

Stochastic Dynamic Matching in Graphs

Céline Comte — c.m.comte@tue.nl Eindhoven University of Technology

Inria — DYOGENE Seminar — January 17, 2022

Outline

Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

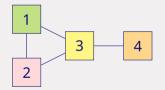
Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

Outline

Model and notation

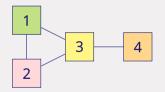
Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

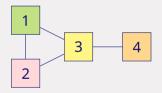


Graph G = (V, E) undirected, connected, without loop

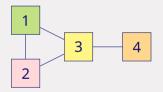
• Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{items}$



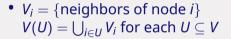
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{items}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

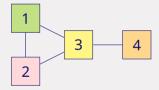


- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

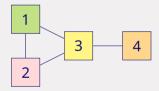


- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$



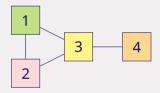


- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

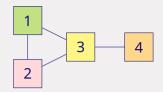


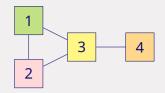
- $V_i = \{ \text{neighbors of node } i \}$ $V(U) = \bigcup_{i \in U} V_i \text{ for each } U \subseteq V$
- $E_i = \{ edges containing node i \}$

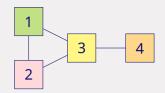
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$

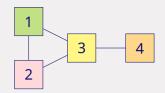


- $V_i = \{ \text{neighbors of node } i \}$ $V(U) = \bigcup_{i \in U} V_i \text{ for each } U \subseteq V$
- $E_i = \{ edges containing node i \}$
- Independent sets
 $$\label{eq:sets} \begin{split} \mathbb{I} &= \{\{1\}, \{2\}, \{3\}, \{4\}, \{1,4\}, \{2,4\}\} \\ \mathbb{I}_0 &= \mathbb{I} \cup \{\emptyset\} \end{split}$$

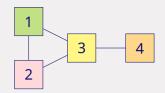


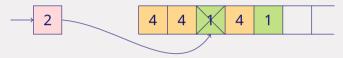


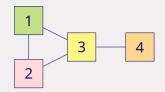




4 4 1	4	1		
-------	---	---	--	--



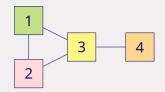




Class-*i* items arrive as a Poisson process with rate μ_i

The system dynamics depend on:

- the graph G = (V, E),
- the vector $\mu = (\mu_1, \mu_2, ..., \mu_n)$,
- the matching policy.



Class-*i* items arrive as a Poisson process with rate μ_i

The system dynamics depend on:

- the graph G = (V, E),
- the vector $\mu = (\mu_1, \mu_2, ..., \mu_n)$,
- the matching policy.

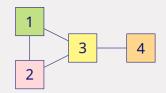
Additional notation:

- Arrival rate $\mu(U) = \sum_{i \in U} \mu_i$, $U \subseteq V$
- Load $ho(I)=rac{\mu(I)}{\mu(V(I))}$, $I\in\mathbb{I}$

TU/e

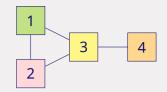
(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

• The matching problem (G, μ) is stabilizable



(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

 The matching problem (G, μ) is stabilizable if and only if ρ(I) < 1 for each I ∈ I.



(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

 The matching problem (G, μ) is stabilizable if and only if ρ(I) < 1 for each I ∈ I.

$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$

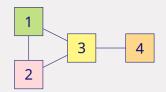
TU/e

(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

• The matching problem (G, μ) is stabilizable if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.

$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$

• The compatibility graph *G* is stabilizable

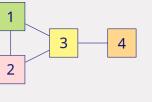


(Bušić, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

 The matching problem (G, μ) is stabilizable if and only if ρ(I) < 1 for each I ∈ I.

$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$

• The compatibility graph *G* is stabilizable if and only if *G* is non-bipartite.



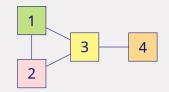
Outline

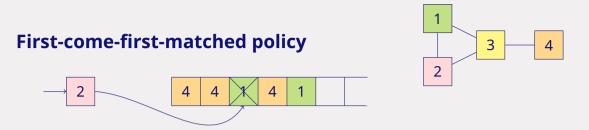
Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

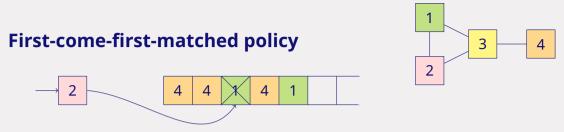
Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

First-come-first-matched policy

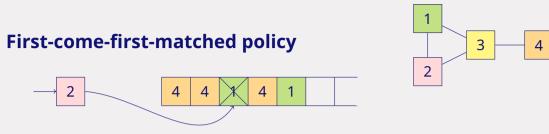




• Perceived as "fair", greedy, easy to implement, easy to analyze.



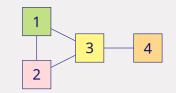
- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
 - the necessary and sufficient stability condition,
 - the product-form stationary distribution of the "detailed" state.



- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
 - the necessary and sufficient stability condition,
 - the product-form stationary distribution of the "detailed" state.

What is the long-term performance under first-come-first-matched?

• This is an order-independent loss queue!



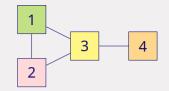
- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = rac{
ho(I)}{1-
ho(I)} \left(\sum_{i\in I} rac{\mu_i}{\mu(I)} \pi(I\setminus\{i\})
ight), \quad I\in \mathbb{I}.$$

- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = rac{
ho(I)}{1-
ho(I)} \left(\sum_{i\in I} rac{\mu_i}{\mu(I)} \pi(I\setminus\{i\})
ight), \quad I\in \mathbb{I}.$$

The value of $\pi(\emptyset)$ follows by normalization.



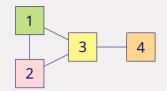
- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = rac{
ho(I)}{1-
ho(I)} \left(\sum_{i\in I} rac{\mu_i}{\mu(I)} \pi(I\setminus\{i\})
ight), \quad I\in\mathbb{I}.$$

The value of $\pi(\emptyset)$ follows by normalization.

• Waiting probability of class *i*:

$$\omega_i = \sum_{\substack{I \in \mathbb{I}_0: \\ i \notin V(I)}} \pi(I),$$



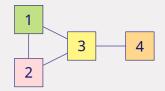
- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = rac{
ho(I)}{1-
ho(I)} \left(\sum_{i\in I} rac{\mu_i}{\mu(I)} \pi(I\setminus\{i\})
ight), \quad I\in\mathbb{I}.$$

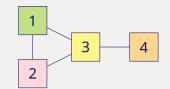
The value of $\pi(\emptyset)$ follows by normalization.

• Waiting probability of class *i*:

$$\omega_i = \sum_{\substack{I \in \mathbb{I}_0: \ i \notin V(I)}} \pi(I), \quad \text{which implies} \quad rac{\sum_{i \in V} \mu_i \omega_i}{\sum_{i \in V} \mu_i} =$$

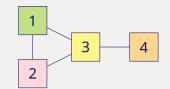


TU/e



• Mean number of unmatched items:

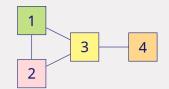
$$L = \sum_{I \in \mathbb{I}} \ell(I), \quad \text{with} \quad \ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$



• Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I), \quad \text{with} \quad \ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

The mean waiting time of an item follows using Little's law.

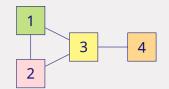


• Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I), \quad \text{with} \quad \ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

The mean waiting time of an item follows using Little's law.

• More detailed formulas for the per-class performance.



Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I), \quad \text{with} \quad \ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

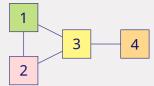
The mean waiting time of an item follows using Little's law.

- More detailed formulas for the per-class performance.
- Similar results for stochastic bipartite matching model (Comte and Dorsman, ASMTA, 2021).

Calculate long-term performance metrics

a along adga k (i.i). Matching ra mean numb between cla

ber of matches per time unit
asses *i* and *j*.
$$4$$
 4 4 4 1



Calculate long-term performance metrics

1 3 4

 Matching rate along edge k = {i,j}: mean number of matches per time unit between classes i and j.

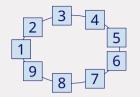
• Closed-form expression: consider a finer partition of the state space.

Calculate long-term performance metrics

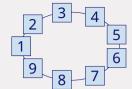
1 3 4

 Matching rate along edge k = {i,j}: mean number of matches per time unit between classes i and j.

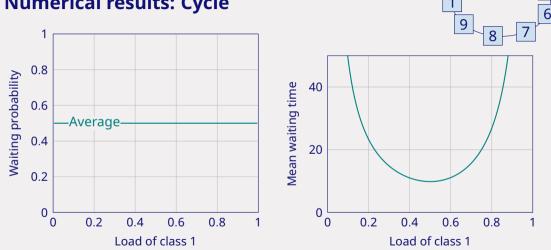
- Closed-form expression: consider a finer partition of the state space.
- More in a few slides...



11/29 Stochastic Dynamic Matching in Graphs





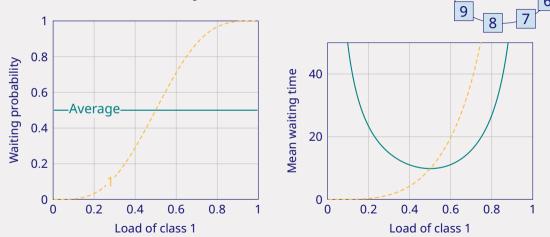


11/29 Stochastic Dynamic Matching in Graphs

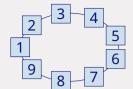
3

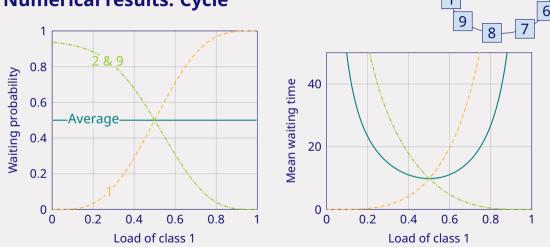
4

5



11/29 Stochastic Dynamic Matching in Graphs





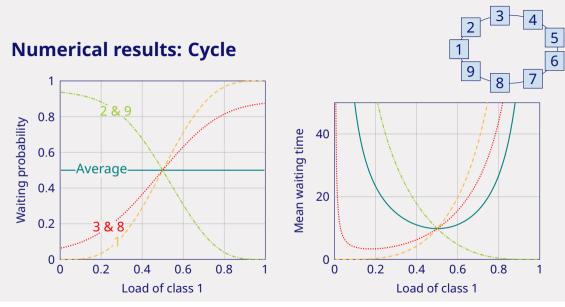
11/29 Stochastic Dynamic Matching in Graphs

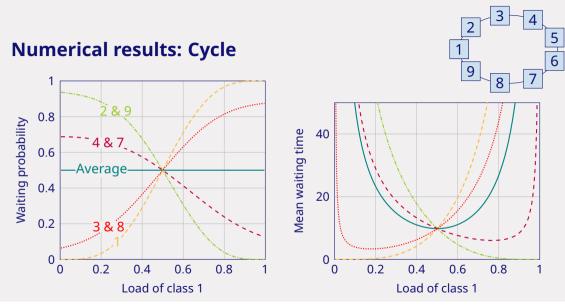
TU/e

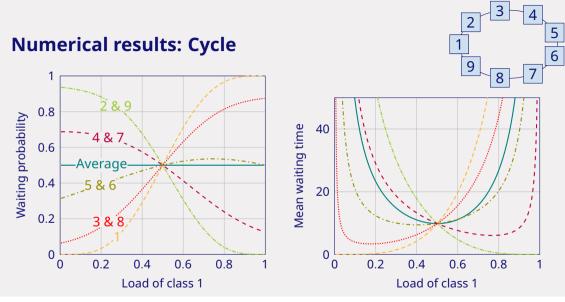
3

4

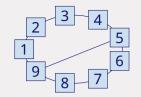
5







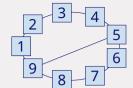
^{11/29} Stochastic Dynamic Matching in Graphs

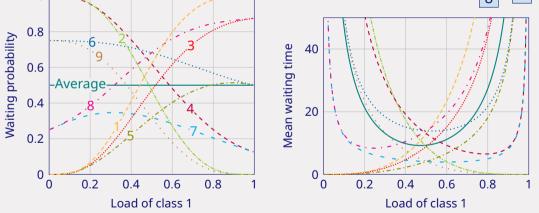


Numerical results: Cycle with a chord

12/29 Stochastic Dynamic Matching in Graphs

Numerical results: Cycle with a chord





Outline

Model and notation

Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)

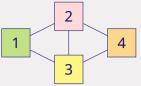
Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

13/29 Stochastic Dynamic Matching in Graphs

Matching rates

 Matching rate λ_k along edge k = {i,j}: mean number of matches per time unit between classes i and j.

Matching rates



- Matching rate λ_k along edge k = {i,j}: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - We often want to optimize a function of these matching rates.
 - They give intuition about the long-term impact of the matching policy.

Matching rates

- Matching rate λ_k along edge k = {i,j}: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - We often want to optimize a function of these matching rates.
 - They give intuition about the long-term impact of the matching policy.

Given a graph G = (V, E) and a vector $\mu = (\mu_1, \mu_2, ..., \mu_n)$ of arrival rates, what is the set of "feasible" vectors $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m)$ of matching rates?

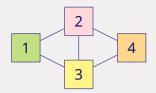


The matching rates satisfy the conservation equation

$$\sum_{k\in E_i}\lambda_k=\mu_i,\quad i\in\{1,2,\ldots,n\}.$$

The matching rates satisfy the conservation equation

$$\sum_{k\in E_i}\lambda_k=\mu_i,\quad i\in\{1,2,\ldots,n\}.$$



 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$

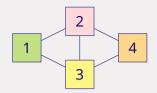
The matching rates satisfy the conservation equation

$$\sum_{k\in E_i}\lambda_k=\mu_i,\quad i\in\{1,2,\ldots,n\},$$

that is, in matrix form,

 $A\lambda = \mu,$

where $A = (a_{i,k})$ is the incidence matrix of the compatibility graph.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

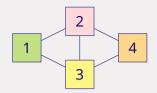
The matching rates satisfy the conservation equation

$$\sum_{k\in E_i}\lambda_k=\mu_i,\quad i\in\{1,2,\ldots,n\},$$

that is, in matrix form,

 $A\lambda = \mu$,

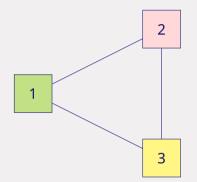
where $A = (a_{i,k})$ is the incidence matrix of the compatibility graph.



 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

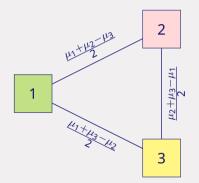
Example: Triangle graph



	$\langle \rangle$	$x_{1,2} + x_{1,2} + x_{1,2} + x_{1,3} + x_{1$	λ _{2,3}	$= \mu_2$	
1 0 1	0 1 1	$\begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \end{bmatrix}$	=	$\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}$	

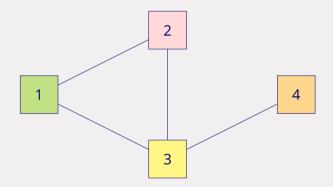
0

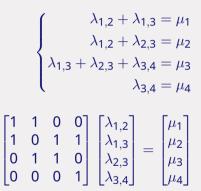
Example: Triangle graph



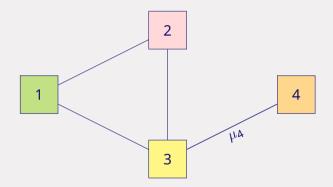
 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} = \mu_3 \end{cases}$ $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}$

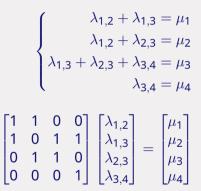
16/29 Stochastic Dynamic Matching in Graphs



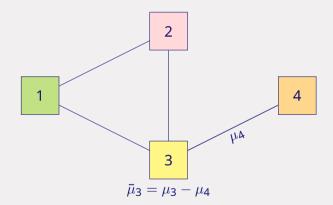


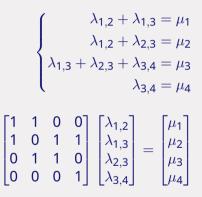
17/29 Stochastic Dynamic Matching in Graphs



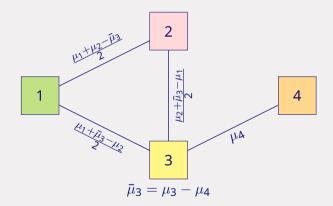


17/29 Stochastic Dynamic Matching in Graphs





17/29 Stochastic Dynamic Matching in Graphs

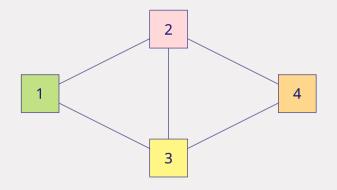


$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

17/29 Stochastic Dynamic Matching in Graphs

Example: Diamond graph

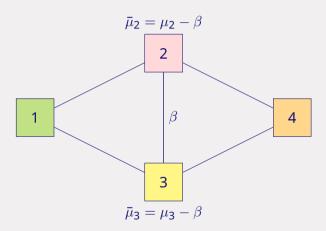


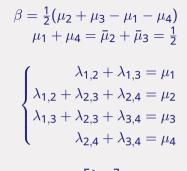
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

18/29 Stochastic Dynamic Matching in Graphs

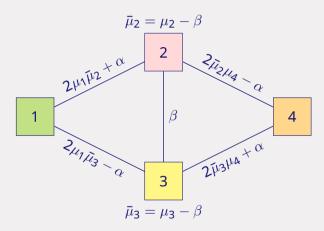
Example: Diamond graph





18/29 Stochastic Dynamic Matching in Graphs

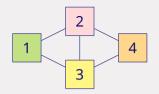
Example: Diamond graph



$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$
$$\mu_1 + \mu_4 = \bar{\mu}_2 + \bar{\mu}_3 = \frac{1}{2}$$
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1\\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2\\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3\\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$
$$1 \quad 0 \quad 0 \quad 0 \ \begin{bmatrix} \lambda_{1,2}\\ \lambda_{1,2} \end{bmatrix} \begin{bmatrix} \mu_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

18/29 Stochastic Dynamic Matching in Graphs



- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.



- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.

- The compatibility graph G is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.



- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.

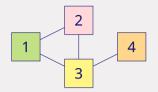
- The compatibility graph G is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.

• The compatibility graph *G* is bijective if *G* is surjective and injective.

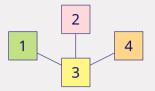
- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* contains at most one cycle and this cycle is odd.
- The compatibility graph *G* is bijective if *G* is surjective and injective.



- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* contains at most one cycle and this cycle is odd.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

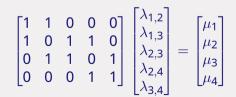


- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* contains at most one cycle and this cycle is odd.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* contains at most one cycle and this cycle is odd.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

- The compatibility graph *G* is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation equation $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph *G* is injective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation equation $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph *G* contains at most one cycle and this cycle is odd.
- The compatibility graph *G* is bijective if *G* is surjective and injective.

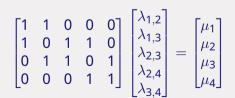




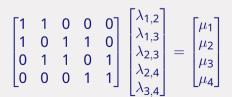
TU/e

20/29 Stochastic Dynamic Matching in Graphs

 A matching problem (G, μ) is stabilizable if and only if ρ(I) < 1 for each I ∈ I.



• A matching problem (G, μ) is stabilizable if and only if the conservation equation $A\lambda = \mu$ has a solution $\lambda > 0$.



A matching problem (G, μ) is stabilizable if and only if the conservation equation Aλ = μ has a solution λ > 0.
The time complexity to verify this condition is polynomial in *n* and *m*.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

- A matching problem (G, μ) is stabilizable
 if and only if the conservation equation Aλ = μ has a solution λ > 0.
 The time complexity to verify this condition is polynomial in *n* and *m*.
- A compatibility graph *G* is stabilizable if and only if *G* is non-bipartite.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

- A matching problem (G, μ) is stabilizable
 if and only if the conservation equation Aλ = μ has a solution λ > 0.
 The time complexity to verify this condition is polynomial in *n* and *m*.
- A compatibility graph *G* is stabilizable if and only if *G* is surjective.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

- A matching problem (G, μ) is stabilizable if and only if the conservation equation Aλ = μ has a solution λ > 0.
 The time complexity to verify this condition is polynomial in *n* and *m*.
- A compatibility graph *G* is stabilizable if and only if *G* is surjective. (a) The rank of matrix *A* is *n*. The nullity of matrix *A* is d = m - n(according to the rank-nullity theorem). $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

Affine space of solutions

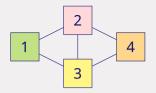


• The solution set of the conservation equation is

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_{1}\boldsymbol{b}_{1} + \alpha_{2}\boldsymbol{b}_{2} + \ldots + \alpha_{d}\boldsymbol{b}_{d} : \alpha \in \mathbb{R}^{d} \right\}$$

where λ° is a particular solution of the conservation equation and $\{b_1, b_2, \dots, b_d\}$ is a basis of Ker(A), of cardinality d = m - n.

Affine space of solutions



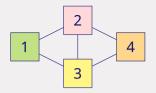
• The solution set of the conservation equation is

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_{1}\boldsymbol{b}_{1} + \alpha_{2}\boldsymbol{b}_{2} + \ldots + \alpha_{d}\boldsymbol{b}_{d} : \alpha \in \mathbb{R}^{d} \right\}$$

where λ° is a particular solution of the conservation equation and $\{b_1, b_2, \dots, b_d\}$ is a basis of Ker(A), of cardinality d = m - n.

• We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(*A*).

Affine space of solutions



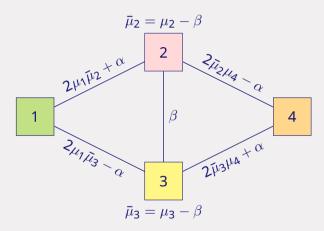
The solution set of the conservation equation is

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_{1}\boldsymbol{b}_{1} + \alpha_{2}\boldsymbol{b}_{2} + \ldots + \alpha_{d}\boldsymbol{b}_{d} : \alpha \in \mathbb{R}^{d} \right\}$$

where λ° is a particular solution of the conservation equation and $\{b_1, b_2, \dots, b_d\}$ is a basis of Ker(A), of cardinality d = m - n.

- We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).
- We use two coordinate systems:
 - Edge coordinates $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m) \in \mathbb{R}^m$.
 - Kernel coordinates $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{R}^d$.

Example: Diamond graph



$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$
$$\mu_1 + \mu_4 = \bar{\mu}_2 + \bar{\mu}_3 = \frac{1}{2}$$
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$
$$1 \quad 0 \quad 0 \quad 0 \\ \lambda_{1,2} \quad \lambda_{1,3} \quad \mu_1 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

22/29 Stochastic Dynamic Matching in Graphs

• The set of non-negative solutions of the conservation equation is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}^m_+ \approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a *d*-dimensional convex polytope.

• The set of non-negative solutions of the conservation equation is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}^m_+ \approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a *d*-dimensional convex polytope.

• The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective

• The set of non-negative solutions of the conservation equation is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}^m_+ \approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a *d*-dimensional convex polytope.

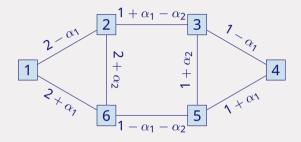
- The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
 - If this subgraph is bijective, we can reach this vertex by applying any stable matching policy on this subgraph.

• The set of non-negative solutions of the conservation equation is

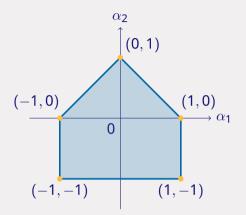
$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}^m_+ \approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a *d*-dimensional convex polytope.

- The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
 - If this subgraph is bijective, we can reach this vertex by applying any stable matching policy on this subgraph.
 - If this subgraph is injective but not surjective, it's more complicated...

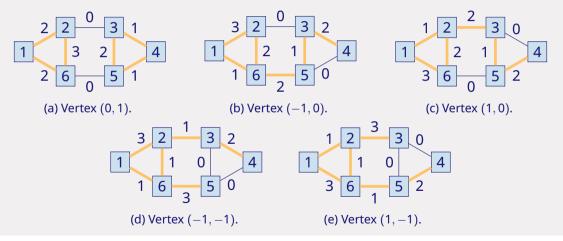


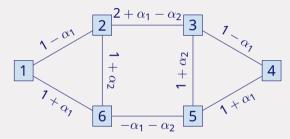
(a) Solution of the conservation equation $A\lambda = \mu$ with $\mu = (4, 5, 3, 2, 3, 5)$.



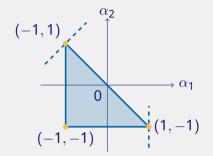
(b) Polytope $\Lambda_{\geq 0}$ in kernel coordinates.

24/29 Stochastic Dynamic Matching in Graphs

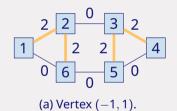


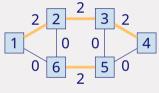


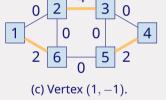
(a) Solution of the conservation equation $A\lambda = \mu$ with $\mu =$ (2, 4, 4, 2, 2, 2).



(b) Polytope Λ_{\geq} in kernel coordinates.







(b) Vertex (-1, -1).

27/29 Stochastic Dynamic Matching in Graphs

Conclusion

Take-away



- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.

Conclusion

Take-away

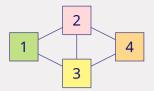


- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.

Future works

- More realistic model: hypergraph? state-dependent arrival rates?
- Optimization and learning: graph structure? arrival rates? policy?

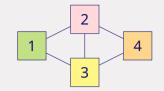
References



C. Comte. "Stochastic non-bipartite matching models and order-independent loss queues". *Stochastic Models* 38.1 (Jan. 2022), pp. 1–36

C. Comte and J.-P. Dorsman. "Performance Evaluation of Stochastic Bipartite Matching Models". *Performance Engineering and Stochastic Modeling*. Lecture Notes in Computer Science. Springer, 2021, pp. 425–440

C. Comte, F. Mathieu, and A. Bušić. "Stochastic dynamic matching: A mixed graph-theory and linear-algebra approach". (Jan. 2022). arXiv: 2112.14457



• A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.

• A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.

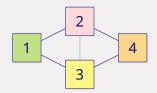
 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

TU/e

29/29 Stochastic Dynamic Matching in Graphs

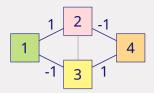
• A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.



 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.



 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.

 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

TU/e

29/29 Stochastic Dynamic Matching in Graphs

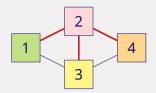
- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0\\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0\\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0\\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 1. Build a spanning tree T of G.



$$\begin{aligned} \lambda_{1,2} + \lambda_{1,3} &= 0\\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} &= 0\\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} &= 0\\ \lambda_{2,4} + \lambda_{3,4} &= 0 \end{aligned}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - 1. Build a spanning tree **T** of *G*.
 - 2. Identify an edge $\mathbf{k} \notin \mathbf{T}$ such that $\mathbf{T} \cup \{\mathbf{k}\}$ contains an odd cycle.

$$\begin{aligned} \lambda_{1,2} + \lambda_{1,3} &= 0\\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} &= 0\\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} &= 0\\ \lambda_{2,4} + \lambda_{3,4} &= 0 \end{aligned}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - 1. Build a spanning tree **T** of *G*.
 - 2. Identify an edge $\mathbf{k} \notin \mathbf{T}$ such that $\mathbf{T} \cup \{\mathbf{k}\}$ contains an odd cycle.
 - 3. For each edge $I \notin (T \cup \{k\})$, build a kernel vector with support $\{I\} \subseteq S \subseteq T \cup \{k, I\}$

 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mathbf{0} \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mathbf{0} \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mathbf{0} \\ \lambda_{2,4} + \lambda_{3,4} = \mathbf{0} \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - 1. Build a spanning tree **T** of *G*.
 - 2. Identify an edge $\mathbf{k} \notin \mathbf{T}$ such that $\mathbf{T} \cup \{\mathbf{k}\}$ contains an odd cycle.
 - 3. For each edge $l \notin (T \cup \{k\})$, build a kernel vector with support $\{l\} \subseteq S \subseteq T \cup \{k, l\}$
- The matching rate along an edge is unique if and only if this edge doesn't belong to any "generalized even cycle".

 $\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$