Stochastic Dynamic Matching in Graphs

Céline Comte - c.m.comte@tue.nl Eindhoven University of Technology

Inria — DYOGENE Seminar — January 17, 2022

Outline

Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy
Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

Outline

Model and notation

> Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy
Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ items

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ items
- Edges $E=\{1,2, \ldots, m\} \rightarrow$ possible matches

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ item classes
- Edges $E=\{1,2, \ldots, m\} \rightarrow$ possible matches

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ item classes
- Edges $E=\{1,2, \ldots, m\} \rightarrow$ possible matches

- $V_{i}=\{$ neighbors of node $i\}$
$V(U)=\bigcup_{i \in U} V_{i}$ for each $U \subseteq V$

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ item classes
- Edges $E=\{1,2, \ldots, m\} \rightarrow$ possible matches

- $V_{i}=\{$ neighbors of node $i\}$ $V(U)=\bigcup_{i \in U} V_{i}$ for each $U \subseteq V$
- $E_{i}=\{$ edges containing node $i\}$

Compatibility graph

Graph $G=(V, E)$ undirected, connected, without loop

- Nodes $V=\{1,2, \ldots, n\} \rightarrow$ item classes
- Edges $E=\{1,2, \ldots, m\} \rightarrow$ possible matches
- $V_{i}=\{$ neighbors of node $i\}$

- $E_{i}=\{$ edges containing node $i\}$
- Independent sets

$$
\begin{aligned}
& \mathbb{I}=\{\{1\},\{2\},\{3\},\{4\},\{1,4\},\{2,4\}\} \\
& \mathbb{I}_{0}=\mathbb{I} \cup\{\emptyset\}
\end{aligned}
$$

Random dynamics

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}

4	4	1	4	1		

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}
2

4	4	1	4	1		

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}

The system dynamics depend on:

- the graph $G=(V, E)$,
- the vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$,
- the matching policy.

Random dynamics

Class-i items arrive as a Poisson process with rate μ_{i}

The system dynamics depend on:

- the graph $G=(V, E)$,
- the vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$,
- the matching policy.

Additional notation:

- Arrival rate $\mu(U)=\sum_{i \in U} \mu_{i}, U \subseteq V$
- Load $\rho(I)=\frac{\mu(I)}{\mu(V(I))}, I \in \mathbb{I}$

"Stabilizability"

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

- The matching problem (G, μ) is stabilizable

"Stabilizability"

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

- The matching problem (G, μ) is stabilizable if and only if $\rho(I)<1$ for each $I \in \mathbb{I}$.

"Stabilizability"

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

- The matching problem (G, μ) is stabilizable if and only if $\rho(I)<1$ for each $I \in \mathbb{I}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rho(\{1\})=\frac{\mu_{1}}{\mu_{2}+\mu_{3}} \\
\rho(\{4\})=\frac{\mu_{4}}{\mu_{3}}
\end{array}\right. \\
& \begin{aligned}
\rho(\{2\}) & =\frac{\mu_{2}}{\mu_{1}+\mu_{3}} \\
\rho(\{1,4\}) & =\frac{\mu_{1}+\mu_{4}}{\mu_{2}+\mu_{3}}
\end{aligned} \\
& \rho(\{3\})=\frac{\mu_{3}}{\mu_{1}+\mu_{2}+\mu_{4}} \\
& \rho(\{2,4\})=\frac{\mu_{2}+\mu_{4}}{\mu_{1}+\mu_{3}}
\end{aligned}
$$

"Stabilizability"

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

- The matching problem (G, μ) is stabilizable if and only if $\rho(I)<1$ for each $I \in \mathbb{I}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rho(\{1\})=\frac{\mu_{1}}{\mu_{2}+\mu_{3}} \\
\rho(\{4\})=\frac{\mu_{4}}{\mu_{3}}
\end{array}\right. \\
& \rho(\{2\})=\frac{\mu_{2}}{\mu_{1}+\mu_{3}} \\
& \rho(\{1,4\})=\frac{\mu_{1}+\mu_{4}}{\mu_{2}+\mu_{3}} \\
& \rho(\{3\})=\frac{\mu_{3}}{\mu_{1}+\mu_{2}+\mu_{4}} \\
& \rho(\{2,4\})=\frac{\mu_{2}+\mu_{4}}{\mu_{1}+\mu_{3}}
\end{aligned}
$$

- The compatibility graph G is stabilizable

"Stabilizability"

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

- The matching problem (G, μ) is stabilizable if and only if $\rho(I)<1$ for each $I \in \mathbb{I}$.

$$
\left\{\begin{array}{rlrl}
\rho(\{1\}) & =\frac{\mu_{1}}{\mu_{2}+\mu_{3}} & \rho(\{2\}) & =\frac{\mu_{2}}{\mu_{1}+\mu_{3}}
\end{array} r(\{3\})=\frac{\mu_{3}}{\mu_{1}+\mu_{2}+\mu_{4}}\right.
$$

- The compatibility graph G is stabilizable if and only if G is non-bipartite.

Outline

Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy
Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

First-come-first-matched policy

First-come-first-matched policy

- Perceived as "fair", greedy, easy to implement, easy to analyze.

First-come-first-matched policy

- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
- the necessary and sufficient stability condition,
- the product-form stationary distribution of the "detailed" state.

First-come-first-matched policy

- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
- the necessary and sufficient stability condition,
- the product-form stationary distribution of the "detailed" state.

What is the long-term performance under first-come-first-matched?

Calculate long-term performance metrics

- This is an order-independent loss queue!

Calculate long-term performance metrics

- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$
\pi(I)=\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \pi(I \backslash\{i\})\right), \quad I \in \mathbb{I} .
$$

Calculate long-term performance metrics

- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$
\pi(I)=\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \pi(I \backslash\{i\})\right), \quad I \in \mathbb{I} .
$$

The value of $\pi(\emptyset)$ follows by normalization.

Calculate long-term performance metrics

- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$
\pi(I)=\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \pi(I \backslash\{i\})\right), \quad I \in \mathbb{I} .
$$

The value of $\pi(\emptyset)$ follows by normalization.

- Waiting probability of class i :

$$
\omega_{i}=\sum_{\substack{I \in \mathbb{I}_{0}: \\ i \notin V(I)}} \pi(I)
$$

Calculate long-term performance metrics

- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$
\pi(I)=\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \pi(I \backslash\{i\})\right), \quad I \in \mathbb{I} .
$$

The value of $\pi(\emptyset)$ follows by normalization.

- Waiting probability of class i :

$$
\omega_{i}=\sum_{\substack{I \in I_{0}: \\ i \notin(I)}} \pi(I), \quad \text { which implies } \quad \frac{\sum_{i \in V} \mu_{i} \omega_{i}}{\sum_{i \in V} \mu_{i}}=\frac{1}{2}
$$

Calculate long-term performance metrics

- Mean number of unmatched items:

$$
L=\sum_{I \in \mathbb{I}} \ell(I), \quad \text { with } \quad \ell(I)=\frac{\pi(I)}{1-\rho(I)}+\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \ell(I \backslash\{i\})\right) .
$$

Calculate long-term performance metrics

- Mean number of unmatched items:

$$
L=\sum_{I \in \mathbb{I}} \ell(I), \quad \text { with } \quad \ell(I)=\frac{\pi(I)}{1-\rho(I)}+\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \ell(I \backslash\{i\})\right) .
$$

The mean waiting time of an item follows using Little's law.

Calculate long-term performance metrics

- Mean number of unmatched items:

$$
L=\sum_{I \in \mathbb{I}} \ell(I), \quad \text { with } \quad \ell(I)=\frac{\pi(I)}{1-\rho(I)}+\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \ell(I \backslash\{i\})\right) .
$$

The mean waiting time of an item follows using Little's law.

- More detailed formulas for the per-class performance.

Calculate long-term performance metrics

- Mean number of unmatched items:

$$
L=\sum_{I \in \mathbb{I}} \ell(I), \quad \text { with } \quad \ell(I)=\frac{\pi(I)}{1-\rho(I)}+\frac{\rho(I)}{1-\rho(I)}\left(\sum_{i \in I} \frac{\mu_{i}}{\mu(I)} \ell(I \backslash\{i\})\right) .
$$

The mean waiting time of an item follows using Little's law.

- More detailed formulas for the per-class performance.
- Similar results for stochastic bipartite matching model (Comte and Dorsman, ASMTA, 2021).

Calculate long-term performance metrics

- Matching rate along edge $k=\{i, j\}$:
 mean number of matches per time unit between classes i and j.

Calculate long-term performance metrics

- Matching rate along edge $k=\{i, j\}$:
 mean number of matches per time unit between classes i and j.

- Closed-form expression: consider a finer partition of the state space.

Calculate long-term performance metrics

- Matching rate along edge $k=\{i, j\}$:
 mean number of matches per time unit between classes i and j.

- Closed-form expression: consider a finer partition of the state space.
- More in a few slides...

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle

Numerical results: Cycle with a chord

Numerical results: Cycle with a chord

Outline

Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

Matching rates

- Matching rate λ_{k} along edge $k=\{i, j\}$: mean number of matches per time unit between classes i and j.

Matching rates

- Matching rate λ_{k} along edge $k=\{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
- We often want to optimize a function of these matching rates.
- They give intuition about the long-term impact of the matching policy.

Matching rates

- Matching rate λ_{k} along edge $k=\{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
- We often want to optimize a function of these matching rates.
- They give intuition about the long-term impact of the matching policy.

Given a graph $G=(V, E)$ and a vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ of arrival rates, what is the set of "feasible" vectors $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of matching rates?

Conservation equation

The matching rates satisfy the conservation equation

$$
\sum_{k \in E_{i}} \lambda_{k}=\mu_{i}, \quad i \in\{1,2, \ldots, n\}
$$

Conservation equation

The matching rates satisfy the conservation equation

$$
\sum_{k \in E_{i}} \lambda_{k}=\mu_{i}, \quad i \in\{1,2, \ldots, n\}
$$

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{2,4}+\lambda_{3,4} & =\mu_{4}
\end{aligned}\right.
$$

Conservation equation

The matching rates satisfy the conservation equation

$$
\sum_{k \in E_{i}} \lambda_{k}=\mu_{i}, \quad i \in\{1,2, \ldots, n\}
$$

that is, in matrix form,

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{2,4}+\lambda_{3,4} & =\mu_{4}
\end{aligned}\right.
$$

$$
A \lambda=\mu,
$$

where $A=\left(a_{i, k}\right)$ is the incidence matrix of the compatibility graph.

Conservation equation

The matching rates satisfy the conservation equation

$$
\sum_{k \in E_{i}} \lambda_{k}=\mu_{i}, \quad i \in\{1,2, \ldots, n\}
$$

$$
A \lambda=\mu
$$

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{2,4}+\lambda_{3,4} & =\mu_{4}
\end{aligned}\right.
$$

where $A=\left(a_{i, k}\right)$ is the incidence matrix of the compatibility graph.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

Example: Triangle graph

$$
\begin{gathered}
\left\{\begin{array}{l}
\lambda_{1,2}+\lambda_{1,3}=\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3}=\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}=\mu_{3}
\end{array}\right. \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]}
\end{gathered}
$$

Example: Triangle graph

$$
\begin{gathered}
\left\{\begin{array}{l}
\lambda_{1,2}+\lambda_{1,3}=\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3}=\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}=\mu_{3}
\end{array}\right. \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]}
\end{gathered}
$$

Example: Paw graph

$$
\begin{array}{r}
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{3,4} & =\mu_{4}
\end{aligned}\right. \\
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]}
\end{array}
$$

Example: Paw graph

$$
\begin{array}{r}
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{3,4} & =\mu_{4}
\end{aligned}\right. \\
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]}
\end{array}
$$

Example: Paw graph

$$
\begin{aligned}
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{3,4} & =\mu_{4}
\end{aligned}\right. \\
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right] }
\end{aligned}
$$

Example: Paw graph

$$
\begin{array}{r}
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =\mu_{1} \\
\lambda_{1,2}+\lambda_{2,3} & =\mu_{2} \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =\mu_{3} \\
\lambda_{3,4} & =\mu_{4}
\end{aligned}\right. \\
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]}
\end{array}
$$

Example: Diamond graph

Example: Diamond graph

Example: Diamond graph

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G contains at most one cycle and this cycle is odd.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G contains at most one cycle and this cycle is odd.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G contains at most one cycle and this cycle is odd.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G contains at most one cycle and this cycle is odd.
- The compatibility graph G is bijective if G is surjective and injective.

Surjectivity, injectivity, and bijectivity

- The compatibility graph G is surjective if

- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is surjective.
- The conservation equation $A \lambda=\mu$ has at least one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is injective if
- The linear application $\lambda \in \mathbb{R}^{m} \mapsto A \lambda \in \mathbb{R}^{n}$ is injective.
- The conservation equation $A \lambda=\mu$ has at most one solution, for each $\mu \in \mathbb{R}^{n}$.
- The compatibility graph G contains at most one cycle and this cycle is odd.
- The compatibility graph G is bijective if G is surjective and injective.

"Stabilizability"

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if $\rho(I)<1$ for each $I \in \mathbb{I}$.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if the conservation equation $A \lambda=\mu$ has a solution $\lambda>0$.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if the conservation equation $A \lambda=\mu$ has a solution $\lambda>0$. () The time complexity to verify this condition is polynomial in n and m.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if the conservation equation $A \lambda=\mu$ has a solution $\lambda>0$.
(). The time complexity to verify this condition is polynomial in n and m.
- A compatibility graph G is stabilizable if and only if G is non-bipartite.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if the conservation equation $A \lambda=\mu$ has a solution $\lambda>0$.
(). The time complexity to verify this condition is polynomial in n and m.
- A compatibility graph G is stabilizable if and only if G is surjective.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

"Stabilizability"

- A matching problem (G, μ) is stabilizable if and only if the conservation equation $A \lambda=\mu$ has a solution $\lambda>0$.
(). The time complexity to verify this condition is polynomial in n and m.
- A compatibility graph G is stabilizable if and only if G is surjective. (). The rank of matrix A is n.

The nullity of matrix A is $d=m-n$ (according to the rank-nullity theorem).

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right]
$$

Affine space of solutions

- The solution set of the conservation equation is

$$
\Lambda=\left\{\lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d}: \alpha \in \mathbb{R}^{d}\right\}
$$

where λ° is a particular solution of the conservation equation and $\left\{b_{1}, b_{2}, \ldots, b_{d}\right\}$ is a basis of $\operatorname{Ker}(A)$, of cardinality $d=m-n$.

Affine space of solutions

- The solution set of the conservation equation is

$$
\Lambda=\left\{\lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d}: \alpha \in \mathbb{R}^{d}\right\}
$$

where λ° is a particular solution of the conservation equation and $\left\{b_{1}, b_{2}, \ldots, b_{d}\right\}$ is a basis of $\operatorname{Ker}(A)$, of cardinality $d=m-n$.

- We borrowed an algorithm from (Doob, 1973) to build a basis of $\operatorname{Ker}(A)$.

Affine space of solutions

- The solution set of the conservation equation is

$$
\Lambda=\left\{\lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d}: \alpha \in \mathbb{R}^{d}\right\}
$$

where λ° is a particular solution of the conservation equation and $\left\{b_{1}, b_{2}, \ldots, b_{d}\right\}$ is a basis of $\operatorname{Ker}(A)$, of cardinality $d=m-n$.

- We borrowed an algorithm from (Doob, 1973) to build a basis of $\operatorname{Ker}(A)$.
- We use two coordinate systems:
- Edge coordinates $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}$.
- Kernel coordinates $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$.

Example: Diamond graph

$$
\begin{array}{r}
\beta=\frac{1}{2}\left(\mu_{2}+\mu_{3}-\mu_{1}-\mu_{4}\right) \\
\mu_{1}+\mu_{4}=\bar{\mu}_{2}+\bar{\mu}_{3}=\frac{1}{2}
\end{array}
$$

Convex polytope of non-negative solutions

- The set of non-negative solutions of the conservation equation is

$$
\Lambda_{\geq 0}=\Lambda \cap \mathbb{R}_{+}^{m} \approx\left\{\alpha \in \mathbb{R}^{d}: \lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d} \geq 0\right\}
$$

This is a d-dimensional convex polytope.

Convex polytope of non-negative solutions

- The set of non-negative solutions of the conservation equation is

$$
\Lambda_{\geq 0}=\Lambda \cap \mathbb{R}_{+}^{m} \approx\left\{\alpha \in \mathbb{R}^{d}: \lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d} \geq 0\right\}
$$

This is a d-dimensional convex polytope.

- The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective

Convex polytope of non-negative solutions

- The set of non-negative solutions of the conservation equation is

$$
\Lambda_{\geq 0}=\Lambda \cap \mathbb{R}_{+}^{m} \approx\left\{\alpha \in \mathbb{R}^{d}: \lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d} \geq 0\right\}
$$

This is a d-dimensional convex polytope.

- The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
- If this subgraph is bijective, we can reach this vertex by applying any stable matching policy on this subgraph.

Convex polytope of non-negative solutions

- The set of non-negative solutions of the conservation equation is

$$
\Lambda_{\geq 0}=\Lambda \cap \mathbb{R}_{+}^{m} \approx\left\{\alpha \in \mathbb{R}^{d}: \lambda^{\circ}+\alpha_{1} b_{1}+\alpha_{2} b_{2}+\ldots+\alpha_{d} b_{d} \geq 0\right\}
$$

This is a d-dimensional convex polytope.

- The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
- If this subgraph is bijective, we can reach this vertex by applying any stable matching policy on this subgraph.
- If this subgraph is injective but not surjective, it's more complicated...

Example: Codomino graph 1

(a) Solution of the conservation equation $A \lambda=\mu$ with $\mu=(4,5,3,2,3,5)$.

(b) Polytope $\Lambda_{\geq 0}$ in kernel coordinates.

Example: Codomino graph 1

(a) Vertex $(0,1)$.

(b) Vertex $(-1,0)$.

(c) Vertex $(1,0)$.

(d) Vertex $(-1,-1)$.

(e) Vertex $(1,-1)$.

Example: Codomino graph 2

(a) Solution of the conservation equation $A \lambda=\mu$ with $\mu=(2,4,4,2,2,2)$.

(b) Polytope Λ_{\geq}in kernel coordinates.

Example: Codomino graph 2

Conclusion

Take-away

- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.

Conclusion

Take-away

- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.

Future works

- More realistic model: hypergraph? state-dependent arrival rates?
- Optimization and learning: graph structure? arrival rates? policy?

References

C. Comte. "Stochastic non-bipartite matching models and order-independent loss queues". Stochastic Models 38.1 (Jan. 2022), pp. 1-36
C. Comte and J.-P. Dorsman. "Performance Evaluation of Stochastic Bipartite Matching Models". Performance Engineering and Stochastic Modeling. Lecture Notes in Computer Science. Springer, 2021, pp. 425-440
C. Comte, F. Mathieu, and A. Bušić. "Stochastic dynamic matching: A mixed graph-theory and linear-algebra approach". (Jan. 2022). arXiv: 2112. 14457

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

$$
\begin{array}{r}
\left\{\begin{array}{r}
\lambda_{1,2}+\lambda_{1,3}=0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4}=0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4}=0 \\
\lambda_{2,4}+\lambda_{3,4}=0
\end{array}\right. \\
{\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

$$
\begin{array}{r}
\left\{\begin{array}{r}
\lambda_{1,2}+\lambda_{1,3}=0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4}=0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4}=0 \\
\lambda_{2,4}+\lambda_{3,4}=0
\end{array}\right. \\
{\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

$$
\begin{array}{r}
\left\{\begin{array}{r}
\lambda_{1,2}+\lambda_{1,3}=0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4}=0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4}=0 \\
\lambda_{2,4}+\lambda_{3,4}=0
\end{array}\right. \\
{\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

$$
\begin{array}{r}
\left\{\begin{array}{r}
\lambda_{1,2}+\lambda_{1,3}=0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4}=0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4}=0 \\
\lambda_{2,4}+\lambda_{3,4}=0
\end{array}\right. \\
{\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

- Algorithm to construct a basis of $\operatorname{Ker}(A)(D o o b, 1973)$

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =0 \\
\lambda_{2,4}+\lambda_{3,4} & =0
\end{aligned}\right.
$$

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

- Algorithm to construct a basis of $\operatorname{Ker}(A)(D o o b, 1973)$

1. Build a spanning tree T of G.

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =0 \\
\lambda_{2,4}+\lambda_{3,4} & =0
\end{aligned}\right.
$$

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

- Algorithm to construct a basis of $\operatorname{Ker}(A)(D o o b, 1973)$

1. Build a spanning tree T of G.
2. Identify an edge $k \notin \mathrm{~T}$ such that

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =0 \\
\lambda_{2,4}+\lambda_{3,4} & =0
\end{aligned}\right.
$$

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

- Algorithm to construct a basis of $\operatorname{Ker}(A)(D o o b, 1973)$

1. Build a spanning tree T of G.
2. Identify an edge $k \notin \mathrm{~T}$ such that $\mathbf{T} \cup\{\mathbf{k}\}$ contains an odd cycle.
3. For each edge I $\notin(\mathbf{T} \cup\{\mathbf{k}\})$, build a kernel vector with support $\{\mid\} \subseteq S \subseteq \mathbf{T} \cup\{\mathbf{k}, \mid\}$

$$
\left\{\begin{aligned}
\lambda_{1,2}+\lambda_{1,3} & =0 \\
\lambda_{1,2}+\lambda_{2,3}+\lambda_{2,4} & =0 \\
\lambda_{1,3}+\lambda_{2,3}+\lambda_{3,4} & =0 \\
\lambda_{2,4}+\lambda_{3,4} & =0
\end{aligned}\right.
$$

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Basis of the kernel of the matrix A

- A vector $\lambda \in \mathbb{R}^{m}$ belongs to $\operatorname{Ker}(A)$ if and only if $A \lambda=0$.

- Algorithm to construct a basis of $\operatorname{Ker}(A)(D o o b, 1973)$

1. Build a spanning tree T of G.
2. Identify an edge $k \notin \mathrm{~T}$ such that $\mathrm{T} \cup\{\mathrm{k}\}$ contains an odd cycle.
3. For each edge I $\notin(\mathbf{T} \cup\{\mathbf{k}\})$, build a kernel vector with support $\{\mid\} \subseteq S \subseteq \mathbf{T} \cup\{\mathbf{k}, \mid\}$

- The matching rate along an edge is unique if and only if this edge doesn't belong to any "generalized even cycle".

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1,2} \\
\lambda_{1,3} \\
\lambda_{2,3} \\
\lambda_{2,4} \\
\lambda_{3,4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

