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Stochastic bipartite matching model

3 Customer classes

i E 4
/NSNS NN
A B C D E Server classes
Bipartite graph G = (Z, K, &) with
* 7 ~ “customer” or “demand” classes
* K ~ “server” or “supply” classes
* & ~ authorized matchings
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* Sequence of i.i.d. customer classes: class i with probability \;,i € Z
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Statec = (1,2,1)
[f2fa] [ |

[[p[p] [ |
State d = (D, D, D)
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Statec = (1,2,1)
—E f2fa] | ]

—i8 [[p[p] [ |
State d = (D, D, D)

* At each time slot, reveal the next customer and the next server:

® The customer belongs to class i with probability ;.
®* The server belongs to class k with probability ju.
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* At each time slot, reveal the next customer and the next server:

® The customer belongs to class i with probability ;.
®* The server belongs to class k with probability ju.

* First-come-first-matched service policy.
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* There are always as many customers as servers in the queue.
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* There are always as many customers as servers in the queue.

* The set 4 of unmatched item classes satisfies:

* Ais anindependent set of the graph G
* AnZ #0ifandonlyif ANK # 0
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Statec = (1,2,1)

— 2 ’1%‘1‘ ‘ ‘ {'LC},{1,D},{1,E},{1,C,D},{1,C,E},
{1,D,E},....,{1,2,D},{1,2,E},{1,2,D,E},
—C [D[p[D] | | {1,3,6},{1,4,¢C},...

State d = (D, D, D)

* There are always as many customers as servers in the queue.
* The set 4 of unmatched item classes satisfies:

* Ais anindependent set of the graph G
* AnZ #0ifandonlyif ANK # 0
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* Model introduction (Caldentey, Kaplan, and Weiss, )
* Necessary and sufficient stability condition (Busi¢, Gupta, and Mairesse, )

* Performance evaluation

®* (Adan and Weiss, )
® (Adan, Busi¢, Mairesse, and Weiss, )

* Optimization and learning (Cadas, )
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Performance evaluation /N/ N/ \/\
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* Stationary distribution of the set of unmatched item classes

AA)T(A) = w(ANK) 3 Am(AD) + MANT) 3 pum(A\K})

i€eANZ ke ANK
+ > > Nmer(A\{i,k}), if Ais non-empty,
i€e ANZ ke ANK

where A(A) = W(K(ANZ)OMZ(ANK)) = AM(ANTD)pu(ANK).

5/9 Performance Evaluation of Stochastic Non-Bipartite Matching Models TU/e



1 2 3 4
Performance evaluation /N/ N/ \/\
A B C D E

* Stationary distribution of the set of unmatched item classes

AA)T(A) = w(ANK) 3 Am(AD) + MANT) 3 pum(A\K})

i€eANZ ke ANK
+ > > Nmer(A\{i,k}), if Ais non-empty,
i€e ANZ ke ANK

where A(A) = W(K(ANZ)OMZ(ANK)) = AM(ANTD)pu(ANK).
The value of the normalization constant () follows by normalization.

5/9 Performance Evaluation of Stochastic Non-Bipartite Matching Models TU/e



1 2 3 4
Performance evaluation /N/ N/ \/\
A B C D E

* Stationary distribution of the set of unmatched item classes

AA)T(A) = w(ANK) 3 Am(AD) + MANT) 3 pum(A\K})

i€eANZ ke ANK
+ > > Nmer(A\{i,k}), if Ais non-empty,
i€e ANZ ke ANK

where A(A) = W(K(ANZ)OMZ(ANK)) = AM(ANTD)pu(ANK).
The value of the normalization constant () follows by normalization.
* Similar expressions for waiting probability, mean waiting time...
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* Time complexity. O(I - K - ((I + K) - M) + N), where
* ] = number of customer classes,
®* K = number of server classes,
®* M = number of maximal independent sets,
®* N = number of independent sets.
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* Time complexity. O(I - K - ((I + K) - M) + N), where
* ] = number of customer classes,
®* K = number of server classes,
®* M = number of maximal independent sets,
®* N = number of independent sets.

* Flexibility. This approach can be easily adapted to derive other performance
metrics (e.g., matching rates, mean length of a busy sequence).
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* New closed-form expressions for performance metrics
in the stochastic bipartite matching model.
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* New closed-form expressions for performance metrics
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* Numerical evaluations on toy examples.

* Self-advertising © ~» (Comte, Stochastic Models, 2021)
Similar expressions for the stochastic non-bipartite matching model
(with additional comments on order-independent queues!)
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