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Compatibility graph

Graph G = (V, E) undirected, connected, without loop
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Compatibility graph

Graph G = (V, E) undirected, connected, without loop
* NodesV ={1,2,...,n} — item classes
* Edges E={1,2,...,m} — possible matches

* V; = {neighbors of node i}
1 V(U) = Ujey Vi foreachU C V

* £; = {edges containing node i}
3 4
* Independent sets
2 I={{1}{2}, {3}, {4}, {1,4},{2,4}}

HoZHU{Q}
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Random dynamics 3 4

Class-i items arrive as a Poisson process with rate y;

H2\44/ U

The system dynamics depend on:
* the graph G = (V,E),

* the vector u = (uq, 2, .-, tn),

* the matching policy.
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Random dynamics 3 4

Class-i items arrive as a Poisson process with rate y;

H2\44/ U

The system dynamics depend on: Additional notation:
* the graph G = (V,E), * Arrival rate u(U) = > ;cyuin UCV
° — 0 o I

the vector pv = (p1, pi2; - - -, fin), Load p(I) = % Iel

* the matching policy.
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“Stabilizability” 3 4
(Busi¢, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

* The matching problem (G, ) is stabilizable
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* The matching problem (G, ) is stabilizable
if and only if p(I) < 1 foreachI € I
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“Stabilizability”

(Busi¢, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

* The matching problem (G, ) is stabilizable
if and only if p(I) < 1 foreachI € I

p{1}) = Mw o2y = L2
_ Ha M1t g
pli4)) = 12 AL =
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“Stabilizability”

(Busi¢, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016)

* The matching problem (G, ) is stabilizable
if and only if p(I) < 1 foreachI € I

p{1}) = : w o2y =L (3] =
_ M4 M1+ pa
p({4}) = s p({1,4}) = 2t 1ia p({2,4}) =

* The compatibility graph G is stabilizable
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1
“Stabilizability” 3 4
(Busi¢, Gupta, and Mairesse, 2013) (Mairesse and Moyal, 2016) >
* The matching problem (G, ) is stabilizable
if and only if p(I) < 1 foreachI € I
13
3N)=—
p({1)) = z w 2=t a3 =
M1+ pa M2 + g
4} =" o 2,
(143 =1 o141 =T p((2,ay) = B

* The compatibility graph G is stabilizable if and only if G is non-bipartite.

TU/e
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Performance under the first-come-first-matched policy
Comte, Stochastic Models (2022)
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* Perceived as “fair”, greedy, easy to implement, easy to analyze.
* (Moyal, BuSi¢, and Mairesse, 2021) derives:

* the necessary and sufficient stability condition,
® the product-form stationary distribution of the “detailed” state.
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First-come-first-matched policy 3 4

*)2\44/ -

* Perceived as “fair”, greedy, easy to implement, easy to analyze.
* (Moyal, BuSi¢, and Mairesse, 2021) derives:

* the necessary and sufficient stability condition,
® the product-form stationary distribution of the “detailed” state.

[ What is the long-term performance under first-come-first-matched? ]

7/29 Stochastic Dynamic Matching in Graphs TU/e



Calculate long-term performance metrics 3 4

* This is an order-independent loss queue!

8/29 Stochastic Dynamic Matching in Graphs TU/e



Calculate long-term performance metrics

* This is an order-independent loss queue!

* Stationary distribution of the set of unmatched classes:

n(l) = - i(f))(l) (Z M‘(‘}')W(I\ {i})) , Iel

i€l
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* This is an order-independent loss queue!

* Stationary distribution of the set of unmatched classes:

n(l) = - 5(9(1) (Z M‘é})ﬂ(z\ {i})) , Iel

i€l

The value of 7(0) follows by normalization.
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Calculate long-term performance metrics

* This is an order-independent loss queue!

* Stationary distribution of the set of unmatched classes:

n(l) = - 5(9(1) (Z M‘é})ﬂ(z\ {i})) , Iel

i€l
The value of 7(0) follows by normalization.

* Waiting probability of class i:

b= 3 =),

IGH()Z
igv(I)
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Calculate long-term performance metrics

* This is an order-independent loss queue!

* Stationary distribution of the set of unmatched classes:

p(I) 1 -
w(I) = (I \ {i , Tel
=120 (gﬂ(l) ( \{}))
The value of 7(0) follows by normalization.
* Waiting probability of class i:

o >iey Hiwi 1
;= I), whichimplies =& = _.
Wi IGZH‘ 7T( ) p Ziev,ufi 2

0.

igv(I)
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Calculate long-term performance metrics 3 4
2

* Mean number of unmatched items:

= [ __ad) p(I) Wi .
I = %ﬁ(l), with () = — 0T, (; M(I)E(I\{/})> :
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2

* Mean number of unmatched items:

= [ __ad) p(I) Wi .
I = %E(I), with () = — 0T, (; M(I)E(I\{/})> :

The mean waiting time of an item follows using Little’s law.
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Calculate long-term performance metrics 3 4

2

* Mean number of unmatched items:

= [ __ad) p(I) Wi .
I = %E(I), with () = — 0T, (; M(I)E(I\{/})> :

The mean waiting time of an item follows using Little’s law.
* More detailed formulas for the per-class performance.

* Similar results for stochastic bipartite matching model
(Comte and Dorsman, ASMTA, 2021).
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Calculate long-term performance metrics 3 4

* Matching rate along edge k = {i,j}:
mean number of matches per time unit
between classes j and j.

*)2\4; i
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Calculate long-term performance metrics 3 4

* Matching rate along edge k = {i,j}:
mean number of matches per time unit
between classes j and j.

*)2\4; i

* Closed-form expression: consider a finer partition of the state space.
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Calculate long-term performance metrics 3 4

* Matching rate along edge k = {i,j}:
mean number of matches per time unit
between classes j and j.

*)2\4; i

* Closed-form expression: consider a finer partition of the state space.
* More in a few slides...
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Numerical results: Cycle
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Numerical results: Cycle
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Numerical results: Cycle with a chord
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Matching rates under an arbitrary policy
Comte, Mathieu, and Busi¢, arXiv:2112.14457 (2022)
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* Matching rate A, along edge k = {i,j}:
mean number of matches per time unit between classes i and .
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Matching rates 1 4

* Matching rate A, along edge k = {i,j}:
mean number of matches per time unit between classes i and .
* Matching rates are particularly interesting:

* We often want to optimize a function of these matching rates.
® They give intuition about the long-term impact of the matching policy.
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Matching rates 1 4

* Matching rate A, along edge k = {i,j}:
mean number of matches per time unit between classes i and .
* Matching rates are particularly interesting:

* We often want to optimize a function of these matching rates.
® They give intuition about the long-term impact of the matching policy.

Given a graph G = (V,E) and a vector u = (u1, u2,- - ., un) Of arrival rates,
what is the set of “feasible” vectors A = (A1, A2, ..., Am) of matching rates?
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Conservation equation 1 4

The matching rates satisfy the conservation equation

> M=upi, i€{1,2,...,n}.

keE;
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Conservation equation

The matching rates satisfy the conservation equation -

; A A3 =
S Ne=wi i€{1,2,....n}. 12+ M3 =1
keE; M2+ A23+ A4 =2
M3+ A3+ A34 =3
A24+ X34 = g
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Conservation equation

The matching rates satisfy the conservation equation

S M=pi, i€{1,2,...,n},

kEEj
that is, in matrix form,

AN = p,

where A = (a;) is the incidence matrix
of the compatibility graph.
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Conservation equation

The matching rates satisfy the conservation equation

S M=pi, i€{1,2,...,n},

kEEj
that is, in matrix form,

AN = p,

where A = (a;) is the incidence matrix
of the compatibility graph.

OO = =
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Example: Triangle graph

5 M2+ M3 =
A2+ A23 =2
A3+ A23 =3
1
1T 1 0] [Mp2 1
10 1] [M3| = |
0 1 1] [A23 K3
3
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Example: Triangle graph

5 M2+ M3 =

/\)"5 )\ R
12+ A23=p2
\)}}\X\’\f,)i ) 5 M

A3+ A23 =3

1T 1 0] [Mp2 1
4 T0 1 (M| = |2
K\/@ 0 1 1] [A23 13

2

M2tz — [
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Example: Paw graph
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Example: Paw graph

M2+ M3 =
2 M2+ A3 =2

M3+ A3+ A34 = p3

A3.4 = 4
1 4

1T 1 00 )\172 125
(L& 1T 0 1 1 )\173 |2
3 01 1 0| [ha3| ™ |us
0 0 0 1 )\374 Ha
A3 = p13 — fa
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Example: Paw graph

M2+ M3 =
® 2 M2+ 23 = 12
xx —

v M3t A3+ A34 =p3
i A3 4 = 14
1 g 4
Jr

g 1T 1 00 )\172 125

77;3\ i 10 1 1) (M3 _ |m2

2 3 01 1 0| |A2s| s

0 0 0 1 )\374 Ha

A3 = p13 — fa
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Example: Diamond graph
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B = 3(n2 + 13 — w1 — pa)

Example: Diamond graph T
Pt e =p2 T (43 =3

—_
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B = 3(n2 + 13 — w1 — pa)

Example: Diamond graph T
Pt e =p2 T (43 =3

—_

fip = pp — B
M2+ M3 =
50 M2+A3+ 4=
Q2 M3+ A3+ X34 =43
A2.4+ N34 = Jig
1
2 o 1100 0] |22 [
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Surjectivity, injectivity, and bijectivity 1 4

* The compatibility graph G is surjective if
® The linear application A € R™ — AX € R" is surjective.
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Surjectivity, injectivity, and bijectivity

* The compatibility graph G is surjective if
® The linear application A € R™ — AX € R" is surjective.
® The conservation equation A\ = i has at least one solution, for each p € R".

* The compatibility graph G is injective if
® The linear application A € R™ — AX € R" is injective.
* The conservation equation A\ = . has at most one solution, for each € R”.

* The compatibility graph G is bijective if G is surjective and injective.
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Surjectivity, injectivity, and bijectivity

* The compatibility graph G is surjective if
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“Stabilizability”

* A matching problem (G, ) is stabilizable
if and only if p(I) < 1 foreachI € I
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“Stabilizability” 1
3
* A matching problem (G, u) is stabilizable
if and only if the conservation equation A\ = p has a solution A > 0.
1100 0][}"?
101 1 0|2
01101 A273
000 1 1]|32
A3.4
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“Stabilizability” 1

* A matching problem (G, u) is stabilizable
if and only if the conservation equation A\ = p has a solution A > 0.

© The time complexity to verify this condition is polynomial in n and m.

11000?“2
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A34
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“Stabilizability”

* A matching problem (G, u) is stabilizable

if and only if the conservation equation A\ = p has a solution A > 0.

© The time complexity to verify this condition is polynomial in n and m.

* A compatibility graph G is stabilizable if and only if G is non-bipartite.
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“Stabilizability”

* A matching problem (G, u) is stabilizable

if and only if the conservation equation A\ = p has a solution A > 0.

© The time complexity to verify this condition is polynomial in n and m.

* A compatibility graph G is stabilizable if and only if G is surjective.
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“Stabilizability”

* A matching problem (G, u) is stabilizable
if and only if the conservation equation A\ = p has a solution A > 0.

© The time complexity to verify this condition is polynomial in n and m.

* A compatibility graph G is stabilizable if and only if G is surjective.

©
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The rank of matrix A is n.
The nullity of matrix Aisd =m —n
(according to the rank-nullity theorem).
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Affine space of solutions 1 4

* The solution set of the conservation equation is 3

/\:{)\°+a1b1+a2b2—|—...+adbd:a€Rd}

where \° is a particular solution of the conservation equation
and {by,b,,...,by} is a basis of Ker(A), of cardinality d = m — n.
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Affine space of solutions

* The solution set of the conservation equation is 3

/\:{)\°+a1b1+a2b2—|—...+adbd:a€Rd}

where \° is a particular solution of the conservation equation
and {by,b,,...,by} is a basis of Ker(A), of cardinality d = m — n.

* We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).

21/29  Stochastic Dynamic Matching in Graphs

TU/e



Affine space of solutions

* The solution set of the conservation equation is 3

/\:{)\°+a1b1+a2b2—|—...+adbd:a€Rd}

where \° is a particular solution of the conservation equation
and {by,b,,...,by} is a basis of Ker(A), of cardinality d = m — n.

* We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).

* We use two coordinate systems:
* Edge coordinates A = (A1, \2,...,\pm) € R™.
* Kernel coordinates a = (aq, g, ...,aq) € R,
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B = 3(n2 + 3 — w1 — pa)

Example: Diamond graph T
Pt e =p2 T (43 =3

—_

fip =2 — B
M2+ M3 =
5O M2+A3+ 4=
Q2 M3+ A3+ X34 =43
A2.4+ N34 = Jig
1
2 o 1100 0] |22 [
"4 ok 101 1 0| |3
> ’L\»’b A M2
3 23| =
0110 1] 2
_ 000 11 2,4
fz=p3— B A34 &
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Convex polytope of non-negative solutions 1

* The set of non-negative solutions of the conservation equation is

AZOZAORTQ{QERd:)\Oqum +a2b2+...+adbd20}.

This is a d-dimensional convex polytope.
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Convex polytope of non-negative solutions 1

* The set of non-negative solutions of the conservation equation is
Aso=ANRT ~ {aERd A+ arby +agby + ...+ agbg > O}.

This is a d-dimensional convex polytope.

* The subgraph restricted to the support of a vertex of A-q is injective
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Convex polytope of non-negative solutions 1 4

* The set of non-negative solutions of the conservation equation is
Aso=ANRT ~ {aERd A+ arby +agby + ...+ agbg > O}.

This is a d-dimensional convex polytope.

* The subgraph restricted to the support of a vertex of A is injective:

* If this subgraph is bijective, we can reach this vertex by applying any stable
matching policy on this subgraph.
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Convex polytope of non-negative solutions 1 4

* The set of non-negative solutions of the conservation equation is
Aso=ANRT ~ {aERd A+ arby +agby + ...+ agbg > O}.

This is a d-dimensional convex polytope.

* The subgraph restricted to the support of a vertex of A is injective:

* If this subgraph is bijective, we can reach this vertex by applying any stable
matching policy on this subgraph.
* If this subgraph is injective but not surjective, it's more complicated...

23/29  Stochastic Dynamic Matching in Graphs TU/e



Example: Codomino graph 1 ay

(0,1)
(_1 ; 0) (1 ) 0)
a1
0
(_17_1) (15_1)
(a) Solution of the conservation equation A\ = (b) Polytope Ao in kernel coordinates.

with 1o = (4,5,3,2,3,5).
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Example: Codomino graph 1

0 [2]—{3]
~ 2 23}—(23 j E 1 2 E 1 @2 1.\D
1D

26 Ho 5 (61515
(a) Vertex (O, b) Vertex (-1, 0). c) Vertex (1,0).
1 D
1 D
d) Vertex (—1,—1). e) Vertex (1, —1).
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Example: Codomino graph 2

(&)
(_1 ) 1 ) "'
a1
‘ 0
— 1 N(1,-1)
(_1 ) —1 ) : ’
(a) Solution of the conservation equation A\ = (b) Polytope A> in kernel coordinates.

with p = (2,4,4,2,2,2).
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Example: Codomino graph 2

0
ooo 5

(a) Vertex (—1,1). (b) Vertex (—1,—1). (c) Vertex (1,-1).
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Conclusion 1

Take-away

* Stochastic dynamic matching problem associated with
organ transplant programs and assembly systems.

* Performance evaluation under the first-come-first-matched policy.
* Analysis of the matching rates under an arbitrary matching policy.
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Conclusion 1

Take-away

* Stochastic dynamic matching problem associated with
organ transplant programs and assembly systems.

* Performance evaluation under the first-come-first-matched policy.
* Analysis of the matching rates under an arbitrary matching policy.

Future works
* More realistic model: hypergraph? state-dependent arrival rates?
* Optimization and learning: graph structure? arrival rates? policy?
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Basis of the kernel of the matrix A 1 4

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. 3

29/29  Stochastic Dynamic Matching in Graphs TU/e



Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. 3
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. 3

)\172-1-)\173 =0
A2+ +)\2,4:0
)\1,34— +)\3,4=O

A4+ A34=0
11000 i“z 0
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11211

Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. T3 [

)\172-1-)\173 =0
A2+ +)\2,4:0
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. 3
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Basis of the kernel of the matrix A 1 4
* Avector A € R™ belongs to Ker(A) if and only if A\ = 0. 3
* Algorithm to construct a basis of Ker(A) (Doob, 1973) P A= i = )

/\1,2 T )\2,3 T )\2,4 =0
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0.

* Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.

OO = =
o -0 -
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0.

* Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k ¢ T such that
Tu {k} contains an odd cycle.

OO = =
o -0 -
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0.

* Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k ¢ T such that
Tu {k} contains an odd cycle.
3. For each edge | ¢ (TU{k}), build a
kernel vector with support {I} CS CTu{k,!}

OO = =
o -0 -
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Basis of the kernel of the matrix A

* Avector A € R™ belongs to Ker(A) if and only if A\ = 0.

* Algorithm to construct a basis of Ker(A) (Doob, 1973)
1. Build a spanning tree T of G.
2. Identify an edge k ¢ T such that
Tu {k} contains an odd cycle.
3. For each edge | ¢ (TU{k}), build a
kernel vector with support {I} CS CTu{k,!}

* The matching rate along an edge is unique
if and only if this edge doesn't belong
to any “generalized even cycle”.

OO = =
o -0 -
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