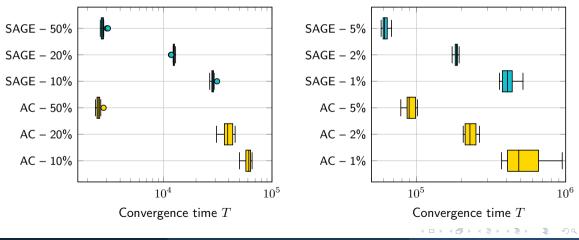
- SAGE-based policy-gradient
- Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)
- Gradient update at every step, with step size $\alpha = 10^{-3}$



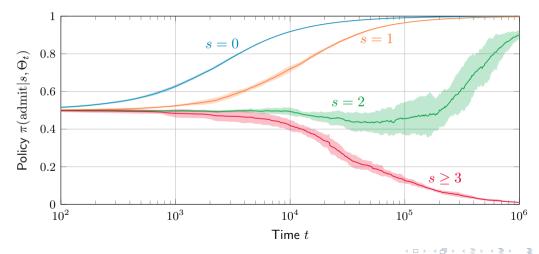
Stable case – Convergence time (Time T such that $J(\Theta_t) > J^* - \epsilon$ for each $t \in \{T, T + 1, \dots, 10^6\}$)



Stable case – Convergence time (Time T such that $J(\Theta_t) > J^* - \epsilon$ for each $t \in \{T, T + 1, \dots, 10^6\}$)

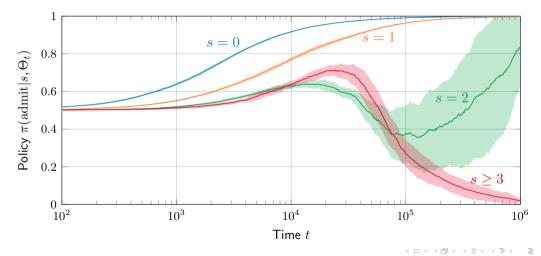


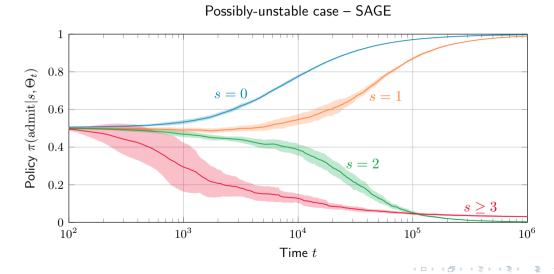
Stable case - SAGE

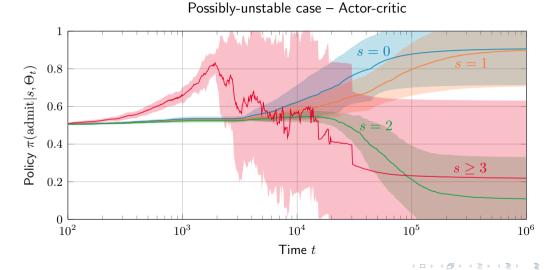


Céline Comte

Stable case - Actor-critic







Céline Comte

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Under <u>additional assumptions</u>, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Under additional assumptions, a <u>batch variant</u> of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Under additional assumptions, a batch variant of the algorithm that starts in a <u>basin of</u> <u>attraction of a global maximizer</u> will converge to a global maximizer with large probability.

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will <u>converge to a global maximizer</u> with large probability.

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer <u>with large probability</u>.

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

What are these "additional assumptions"?

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

What are these "additional assumptions"?

• The step sizes are decreasing and the batch sizes are increasing.

Under additional assumptions, a batch variant of the algorithm that starts in a basin of attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint available on arXiv.

What are these "additional assumptions"?

- The step sizes are decreasing and the batch sizes are increasing.
- There exists a neighborhood of the global maximizer where:
 - The Markov chain of state-action pairs is geometrically ergodic.
 - The objective function behaves approximately in a convex manner in directions that are perpendicular to the set of global maximizers.
 - The function $D\log\rho$ is bounded and the functions x, r, and $r\nabla\log\pi$ grow slowly enough.

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Onconvex convergence result

Product-form stationary distribution $\log p(s|\theta) = \log \rho(\theta)^{\mathsf{T}} x(s) - \log Z(\theta)$ \downarrow $\nabla \log p(s|\theta) = D \log \rho(\theta)^{\mathsf{T}} (x(s) - \mathbb{E}[x(S)])$ Score-aware gradient estimator (SAGE)

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Monconvex convergence result

• Future research directions

• (Ongoing) Run extensive numerical results on larger and more challenging examples.

Product-form stationary distribution $\log p(s|\theta) = \log \rho(\theta)^{\mathsf{T}} x(s) - \log Z(\theta)$ \downarrow $\nabla \log p(s|\theta) = D \log \rho(\theta)^{\mathsf{T}} (x(s) - \mathbb{E}[x(S)])$ Score-aware gradient estimator (SAGE)

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Monconvex convergence result

Product-form stationary distribution $\log p(s|\theta) = \log \rho(\theta)^{\mathsf{T}} x(s) - \log Z(\theta)$ \downarrow $\nabla \log p(s|\theta) = D \log \rho(\theta)^{\mathsf{T}} (x(s) - \mathbb{E}[x(S)])$ Score-aware gradient estimator (SAGE)

• Future research directions

- (Ongoing) Run extensive numerical results on larger and more challenging examples.
- Find better estimators for covariance and expectation, such as robust estimators.

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Onconvex convergence result

Product-form stationary distribution $\log p(s|\theta) = \log \rho(\theta)^{\mathsf{T}} x(s) - \log Z(\theta)$ \downarrow $\nabla \log p(s|\theta) = D \log \rho(\theta)^{\mathsf{T}} (x(s) - \mathbb{E}[x(S)])$ Score-aware gradient estimator (SAGE)

• Future research directions

- (Ongoing) Run extensive numerical results on larger and more challenging examples.
- Find better estimators for covariance and expectation, such as robust estimators.
- Apply to MDPs where the stationary distribution is known only up to a multiplicative constant.

June–December 2024 in Toulouse

- 5 international workshops
- Atelier en Évaluation des Performances
- Invited researchers: Vivek Borkar, Itai Gurvich, Sean Meyn, and Adam Wierman

Call for abstract for the RL workshop until February 29!

More information on the webpage https://indico.math.cnrs.fr/category/683/

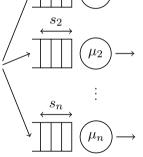
< □ > < 向

- ${\sf M}/{\sf M}/1$ queues with service rates μ_1 , μ_2 , ..., μ_n
- Maximum c jobs in the system
- State vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- \bullet Actions are to assign to some server i
- Admission reward 1 per job

• Policy
$$\pi(\text{server } i|\cdot, \theta) = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}} \text{ with } \theta = (\theta_1, \theta_2, \dots, \theta_n)$$

Depends on

• Stationary distribution $p(s|\theta) \propto \prod_{i=1}^{n} \left(\frac{\lambda}{\mu} \pi(\text{server } i|\cdot, \theta) \right)^{\circ}$



Agent

s

Depends on θ

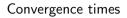
Simulation setup

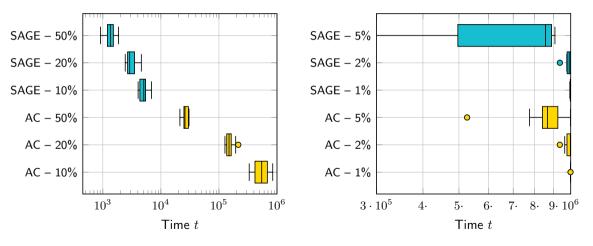
- Number n = 4 of servers
- Arrival rate $\lambda=0.7$
- Service rates $\mu_1=0.4,\ \mu_2=0.3,\ \mu_3=0.2,$ and $\mu_4=0.1$
- Total capacity c = 10
- 10^6 simulation steps

Algorithms

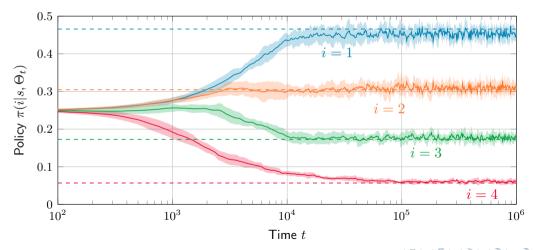
- SAGE-based policy-gradient
- Actor-critic without eligibility traces (Sutton and Barto, Section 13.6)
- Gradient update at every step with step size $\alpha = 10^{-3}$

Example: Static load balancing



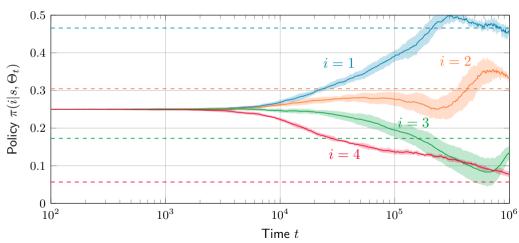


Example: Static load balancing



SAGE

Example: Static load balancing



Actor-critic