Stochastic Dynamic Matching

A Mixed Graph-Theory and Linear-Algebra Approach

Céline Comte TU/e & CNRS

Fabien Mathieu LINCS & Swapcard

Ana Bušić Inria & DI ENS

Informs APS – June 28, 2023

Matching problem

Graph G undirected, connected, without loop

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \mathsf{items}$
- ullet Edges $E=\{1,2,\ldots,m\}
 ightarrow {
 m possible}$ matches

Matching problem

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{items}$
- \bullet Edges $E=\{1,2,\ldots,m\}\to \mathsf{possible}$ matches

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- ullet Edges $E=\{1,2,\ldots,m\}
 ightarrow {
 m possible}$ matches

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

Class-i items:

- ullet arrive according to a Poisson process with rate λ_i
- can be matched with items of neighbor classes

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

Class-i items:

- ullet arrive according to a Poisson process with rate λ_i
- can be matched with items of neighbor classes

New item

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

Class-i items:

- ullet arrive according to a Poisson process with rate λ_i
- can be matched with items of neighbor classes

Graph G undirected, connected, without loop, non-bipartite

- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

Class-i items:

- ullet arrive according to a Poisson process with rate λ_i
- can be matched with items of neighbor classes

- If the policy is given, we obtain a Markov chain
- We assume stabilizability

• Matching rate μ_k along edge $k=\{i,j\}$: mean number of matches per time unit between classes i and j.

1 4

- Matching rate μ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - They give intuition about the long-term impact of the matching policy.

- 1 4
- Matching rate μ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - They give intuition about the long-term impact of the matching policy.
 - We often want to maximize a reward $\sum_{k \in E} r_k \mu_k$ that depends on these matching rates.

- 1 4
- Matching rate μ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - They give intuition about the long-term impact of the matching policy.
 - ullet We often want to maximize a reward $\sum_{k\in E} r_k \mu_k$ that depends on these matching rates.
 - These matching rates may be the input of a "second-level" system.

- 1 4
- Matching rate μ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - They give intuition about the long-term impact of the matching policy.
 - We often want to maximize a reward $\sum_{k \in E} r_k \mu_k$ that depends on these matching rates.
 - These matching rates may be the input of a "second-level" system.

Given a graph G=(V,E) and an arrival-rate vector $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$, what is the set of "achievable" matching-rate vectors $\mu=(\mu_1,\mu_2,\ldots,\mu_m)$?

1 4

The matching rates satisfy the conservation law

$$\lambda_i = \sum_{k \in E_i} \mu_k, \quad i \in \{1, 2, \dots, n\}.$$

The matching rates satisfy the conservation law

$$\lambda_i = \sum_{k \in E_i} \mu_k, \quad i \in \{1, 2, \dots, n\}.$$

$$\begin{cases} \lambda_1 = \mu_{1,2} + \mu_{1,3} \\ \lambda_2 = \mu_{1,2} + \mu_{2,3} + \mu_{2,4} \\ \lambda_3 = \mu_{1,3} + \mu_{2,3} + \mu_{3,4} \\ \lambda_4 = \mu_{2,4} + \mu_{3,4} \end{cases}$$

The matching rates satisfy the conservation law

$$\lambda_i = \sum_{k \in E_i} \mu_k, \quad i \in \{1, 2, \dots, n\},$$

that is, in matrix form,

$$\lambda = A\mu$$

where A is the **incidence matrix** of the graph G.

$$\begin{cases} \lambda_1 = \mu_{1,2} + \mu_{1,3} \\ \lambda_2 = \mu_{1,2} + \mu_{2,3} + \mu_{2,4} \\ \lambda_3 = \mu_{1,3} + \mu_{2,3} + \mu_{3,4} \\ \lambda_4 = \mu_{2,4} + \mu_{3,4} \end{cases}$$

The matching rates satisfy the conservation law

$$\lambda_i = \sum_{k \in E_i} \mu_k, \quad i \in \{1, 2, \dots, n\},$$

that is, in matrix form,

$$\lambda = A\mu$$

where A is the **incidence matrix** of the graph G.

$$\begin{cases} \lambda_1 = \mu_{1,2} + \mu_{1,3} \\ \lambda_2 = \mu_{1,2} + \mu_{2,3} + \mu_{2,4} \\ \lambda_3 = \mu_{1,3} + \mu_{2,3} + \mu_{3,4} \\ \lambda_4 = \mu_{2,4} + \mu_{3,4} \end{cases}$$

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mu_{1,2} \\ \mu_{1,3} \\ \mu_{2,3} \\ \mu_{2,4} \\ \mu_{3,4} \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

• Solutions of the conservation law $\lambda = A\mu$

All solutions

Non-negative solutions

Achievable solutions

• Solutions of the conservation law $\lambda = A\mu$

All solutions

Affine space

Non-negative solutions

Achievable solutions

• Solutions of the conservation law $\lambda = A\mu$

All solutions | Affine space

Non-negative solutions

Convex polytope

Achievable solutions

• Solutions of the conservation law $\lambda = A\mu$

All solutions

Affine space of dimension d

Non-negative solutions

Convex polytope of dimension d

Achievable solutions

with d = (number of edges) - (number of nodes)

• Solutions of the conservation law $\lambda = A\mu$

All solutions

 \mid Affine space of dimension d

Non-negative solutions

Convex polytope of dimension d

Achievable solutions | Convex set \supseteq (interior of the polytope + some faces)

with d = (number of edges) - (number of nodes)

ullet Solutions of the conservation law $\lambda=A\mu$

1 4

All solutions \mid Affine space of dimension d

Achievable solutions | Convex set \supseteq (interior of the polytope + some faces)

with d = (number of edges) - (number of nodes)

Contributions

- ullet Characterization of surjective/injective/bijective graphs G.
- Stabilizability conditions that are easier to verify.
- Almost complete characterization of the set of achievable matching rate vectors.
- Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.

Affine space of all solutions of $\lambda = A\mu$

We define

- ullet $\mu^\circ=$ a particular solution, built using the pseudo-inverse of A
- d = (number of edges) (number of nodes)
- $\{b_1, b_2, \dots, b_d\}$ = basis of kernel(A), built using a spanning tree of G (Doob, 1973)

Proposition

The solution set Π of the equation $\lambda = A\mu$ is the d-dimensional affine space

$$\Pi = \left\{ \mu^{\circ} + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d : (\alpha_1, \alpha_2, \ldots, \alpha_d) \in \mathbb{R}^d \right\}.$$

Affine space of all solutions of $\lambda = A\mu$

We define

- $\mu^{\circ} = a$ particular solution, built using the pseudo-inverse of A
- d = (number of edges) (number of nodes)
- $\{b_1, b_2, \dots, b_d\}$ = basis of kernel(A), built using a spanning tree of G (Doob, 1973)

Proposition

The solution set Π of the equation $\lambda = A\mu$ is the d-dimensional affine space

$$\Pi = \left\{ \mu^{\circ} + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d : (\alpha_1, \alpha_2, \ldots, \alpha_d) \in \mathbb{R}^d \right\}.$$

- Two coordinate systems: Edge coordinates: $\mu = (\mu_1, \mu_2, \dots, \mu_m) \in \mathbb{R}^m$
 - Kernel coordinates: $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{R}^d$

$$\begin{cases} \lambda_1 = \mu_{1,2} + \mu_{1,3} \\ \lambda_2 = \mu_{1,2} + \mu_{2,3} + \mu_{2,4} \\ \lambda_3 = \mu_{1,3} + \mu_{2,3} + \mu_{3,4} \\ \lambda_4 = \mu_{2,4} + \mu_{3,4} \end{cases}$$

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mu_{1,2} \\ \mu_{1,3} \\ \mu_{2,3} \\ \mu_{2,4} \\ \mu_{2,4} \end{bmatrix}$$

Example: Codomino graph

Example: Codomino graph

Example: Codomino graph

Corollary

The set $\Pi_{\geq 0}$ of non-negative solutions of $\lambda = A\mu$ is the d-dimensional convex polytope

$$\Pi_{\geq 0} = \Pi \cap \mathbb{R}^d_{\geq 0} \simeq \left\{ \alpha \in \mathbb{R}^d : \mu^\circ + \alpha_1 b_1 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

Corollary

The set $\Pi_{\geq 0}$ of non-negative solutions of $\lambda = A\mu$ is the d-dimensional convex polytope

$$\Pi_{\geq 0} = \Pi \cap \mathbb{R}^d_{\geq 0} \simeq \left\{ \alpha \in \mathbb{R}^d : \mu^\circ + \alpha_1 b_1 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

(a) General solution of $\lambda = A\mu$

Corollary

The set $\Pi_{\geq 0}$ of non-negative solutions of $\lambda = A\mu$ is the d-dimensional convex polytope

$$\Pi_{\geq 0} = \Pi \cap \mathbb{R}^d_{\geq 0} \simeq \left\{ \alpha \in \mathbb{R}^d : \mu^{\circ} + \alpha_1 b_1 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

(a) General solution of $\lambda = A\mu$

(b) Convex polytope of non-negative solutions

Corollary

The set $\Pi_{\geq 0}$ of non-negative solutions of $\lambda = A\mu$ is the d-dimensional convex polytope

$$\Pi_{\geq 0} = \Pi \cap \mathbb{R}^d_{\geq 0} \simeq \left\{ \alpha \in \mathbb{R}^d : \mu^\circ + \alpha_1 b_1 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

(b) Convex polytope of non-negative solutions

Theorem

Let μ be a vertex of $\Pi_{\geq 0}$ and p = number of (strictly) positive coordinates of μ .

Theorem

Let μ be a vertex of $\Pi_{>0}$ and p= number of (strictly) positive coordinates of μ .

• If p = number of nodes in G, then μ can be achieved by a stable policy: for instance, a "filtering" match-the-longest policy applied on the support of μ .

Theorem

Let μ be a vertex of $\Pi_{>0}$ and p= number of (strictly) positive coordinates of μ .

• If p = number of nodes in G, then μ can be achieved by a stable policy: for instance, a "filtering" match-the-longest policy applied on the support of μ .

Theorem

Let μ be a vertex of $\Pi_{\geq 0}$ and p= number of (strictly) positive coordinates of μ .

- If p = number of nodes in G, then μ can be achieved by a stable policy: for instance, a "filtering" match-the-longest policy applied on the support of μ .
- ullet If p< number of nodes in G, then μ cannot be achieved by a stable policy.

Conjecture

Let μ be a vertex of $\Pi_{\geq 0}$.

Conjecture

Let μ be a vertex of $\Pi_{\geq 0}$. For each $k \in \mathbb{N}$, let Φ_k denote the following "semi-filtering" policy:

- If longest queue size < k, apply the filtering match-the-longest policy on the support of μ .
- Otherwise, apply the (non-filtering) match-the-longest policy.

Conjecture

Let μ be a vertex of $\Pi_{\geq 0}$. For each $k \in \mathbb{N}$, let Φ_k denote the following "semi-filtering" policy:

- ullet If longest queue size < k, apply the filtering match-the-longest policy on the support of $\mu.$
- Otherwise, apply the (non-filtering) match-the-longest policy.

 Φ_k is stable for each $k \in \mathbb{N}$, and $\lim_{k \to +\infty} \mu(\Phi_k) = \mu$.

Conjecture

Let μ be a vertex of $\Pi_{\geq 0}$. For each $k \in \mathbb{N}$, let Φ_k denote the following "semi-filtering" policy:

- ullet If longest queue size < k, apply the filtering match-the-longest policy on the support of $\mu.$
- Otherwise, apply the (non-filtering) match-the-longest policy.

 Φ_k is stable for each $k \in \mathbb{N}$, and $\lim_{k \to +\infty} \mu(\Phi_k) = \mu$.

Conjecture

Let μ be a vertex of $\Pi_{\geq 0}$. For each $k \in \mathbb{N}$, let Φ_k denote the following "semi-filtering" policy:

- ullet If longest queue size < k, apply the filtering match-the-longest policy on the support of $\mu.$
- Otherwise, apply the (non-filtering) match-the-longest policy.

 Φ_k is stable for each $k \in \mathbb{N}$, and $\lim_{k \to +\infty} \mu(\Phi_k) = \mu$.

Numerical results: Performance of semi-filtering policies

Conclusion

Contributions

- Characterization of surjective/injective/bijective graphs.
- Stabilizability conditions that are easier to verify.
- Almost complete characterization of the set of achievable matching rate vectors.
- Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.

Conclusion

Contributions

- Characterization of surjective/injective/bijective graphs.
- Stabilizability conditions that are easier to verify.
- Almost complete characterization of the set of achievable matching rate vectors.
- Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.

Future works

- More realistic model: hypergraph? reneging?
- What it the arrival rates and/or the graph structure are unknown?