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3/29 Stochastic Dynamic Matching in Graphs

Compatibility graph

Graph G = (V , E) undirected, connected, without loop

• Nodes V = {1,2, . . . ,n} → items
• Edges E = {1,2, . . . ,m} → possible matches

1

2

3 4

• Vi = {neighbors of node i}
V(U) =

⋃
i∈U Vi for each U ⊆ V

• Ei = {edges containing node i}
• Independent sets
I = {{1}, {2}, {3}, {4}, {1,4}, {2,4}}
I0 = I ∪ {∅}
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4/29 Stochastic Dynamic Matching in Graphs

Random dynamics
1

2

3 4

Class-i items arrive as a Poisson process with rate µi

4 4 1 4 1

2

The system dynamics depend on:
• the graph G = (V , E),
• the vector µ = (µ1, µ2, . . . , µn),
• the matching policy.

Additional notation:
• Arrival rate µ(U) =

∑
i∈U µi, U ⊆ V

• Load ρ(I) = µ(I)
µ(V(I)) , I ∈ I
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5/29 Stochastic Dynamic Matching in Graphs

“Stabilizability”
(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

1

2

3 4

• The matching problem (G, µ) is stabilizable

if and only if ρ(I) < 1 for each I ∈ I.
ρ({1}) =

µ1
µ2 + µ3

ρ({2}) =
µ2

µ1 + µ3
ρ({3}) =

µ3
µ1 + µ2 + µ4

ρ({4}) =
µ4
µ3

ρ({1,4}) =
µ1 + µ4
µ2 + µ3

ρ({2,4}) =
µ2 + µ4
µ1 + µ3

• The compatibility graph G is stabilizable if and only if G is non-bipartite.
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First-come-first-matched policy
1

2

3 4

4 4 1 4 12

• Perceived as “fair”, greedy, easy to implement, easy to analyze.
• (Moyal, Bušić, and Mairesse, 2021) derives:

• the necessary and sufficient stability condition,
• the product-form stationary distribution of the “detailed” state.

What is the long-term performance under first-come-first-matched?
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Calculate long-term performance metrics
1

2

3 4

• This is an order-independent loss queue!

• Stationary distribution of the set of unmatched classes:

π(I) =
ρ(I)

1− ρ(I)

(∑
i∈I

µi
µ(I)π(I \ {i})

)
, I ∈ I.

The value of π(∅) follows by normalization.

• Waiting probability of class i:

ωi =
∑
I∈I0:
i/∈V(I)

π(I),

which implies
∑

i∈V µiωi∑
i∈V µi

=
1
2 .
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Calculate long-term performance metrics
1

2

3 4

• Mean number of unmatched items:

L =
∑
I∈I

`(I), with `(I) =
π(I)

1− ρ(I) +
ρ(I)

1− ρ(I)

(∑
i∈I

µi
µ(I)`(I \ {i})

)
.

The mean waiting time of an item follows using Little’s law.
• More detailed formulas for the per-class performance.
• Similar results for stochastic bipartite matching model

(Comte and Dorsman, ASMTA, 2021).
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Calculate long-term performance metrics
1

2

3 4

• Matching rate along edge k = {i, j}:
mean number of matches per time unit
between classes i and j.

4 4 1 4 12

• Closed-form expression: consider a finer partition of the state space.
• More in a few slides...
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Numerical results: Cycle with a chord
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Outline

Model and notation

Performance under the first-come-first-matched policy
Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy
Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

https://doi.org/10.1080/15326349.2021.1962352
https://arxiv.org/abs/2112.14457
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Matching rates 1
2

3
4

• Matching rate λk along edge k = {i, j}:
mean number of matches per time unit between classes i and j.

• Matching rates are particularly interesting:
• We often want to optimize a function of these matching rates.
• They give intuition about the long-term impact of the matching policy.

Given a graph G = (V , E) and a vector µ = (µ1, µ2, . . . , µn) of arrival rates,
what is the set of “feasible” vectors λ = (λ1, λ2, . . . , λm) of matching rates?
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Conservation equation 1
2

3
4


λ1,2 + λ1,3 = µ1

λ1,2 + λ2,3 + λ2,4 = µ2
λ1,3 + λ2,3 + λ3,4 = µ3

λ2,4 + λ3,4 = µ4
1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


µ1
µ2
µ3
µ4



The matching rates satisfy the conservation equation∑
k∈Ei

λk = µi, i ∈ {1,2, . . . ,n}.

that is, in matrix form,
Aλ = µ,

where A = (ai,k) is the incidence matrix
of the compatibility graph.
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Example: Triangle graph


λ1,2 + λ1,3 = µ1
λ1,2 + λ2,3 = µ2
λ1,3 + λ2,3 = µ31 1 0

1 0 1
0 1 1

λ1,2
λ1,3
λ2,3

 =

µ1
µ2
µ3

1

2

3

µ1+
µ2−

µ3

2

µ1 +µ3−µ22

µ
2+
µ

3−
µ

1
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Example: Paw graph
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Example: Diamond graph


λ1,2 + λ1,3 = µ1
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β = 1
2 (µ2 + µ3 − µ1 − µ4)

µ1 + µ4 = µ̄2 + µ̄3 = 1
2
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3

4

β

µ̄2 = µ2 − β

µ̄3 = µ3 − β

2µ1 µ̄3 − α

2µ1µ̄2 + α

2µ̄3µ4 + α

2µ̄2µ4 − α
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Surjectivity, injectivity, and bijectivity 1
2

3
4

• The compatibility graph G is surjective if
• The linear application λ ∈ Rm 7→ Aλ ∈ Rn is surjective.

• The conservation equation Aλ = µ has at least one solution, for each µ ∈ Rn.
• The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).

• The compatibility graph G is injective if

• The linear application λ ∈ Rm 7→ Aλ ∈ Rn is injective.
• The conservation equation Aλ = µ has at most one solution, for each µ ∈ Rn.
• The compatibility graph G contains at most one cycle and this cycle is odd.

• The compatibility graph G is bijective if G is surjective and injective.
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“Stabilizability” 1
2

3
4


1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


µ1
µ2
µ3
µ4



• A matching problem (G, µ) is stabilizable
if and only if ρ(I) < 1 for each I ∈ I.

� The time complexity to verify this condition is polynomial in n and m.

• A compatibility graph G is stabilizable if and only if G is non-bipartite.

� The rank of matrix A is n.
The nullity of matrix A is d = m− n
(according to the rank-nullity theorem).
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� The time complexity to verify this condition is polynomial in n and m.
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� The rank of matrix A is n.
The nullity of matrix A is d = m− n
(according to the rank-nullity theorem).
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Affine space of solutions 1
2

3
4

• The solution set of the conservation equation is

Λ =
{
λ◦ + α1b1 + α2b2 + . . .+ αdbd : α ∈ Rd

}
where λ◦ is a particular solution of the conservation equation
and {b1,b2, . . . ,bd} is a basis of Ker(A), of cardinality d = m− n.

• We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).
• We use two coordinate systems:

• Edge coordinates λ = (λ1, λ2, . . . , λm) ∈ Rm.
• Kernel coordinates α = (α1, α2, . . . , αd) ∈ Rd.
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Example: Diamond graph


λ1,2 + λ1,3 = µ1

λ1,2 + λ2,3 + λ2,4 = µ2
λ1,3 + λ2,3 + λ3,4 = µ3

λ2,4 + λ3,4 = µ4


1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


µ1
µ2
µ3
µ4



β = 1
2 (µ2 + µ3 − µ1 − µ4)

µ1 + µ4 = µ̄2 + µ̄3 = 1
2

1

2

3

4β

µ̄2 = µ2 − β

µ̄3 = µ3 − β

2µ1 µ̄3 − α

2µ1µ̄2 + α

2µ̄3µ4 + α

2µ̄2µ4 − α



23/29 Stochastic Dynamic Matching in Graphs

Convex polytope of non-negative solutions 1
2

3
4

• The set of non-negative solutions of the conservation equation is

Λ≥0 = Λ ∩ Rm
+ ≈

{
α ∈ Rd : λ◦ + α1b1 + α2b2 + . . .+ αdbd ≥ 0

}
.

This is a d-dimensional convex polytope.

• The subgraph restricted to the support of a vertex of Λ≥0 is injective:
• If this subgraph is bijective, we can reach this vertex by applying any stable

matching policy on this subgraph.
• If this subgraph is injective but not surjective, it’s more complicated...
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Example: Codomino graph 1
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1− α1 − α2

(a) Solution of the conservation equation Aλ = µ
with µ = (4,5,3,2,3,5).
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α2
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(−1,−1)
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(1,−1)

(b) Polytope Λ≥0 in kernel coordinates.



25/29 Stochastic Dynamic Matching in Graphs

Example: Codomino graph 1
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Example: Codomino graph 2

1

2

6

3

5

4
1−

α1

1 +
α1

2 + α1 − α2

1
+
α

2

1−
α1

1
+
α

2
1 + α

1

−α1 − α2

(a) Solution of the conservation equation Aλ = µ
with µ = (2,4,4,2,2,2).
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(b) Polytope Λ≥ in kernel coordinates.
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Example: Codomino graph 2
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Conclusion 1
2

3
4

Take-away
• Stochastic dynamic matching problem associated with

organ transplant programs and assembly systems.
• Performance evaluation under the first-come-first-matched policy.
• Analysis of the matching rates under an arbitrary matching policy.

Future works
• More realistic model: hypergraph? state-dependent arrival rates?
• Optimization and learning: graph structure? arrival rates? policy?
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Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4

-1

1

1

-1


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)

1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.

2. Identify an edge k /∈ T such that
T ∪ {k} contains an odd cycle.

3. For each edge l /∈ (T ∪ {k}), build a
kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.

3. For each edge l /∈ (T ∪ {k}), build a
kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.



29/29 Stochastic Dynamic Matching in Graphs

Basis of the kernel of the matrix A 1
2

3
4


λ1,2 + λ1,3 = 0

λ1,2 + λ2,3 + λ2,4 = 0
λ1,3 + λ2,3 + λ3,4 = 0

λ2,4 + λ3,4 = 0
1 1 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 1 1



λ1,2
λ1,3
λ2,3
λ2,4
λ3,4

 =


0
0
0
0



• A vector λ ∈ Rm belongs to Ker(A) if and only if Aλ = 0.

• Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k /∈ T such that

T ∪ {k} contains an odd cycle.
3. For each edge l /∈ (T ∪ {k}), build a

kernel vector with support {l} ⊆ S ⊆ T ∪ {k, l}

• The matching rate along an edge is unique
if and only if this edge doesn’t belong
to any “generalized even cycle”.
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