Pass-and-Swap Queues

Joint work with Jan-Pieter Dorsman (UVA)
Céline Comte - c.m.comte@tue.nl Eindhoven University of Technology

2021 INFORMS Annual Meeting — Session "Recent Advances in Load Balancing"

The M/M/1 queue

Model

- Jobs arrive according to a Poisson process with rate λ.
- Service times are i.i.d. exponentially distributed with rate μ.
- A single server.

The M/M/1 queue

Model

- Jobs arrive according to a Poisson process with rate λ.
- Service times are i.i.d. exponentially distributed with rate μ.
- A single server.

Analysis

- Markov (birth-and-death) process.
- Stationary distribution: $\pi(n)=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}$.
- Proof: (partial) balance equations + normalization equation.

Order-independent queues

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

Order-independent queues

- Redundancy cancel-on-complete (Gardner et al., 2016)

- Order-independent (OI) queue (Berezner et al., 1995) (Bonald and Comte, 2017)

Order-independent queues

- Product-form stationary distribution (Gardner et al., 2016):

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

Order-independent queues

- Product-form stationary distribution (Gardner et al., 2016):

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

- Proof: (partial) balance equations + normalization equation.

Order-independent queues

- Product-form stationary distribution (Gardner et al., 2016):

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

- Proof: (partial) balance equations + normalization equation.
- Why study product-form queues?
- Rich in applications.
- Exact performance analysis is not completely hopeless.

Current state of the art

- Fundamental contributions by Kelly and Whittle in the 1970's and 1980's.

Current state of the art

- Fundamental contributions by Kelly and Whittle in the 1970's and 1980's.
- Study of product-form queues in different contexts: redundancy scheduling, matching systems, manufacturing systems, etc.

Current state of the art

- Fundamental contributions by Kelly and Whittle in the 1970's and 1980's.
- Study of product-form queues in different contexts: redundancy scheduling, matching systems, manufacturing systems, etc.
- Q: Can we build a model that captures all product-form queues out there?

Current state of the art

- Fundamental contributions by Kelly and Whittle in the 1970's and 1980's.
- Study of product-form queues in different contexts: redundancy scheduling, matching systems, manufacturing systems, etc.
- Q: Can we build a model that captures all product-form queues out there?
- A: Several frameworks have been constructed recently:
- Adan, Kleiner, Righter, Weiss (2018)
- Gardner, Righter (2020)
- Ayesta, Bodas, Dorsman, Verloop (2021)

Current state of the art

- Fundamental contributions by Kelly and Whittle in the 1970's and 1980's.
- Study of product-form queues in different contexts: redundancy scheduling, matching systems, manufacturing systems, etc.
- Q: Can we build a model that captures all product-form queues out there?
- A: Several frameworks have been constructed recently:
- Adan, Kleiner, Righter, Weiss (2018)
- Gardner, Righter (2020)
- Ayesta, Bodas, Dorsman, Verloop (2021)
- A: But, still, new product-form queues keep appearing, not captured by these frameworks, such as the pass-and-swap queue.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

OI queue

Swapping graph

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

OI queue

Swapping graph

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

OI queue

Swapping graph

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

OI queue

Swapping graph

Definition

Pass-and-swap (P\&S) queues

- are an extension of OI queues,
- add a whole new dimension to product-form queues: intra-queue routing,
- have many applications.

OI queue

Swapping graph

Product-form stationary distribution

- Stationary distribution: exactly the same as OI queues!

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

Product-form stationary distribution

- Stationary distribution: exactly the same as OI queues!

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

- Proof: (partial) balance equations + normalization equation.

Product-form stationary distribution

- Stationary distribution: exactly the same as OI queues!

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)}
$$

- Proof: (partial) balance equations + normalization equation.
- Hence, the P\&S queue is a product-form queue.

Product-form stationary distribution

- Stationary distribution: exactly the same as OI queues!

$$
\pi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\pi(\varnothing) \prod_{p=1}^{n} \frac{\lambda_{c_{p}}}{\mu\left(c_{1}, \ldots, c_{p}\right)} .
$$

- Proof: (partial) balance equations + normalization equation.
- Hence, the P\&S queue is a product-form queue.
- We also prove a simple stability condition (also valid for OI queues).

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

- B always last in the upper queue, first in the lower queue: placement order.

Closed network of P\&S queues

- Tandem network of two P\&S queues with the same swapping graph:

- B always last in the upper queue, first in the lower queue: placement order.
- The stationary distribution again has a product form (on a restricted space)!

From two queues to one queue

- The lower queue models "state-dependent arrivals" to the upper queue.

From two queues to one queue

- The lower queue models "state-dependent arrivals" to the upper queue.
- If the two queues are simple •/M/1 queues, the upper queue can be seen as an M/M/1 queue with blocking.

From two queues to one queue

- The lower queue models "state-dependent arrivals" to the upper queue.
- If the two queues are simple •/M/1 queues, the upper queue can be seen as an M/M/1 queue with blocking.

- This is very powerful:
- Redundancy cancel-on-start and cancel-on-commit.
- Hierarchical load-distribution algorithms.

Conclusion

Take away

- P\&S queues broaden the family of product-form queues by allowing for intra-queue routing.
- Networks of P\&S queues also have a product form.
- Paves the way for performance analysis of other algorithms.

Conclusion

Take away

- P\&S queues broaden the family of product-form queues by allowing for intra-queue routing.
- Networks of P\&S queues also have a product form.
- Paves the way for performance analysis of other algorithms.

Future works

- How big is the family of product-form queues?
- Are there other routing mechanisms that lead to a product form?
- Can we find other applications of P\&S queues?

