

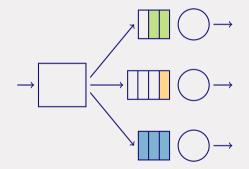
IEEE/ACM International Symposium on Quality of Service

Mark van der Boor and Céline Comte

Eindhoven University of Technology

Model

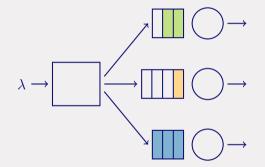
• Dispatcher, *n* servers, jobs



e

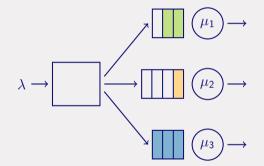
Model

- Dispatcher, *n* servers, jobs
- Poisson arrival process with rate λ



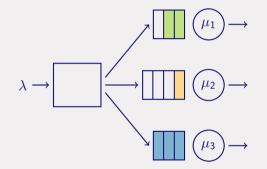
Model

- Dispatcher, *n* servers, jobs
- $\bullet\,$ Poisson arrival process with rate λ
- Service time exponential with rate μ_i , with $\mu_1 > \mu_2 > \ldots > \mu_n$



Model

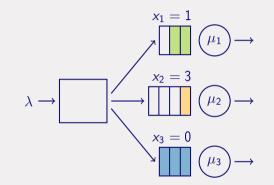
- Dispatcher, *n* servers, jobs
- $\bullet\,$ Poisson arrival process with rate λ
- Service time exponential with rate μ_i , with $\mu_1 > \mu_2 > \ldots > \mu_n$
- Buffer of length $\ell_i < \infty$



Model

- Dispatcher, *n* servers, jobs
- $\bullet\,$ Poisson arrival process with rate λ
- Service time exponential with rate μ_i , with $\mu_1 > \mu_2 > \ldots > \mu_n$
- Buffer of length $\ell_i < \infty$

State: $x = (x_1, x_2, ..., x_n)$ $x_i =$ number of available slots at server *i*

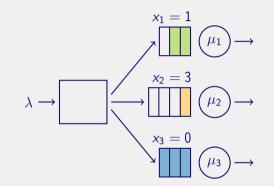


Model

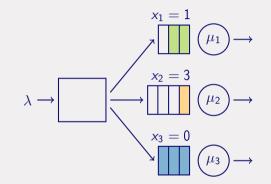
- Dispatcher, *n* servers, jobs
- $\bullet\,$ Poisson arrival process with rate λ
- Service time exponential with rate μ_i , with $\mu_1 > \mu_2 > \ldots > \mu_n$
- Buffer of length $\ell_i < \infty$

State: $x = (x_1, x_2, ..., x_n)$ $x_i =$ number of available slots at server *i*

Examples: cloud, manufacturing...

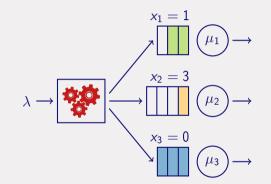


Scheduling: Any non-anticipating policy Processor-sharing, first-come-first-served,



Scheduling: Any non-anticipating policy Processor-sharing, first-come-first-served,

Load balancing: Immediate and irrevocable Choose server *i* with probability $\frac{x_i}{x_1+...+x_n}$

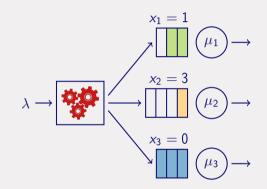


Scheduling: Any non-anticipating policy Processor-sharing, first-come-first-served,

Load balancing: Immediate and irrevocable Choose server *i* with probability $\frac{x_i}{x_1+...+x_n}$

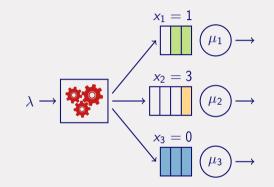
Relations with other algorithms:

- Insensitive (Bonald et al., 2004)
- Join-idle-queue (Lu et al., 2011)
- Join-below-threshold (Zhou et al., 2018)
- Idle-one-queue (Gupta and Walton, 2019)



Stationary distribution

The evolution of the state $x = (x_1, \ldots, x_n)$ defines a continuous-time Markov chain.

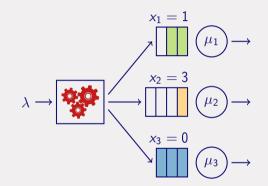


Stationary distribution

The evolution of the state $x = (x_1, \ldots, x_n)$ defines a continuous-time Markov chain.

Stationary distribution: For $x \leq \ell$,

$$\pi(x) = \beta(\ell) \binom{x_1 + \ldots + x_n}{x_1, \ldots, x_n} \prod_{i=1}^n \left(\frac{\mu_i}{\lambda}\right)^{x_i}.$$



Stationary distribution

The evolution of the state $x = (x_1, \ldots, x_n)$ defines a continuous-time Markov chain.

Stationary distribution: For $x \leq \ell$,

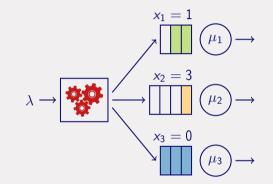
$$\pi(x) = \beta(\ell) \binom{x_1 + \ldots + x_n}{x_1, \ldots, x_n} \prod_{i=1}^n \left(\frac{\mu_i}{\lambda}\right)^{x_i}.$$

Loss probability:

$$\frac{1}{\beta(\ell)} = \sum_{x \le \ell} \binom{x_1 + \ldots + x_n}{x_1, \ldots, x_n} \prod_{i=1}^n \left(\frac{\mu_i}{\lambda}\right)^{x_i}$$

Problem and contributions

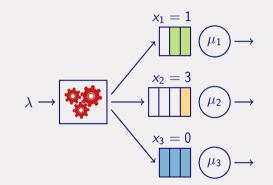
Question: Given λ , $\mu_1, \mu_2, \dots, \mu_n$, and $L = \ell_1 + \ell_2 + \dots + \ell_n$, how to choose $\ell_1, \ell_2, \dots, \ell_n$ to minimize the loss probability?



Problem and contributions

Question: Given λ , $\mu_1, \mu_2, \dots, \mu_n$, and $L = \ell_1 + \ell_2 + \dots + \ell_n$, how to choose $\ell_1, \ell_2, \dots, \ell_n$ to minimize the loss probability?

Motivation: Trade-off loss probability vs. {mean response time, communication cost}.



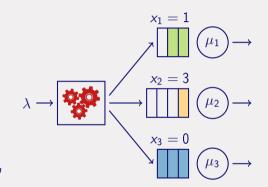
Problem and contributions

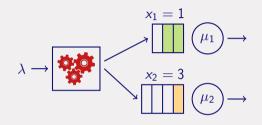
Question: Given λ , $\mu_1, \mu_2, \dots, \mu_n$, and $L = \ell_1 + \ell_2 + \dots + \ell_n$, how to choose $\ell_1, \ell_2, \dots, \ell_n$ to minimize the loss probability?

Motivation: Trade-off loss probability vs. {mean response time, communication cost}.

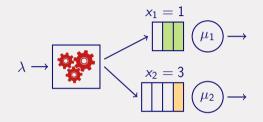
Contributions:

- Low-traffic analysis: $\lambda \ll \mu_1 + \ldots + \mu_n$
- Heavy-traffic analysis: $\lambda \gg \mu_1 + \ldots + \mu_n$
- Monotonicity result: λ increases

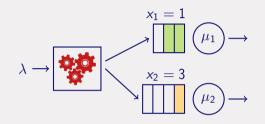




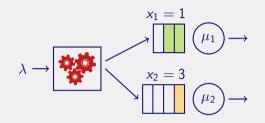
Low traffic: There is $\lambda_* > 0$ such that, for $\lambda \leq \lambda_*$, the loss probability is minimized when $\frac{\ell_1}{L} \simeq \frac{\mu_1}{\mu_1 + \mu_2}$ and $\frac{\ell_2}{L} \simeq \frac{\mu_2}{\mu_1 + \mu_2}$.



Low traffic: There is $\lambda_* > 0$ such that, for $\lambda \leq \lambda_*$, the loss probability is minimized when $\frac{\ell_1}{L} \simeq \frac{\mu_1}{\mu_1 + \mu_2}$ and $\frac{\ell_2}{L} \simeq \frac{\mu_2}{\mu_1 + \mu_2}$. **Heavy traffic**: There is $\lambda^* > 0$ such that, for $\lambda \geq \lambda^*$, the loss probability is minimized when $\frac{\ell_1}{L} \simeq \frac{1}{2}$ and $\frac{\ell_2}{L} \simeq \frac{1}{2}$.



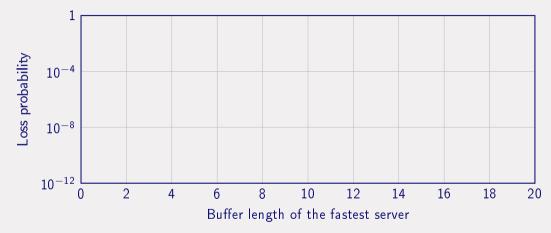
Low traffic: There is $\lambda_* > 0$ such that, for $\lambda \leq \lambda_*$, the loss probability is minimized when $\frac{\ell_1}{L} \simeq \frac{\mu_1}{\mu_1 + \mu_2}$ and $\frac{\ell_2}{L} \simeq \frac{\mu_2}{\mu_1 + \mu_2}$. **Heavy traffic**: There is $\lambda^* > 0$ such that, for $\lambda \geq \lambda^*$, the loss probability is minimized when $\frac{\ell_1}{L} \simeq \frac{1}{2}$ and $\frac{\ell_2}{L} \simeq \frac{1}{2}$.



Monotonicity: The optimal buffer length of the fastest server, in terms of the loss probability, is decreasing with the arrival rate λ .

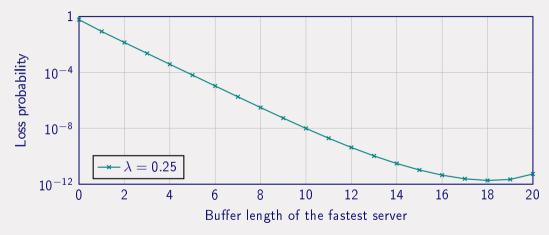
L = 20 $\mu_1 = 0.9$ $\mu_2 = 0.1$

e



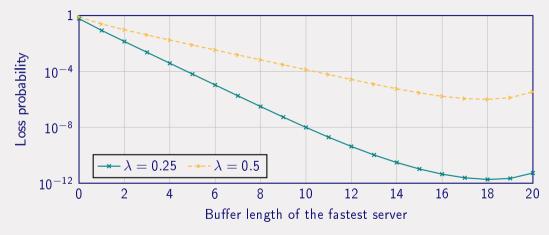
L = 20 $\mu_1 = 0.9$ $\mu_2 = 0.1$

TU/e



$L = 20 \ \mu_1 = 0.9 \ \mu_2 = 0.1$

TU/e



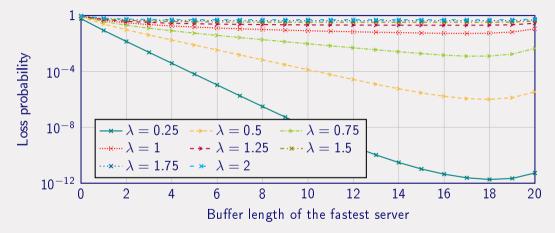
$L = 20 \ \mu_1 = 0.9 \ \mu_2 = 0.1$

TU/e



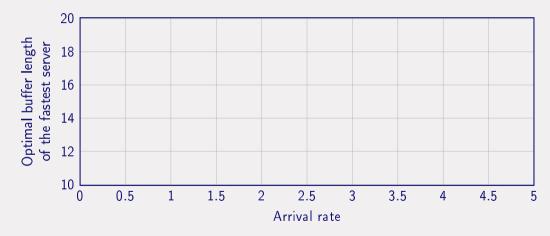
$L = 20 \ \mu_1 = 0.9 \ \mu_2 = 0.1$

TU/e



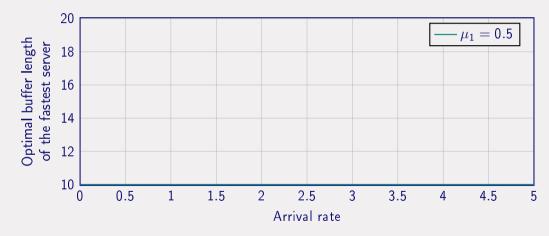
L = 20 $\mu_1 + \mu_2 = 1$

TU/e



L = 20 $\mu_1 + \mu_2 = 1$

TU/e



L=20 $\mu_1+\mu_2=1$

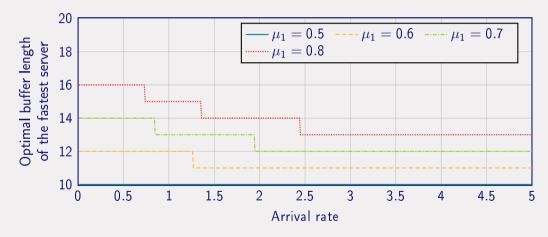
TU/e

$$L = 20$$

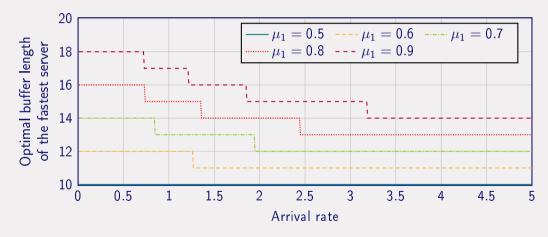
 $\mu_1 + \mu_2 = 1$

TU/e

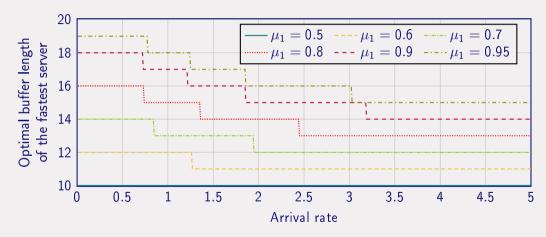
 $L=20 \ \mu_1+\mu_2=1$



L=20 $\mu_1+\mu_2=1$



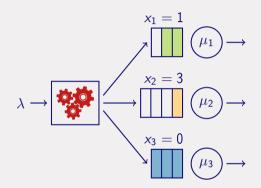
L=20 $\mu_1+\mu_2=1$



Conclusion

Contributions

- Analysis of a randomized load-balancing algorithm in heterogeneous server clusters.
- Understanding of the optimal buffer lengths in terms of the loss probability.
- Developed new analytical methods.



Conclusion

Contributions

- Analysis of a randomized load-balancing algorithm in heterogeneous server clusters.
- Understanding of the optimal buffer lengths in terms of the loss probability.
- Developed new analytical methods.

Future works

- Optimize for other performance metrics.
- Generalize our results to other models that account for locality constraints.

