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Matching problem

Graph G undirected, connected, without loop
@ Nodes V ={1,2,...,n} — items

o Edges F = {1,2,...,m} — possible matches e‘.°
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Online stochastic matching problem

Graph G undirected, connected, without loop
@ Nodes V ={1,2,...,n} — item

o Edges F = {1,2,...,m} — possible matches e‘.°
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Online stochastic matching problem

Graph G undirected, connected, without loop

@ Nodes V ={1,2,...,n} — item a

o Edges F = {1,2,...,m} — possible matches e‘.°
Class-i items:

@ arrive according to a Poisson process with rate \; e
@ can be matched with items of neighbor classes
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Online stochastic matching problem

Graph G undirected, connected, without loop
@ Nodes V ={1,2,...,n} — item
e Edges £ ={1,2,...,m} — possible matches

Class-i items:
@ arrive according to a Poisson process with rate \;

@ can be matched with items of neighbor classes

New item

0000

e‘:.c

o If the policy is given,
we obtain a Markov chain

@ We assume stabilizability
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Matching rate
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e Matching rate i, along edge k = {i,j}: 0“9

mean number of matches per time unit between classes 4 and j. e

Céline Comte — TU/e & CNRS Stochastic Dynamic Matching



e Matching rate i, along edge k = {i,j}: 0“9

mean number of matches per time unit between classes 4 and j. e

@ Matching rates are particularly interesting:
o They give intuition about the long-term impact of the matching policy.
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o We often want to maximize a reward ), o 7xjux that depends on these matching rates.
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e Matching rate i, along edge k = {i,j}: 0“9

mean number of matches per time unit between classes 4 and j. e

@ Matching rates are particularly interesting:
o They give intuition about the long-term impact of the matching policy.
o We often want to maximize a reward ), o 7xjux that depends on these matching rates.
o These matching rates may be the input of a “second-level” system.

Given a graph G = (V, E)) and an arrival-rate vector A = (A1, A2,..., An),
what is the set of “achievable” matching-rate vectors p = (u1, p2, - - -y fom)?
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Conservation law

The matching rates satisfy the conservation law e
Ai = Z/Lk, i€{1,2,...,n}.
keFE;
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Conservation law

o‘ate

The matching rates satisfy the conservation law e
A=k i€{1,2,...,n}. A= g+ 3
kEE; Ao = p11,2 + p2,3 + H24

A3 = p1,3 + p2,3 + U3.4
Ay = 2.4 + 13,4
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Conservation law

The matching rates satisfy the conservation law |I

A = Z/Lk, i€{1,2,...,n}, /\1:;L172—|-;L1’3
kEE; Ao = p11,2 + p2,3 + H24
that is, in matrix form, A3 = p1,3 + p23 + 134

Ay = 2.4 + 13,4
A= Ap,

where A is the incidence matrix of the graph G.
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Conservation law

The matching rates satisfy the conservation law

Ai = Z/Lk, i€{1,2,...,n},

keFE;

that is, in matrix form,

A= Apu,
H "
where A is the incidence matrix of the graph G. A2
A3
A

Al =p12+ (13
A2 = fi1,2 + p2,3 + H24
A3 = p1,3+ p2,3 + H3.4
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Example: Diamond graph
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Example: Diamond graph

A2 = Ao — pi23

A3 = A3 — fi2,3
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Example: Diamond graph

A=A — p2s @

Al =12+ 13
Ao = 12+ p2,3 + p2.4
A3 = p1,3 + p2,3 + (134
(A4 = o4+ p34

A 11 0 0 0] |“2
| |10 1 1 of [M3
Ml o1 1 o0 1] |M2P
M\ 000 1 1] M4

- H3,4
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Example: Diamond graph

A=Az — i (Assuming A + Mg = 3) e‘e‘e

Al =12+ 13
Ao = 12+ p2,3 + p2.4
A3 = p1,3 + p2,3 + (134
(A4 = o4+ p34

A 11 0 0 0] |“2
| |10 1 1 of [M3
Ml o1 1 o0 1] |M2P
M\ 000 1 1] M4
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Overview

@ Solutions of the conservation law A = Ap

solutions e
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Ov

@ Solutions of the conservation law A = Ap

solutions | Affine space e

()
s
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solutions | Convex polytope

solutions

Céline Comte — TU/e & CNRS Stochastic Dynamic Matching



Overview

e Solutions of the conservation law \ = Au 0“9

solutions | Affine space of dimension d e
solutions | Convex polytope of dimension d
solutions

with d = (number of edges) — (number of nodes)
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Overview

e Solutions of the conservation law \ = Au 0“9

solutions | Affine space of dimension d e
solutions | Convex polytope of dimension d
solutions | Convex set O (interior of the polytope + some faces)
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Overview

e Solutions of the conservation law \ = Au 0“9

solutions | Affine space of dimension d e
solutions | Convex polytope of dimension d
solutions | Convex set O (interior of the polytope + some faces)

with d = (number of edges) — (number of nodes)

@ Contributions

Characterization of surjective/injective/bijective graphs G.

Stabilizability conditions that are easier to verify.

Almost complete characterization of the set of achievable matching rate vectors.

Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.
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Affine space of all solutions of A = Apu
We define c“e
@ u° = a particular solution, built using the pseudo-inverse of A e

@ d = (number of edges) — (number of nodes)

@ {b1,ba,...,bq} = basis of kernel(A), built using a spanning tree of G (Doob, 1973)

Proposition

The solution set 11 of the equation A = Ay is the d-dimensional affine space

H:{u°+a1b1+a2b2+...+adbd:(al,a2,...,ad)€Rd}.
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Affine space of all solutions of A = Apu
We define c“e
@ u° = a particular solution, built using the pseudo-inverse of A e

@ d = (number of edges) — (number of nodes)

@ {b1,ba,...,bq} = basis of kernel(A), built using a spanning tree of G (Doob, 1973)

Proposition

The solution set 11 of the equation A = Ay is the d-dimensional affine space

H:{u°+a1b1+a2b2+...+adbd:(al,a2,...,ad)€Rd}.

Two coordinate systems: o Edge coordinates: = (u1, p2,. .., fm) € R™

o Kernel coordinates: o = (ag,as,...,aq) € R?
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Example: Diamond graph

A=Ay — p2s @

Al =12+ 13
Ao = 12+ p2,3 + p2.4
A3 = p1,3 + p2,3 + (134
(A4 = o4+ p34
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Example: Diamond graph

A=Ay — p2s @
oW Yo

9,19/}
:))\Q‘q’ < A1 =12+ 13
. Ao = f11,2 + p2,3 + H24
p23 = 5(A2 + A3 = A1 — ) A3 = p1,.3 + p2,3 + U3.4
2,7 (A4 = fig,a + 13,4
7 a M) L1 o0 0 o] |M?
@ | |10 1 1 of [M3
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Example: Codomino graph
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Example: Codomino graph

1 — (9
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Example: Codomino graph
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Convex polytope of non-negative solutions of A = Apu

The set 11> of non-negative solutions of A = Ay is the d-dimensional convex polytope

HEO:HHR‘éO:{aERd:u°+albl+...+adbd20}.
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Convex polytope of non-negative solutions of A = Apu

The set 11> of non-negative solutions of A = Ay is the d-dimensional convex polytope

HEO:HHR‘éO:{aERd:u°+albl+...+adbd20}.

(a) General solution of A = Ap
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Convex polytope of non-negative solutions of A = Apu

The set 11> of non-negative solutions of A = Ay is the d-dimensional convex polytope

HEO:HHR‘éO:{aERd:u°+albl+...+adbd20}.

AD o

(a) General solution of A = Ap (b) Convex polytope of non-negative solutions
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Convex polytope of non-negative solutions of A = Apu

The set 11> of non-negative solutions of A = Ay is the d-dimensional convex polytope

HEO:HHR‘éO:{aERd:u°+albl+...+adbd20}.

(o) (5) N ‘_0_‘

(a) General solution of A = Ap (b) Convex polytope of non-negative solutions
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Achievable solutions of A = Apu

Let pu be a vertex of Il>g and p = number of (strictly) positive coordinates of .
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Achievable solutions of A = Apu

Let pu be a vertex of Il>g and p = number of (strictly) positive coordinates of .

@ If p = number of nodes in G, then i can be achieved by a stable policy:
for instance, a “filtering” match-the-longest policy applied on the support of L.
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Achievable solutions of A = Apu

Let pu be a vertex of Il>g and p = number of (strictly) positive coordinates of .

@ If p = number of nodes in G, then i can be achieved by a stable policy:
for instance, a “filtering” match-the-longest policy applied on the support of L.

@ (D)
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Achievable solutions of A = Apu

Let pu be a vertex of Il>g and p = number of (strictly) positive coordinates of .

@ If p = number of nodes in G, then i can be achieved by a stable policy:
for instance, a “filtering” match-the-longest policy applied on the support of L.

o If p < number of nodes in G, then p cannot be achieved by a stable policy.

@ (D)
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Non-achievable solutions of A = Apu

Let 11 be a vertex of I1>¢.
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Non-achievable solutions of A = Apu

Let 1v be a vertex of II>g. For each k € N, let ®}, denote the following “semi-filtering” policy:

o If longest queue size < k, apply the filtering match-the-longest policy on the support of (.
e Otherwise, apply the (non-filtering) match-the-longest policy.
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Let 1v be a vertex of II>g. For each k € N, let ®}, denote the following “semi-filtering” policy:
o If longest queue size < k, apply the filtering match-the-longest policy on the support of (.
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Oy, is stable for each k € N, and limy_, 1 oo u(®x) = .
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Numerical results: Performance of semi-filtering policies
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Conclusion

Contributions

o Characterization of surjective/injective/bijective graphs.

@ Stabilizability conditions that are easier to verify.

@ Almost complete characterization of the set of achievable matching rate vectors.

o Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.
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Conclusion

Contributions

o Characterization of surjective/injective/bijective graphs.

@ Stabilizability conditions that are easier to verify.

@ Almost complete characterization of the set of achievable matching rate vectors.

o Filtering (resp. semi-filtering) policies to achieve (resp. approach) vertices of the polytope.

Future works
@ More realistic model: hypergraph? reneging?

e What it the arrival rates and/or the graph structure are unknown?
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